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ABSTRACT 

 

 
Nowadays, there are many applications that have been used in agriculture field to 

facilitate human workers. Many researches have been focused on fruits grading based on 

appearance features. Since lime is one of Thai economic corp that have high demand and 

price all the year, a lot of limes are continually exported into the market. The appearance of 

limes strongly impact the market value. So, the quality inspection is needed to avoid sell- 

ing bad limes to customers which cause greatly affects to the customer base. Determining 

saleability of lime can be done by using humans or machines. Using human workers is time- 

consuming, high cost and not accurate. Although there are fruit grading machines, they are 

expensive and difficult to reach for general farmers. This research has proposed method to 

classify saleability of lime into three categories which are buy, maybe, and not buy by us- 

ing Convolutional Neural Network (CNN) because it is a deep neural network that has high 

performance in terms of images classification tasks. Hyperparameters tuning process has 

been used to search for the best model performance by using full factorial design. The hy- 

perparameters that have been considered in the model are Epoch, Learning Rate, Decaying 

Rate and Momentum. Two experiments of hyperparameters tuning were constructed. The 

first experiment constructed by initial 25 full factorial by setting low and high value. After 
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that, the result from first experiment was analysed by using Minitab to remove unimportant 

factors. The model performance in this research has been evaluated by F1-score which the 

first experiment gave the highest results as 76%, 79%, 80% in training model, 73%, 77%, 

77% in validation and 74%, 77%, 77% of testing for buy, maybe and not buy respectively. 

Keywords: Neural Network, Convolutional Neureal Network (CNN), Artificial Intelli- 

gent, Lime prediction, Saleablilty of lime 
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CHAPTER 1 

INTRODUCTION 

 

Citrus aurantifolia has been grown worldwide, particularly in the tropical and          

subtropical area. Citrus fruit is beneficial to people’s health because it contains numerous 

natural metabolites. It can prevent heart, liver, bone, and urinary diseases (Narang & Ji- 

raungkoorskul, 2016). Lime (Citrus aurantifolia Swingle cv. Paan) is an economic crop in 

Thailand which harvest season is from July to September. It is normally harvested when it 

has green skin and strong aromatic smell. The price of lime fruit is mostly determined by 

season and it’s quality (Kaewsuksaeng, Tatmala, Srilaong, & Pongprasert, 2015). Lime is 

used in a variety of Thai dishes and beverages. The selling price of lime fruit is constantly 

high which is attractive to agriculturists (Booranawong & Booranawong, 2018). Many parts 

of Thailand are suitable for plating lime which are central, southern, and northern (Boorana- 

wong & Booranawong, 2017). 

In the agriculture field, automation has been used to improve country’s quality,      

economic growth and productivity. Sorting fruits and vegetables have impact on export 

market which quality evaluation is needed. The appearance of the fruits and vegetables also 

strongly impact the market value, customer preference and decision. An autonomous system 

has the ability to reduce time, cost and human error which human workers are easily 

disrupted by the environment (Bhargava & Bansal, 2021). Before setting prices for fruits 

and vegetables, quality determination and product testing are needed for manufacturing 

process. In some food industries image processing techniques have been used to monitor 

quality of  agricultural products (Pathmanaban, Gnanavel, & Anandan, 2019). 
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Academics and industries have been interested in agriculture post-harvest operation 

to reduce the losses (Phate, Malmathanraj, & Palanisamy, 2021). Computer vision has been 

improved to replace manual inspection and assist human workers to improve their skills 

which are classification, quality estimation by observing internal and external features 

(Saldaña, Siche, Luján, & Quevedo, 2013). Machine learning approaches were combined 

with sufficient image processing that have the potential to develop an automation system 

because fruit identification, classification and grading cannot be done accurately by human 

perception (Behera, Rath, Mahapatra, & Sethy, 2020). 

 

1.1 Problem Statement 

Lime is one of the economic crops in Thailand which has high demand all the year. 

Selling bad limes to customers can cause losing customers base and trust of company. So, 

the quality inspection process is needed to determine saleability of limes before selling in 

the market. The lime with green skin and fewer defects has more chance to sale than the 

defective lime. Although quality inspection can be done by human workers, using human is 

time consuming, high cost, and not accurate. Moreover, using machine is expensive and 

difficult to reach for general farmers. So, this research has proposed method to classify 

saleability of limes automatically by using Convolutional Neural Network (CNN). 

 

1.2 Research Objective 

The main objective of this research is to train the CNN model for classifying various 

quality of lime images into three categories which are buy, maybe and not buy. Furthermore, 

to evaluate the model performance in train, validation and test set. Lastly, to implement 

CNN model with real-world data set or test set of lime images that the model never seen 

before. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 
2.1 Related Work 

Computer vision and machine learning have been used in many applications in the 

agriculture field. This chapter is to review previous works which related to this paper.       

Clustered adaptive neuro-fuzzy inference system (ANFIS) has been developed to predict the 

weight of Indian sweet lime with 1D and 2D features which extracted from computer vision. 

Three clustering methods have been compared which are Fuzzy C-mean clustering (FCM), 

Subtractive clustering (SC) and Grid partitioning (GP). The result shows that using ANFIS 

with FCM gives the most accuracy and less error between 5.13% and -6.25% (Phate, Mal- 

mathanraj, & Palanisamy, 2019). The computer vision system (CVS) has been developed 

to determine sweet lime weight by using image processing to extract geometrical features. 

The dimensional features are used to predict the weight of the sweet lime. A support          

vector machine regression (SVMR) has been used to estimate the weight of the samples. 

The R2 coefficient is 0.9866 and RMSE is 6.435 (Phate, Malmathanraj, & Palanisamy, 

2020). Machine learning and Meta-heuristic approach have been developed for estimating 

sweet lime weight by using computer vision with GA-ANFIS and PSO-ANFIS which GA-

ANFIS gave better result and less time with RMSE = 4.1581 (Phate et al., 2021). The 

defective and ripeness of tomatoes has been estimated by RGB extraction and ANN for 

classification with an accuracy of 96.47 % (Arakeri, 2016). Backpropagation neural network 

(BPNN) has been developed for tomato maturity detection which are green, orange and red. 

The RGB values are extracted from images and converted to HSI model. The results shows 

that H had the most accuracy to extract and identify the maturity of tomatoes by 99.31% 

with SD 1.2% (Wan, Toudeshki, Tan, & Ehsani, 2018). Mass and volume of cherry tomato 

has been predicted by support vector machine (SVM), radial basis function (RBF) and 

Bayesian artificial neural network (Bayesian-ANN) with 2D and 3D images analysis 

(Nyalala et al., 2019). Discriminate defects and grading of tomatoes by using color, texture 

and shape features to determine defects or healthy area extracted in LAB space. Histogram 

of the image corresponding to different grading which healthy tomato has higher pixel value 

than detected one. RBF-SVM was the best model which gave the most accuracy which 

estimated 0.9515 (Ireri, Belal, Okinda, Makange, & Ji, 2019). SVM and K-means cluster 
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have been developed for classifying severity disease of orange with 90% accuracy (Behera, 

Jena, Rath, & Sethy, 2018). A three-variety automatic and non-instructive computer vision 

system has been developed to estimate PH value of orange based on hybrid ANN-ABC 

which can use with various orange types (ASabzi, Javadikia, & Arribas, 2020). A mobile 

platform also developed for pre-grading automation which can analyze color and size of 

citrus by using RGB extraction and sum of pixels from the images. R2 coefficient of size is 

0.993 and 0.918 for color (Cubero et al., 2014). For Cherry classification, Convolutional 

Numeral Network (CNN) with hybrid pooling method has been proposed to determine the 

appearance feature in regular or irregular shape with 99.4% of accuracy (Momeny, 

Jahanbakhshi, Jafarnezhad, & Zhang, 2020). For banana grading, Neural Network 

Arbitration has been developed to reduce human error and time which can determine if the 

banana is healthy or defective with 97% accuracy (Olaniyi, Oyedotun, & Adnan, 2017). The 

size of banana has been deter- mined by using computer vision to find five point at the edge 

then measure the length and arc height (Hu, Dong, Malakar, Liu, & Jaganathan, 2015). 

Blueberry maturity has been classified by using histogram orientated gradients (HOG) 

which are mature, intermediate and young. The images were acquired from outdoor. Support 

Vector Machine (SVM) used to detect fruit region. K-nearest Neighbor (KNN) and 

Template Matching with Weighted Euclidean Distance (TMWE) has been used to classify 

the maturity state with low computation cost and high accuracy of 86.0% for young, 94.2% 

for intermediate and 96.0% for mature (Tan, Lee, Gan, & Wang, 2018). Artificial neural 

networks (ANNs) and support vector machine (SVM) has been developed for determining 

mulberry ripeness level. The image has been segmented in RGB channel which B was the 

best channel to classify the fruits. Color, geometric and texture features has been extracted 

by using Correlation-based Feature Selection subset (CFS) and Consistency subsets (CONS). 

ANN and SVM have been used for classification. ANN with CFS gave the best result with 

more minor error which are 100%, 100% and 99.1% of accuracy (Azarmdel, Jahanbakhshi, 

& Muñoz, 2020). 
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2.2 Research Gap 

Several works have been studied from the literature review chapter which image 

processing and machine learning have been improved for fruits and vegetable quality           

assessment. This research will mainly focus on the machine learning part. There are various 

methods proposed recently. For instance, Fuzzy C-mean (FCM), Support vector machine 

(SVM), Artificial neural network (ANN), K-mean clustering and Convolutional Neural      

Network (CNN). Most research has been focused on appearance features. For instance, size, 

defect, color and ripeness. The objectives of machine vision have been discussed that       

quality inspection is needed before setting a price but there is no research about purchasing 

opportunity. So, this research objective is to classify the saleability of the lime by its external 

features. The summary of the related work is shown in the table 2.1. 

 
Table 2.1 Summary of related research. 

Research Paper Objective Method 

Phate et al., 2021 Weight of lime ANFIS 

Phate et al., 2020 Weight of lime SVM 

ASabzi et al., 2020 PH value of orange ANN 

Momeny et al., 2020 Cherry classification CNN 

Phate et al., 2019 Weight of lime FCM, SC, GP, ANFIS 

Azarmdel et al., 2020 Mulberry ripeness level SVM, ANN 

Nyalala et al., 2019 Mass and volume of cherry tomatoes SVM, ANN, RBF 

Ireri et al., 2019 Defect of tomatoes SVM, RBF 

Wan et al., 2018 Maturity of tomatoes BPNN 

Behera et al., 2018 Severity disease K-mean, SVM 

Tan et al., 2018 Blueberry maturity SVM, KNN 

Olaniyi et al., 2017 Banana classification BPNN 

Arakeri,2016 Defective and ripeness of tomatoes ANN 

Hu et al., 2015 Size of banana Computer vision 

Cubero et al., 2014 Grading of citrus Computer vision 

This research Classifying saleability of lime CNN 
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2.3 Convolutional Neural Network (CNN) 

The Artificial Neural Network (ANN) is a computer processing system that based on 

the biological nervous system. There are composed of many connected nodes as known as 

neurons. ANN has ability to learn from input to optimise the final output. The input usually 

in multidimensional data which will feed to the hidden layer and it will learn from previous 

layer to improve the output. Two main methods for training neural network are supervised and 

unsupervised learning. Supervised learning has the labeled input. Otherwise, unsupervised 

learning has no labels. The image pattern recognition is better to use supervised learning 

(O’Shea & Nash, 2015). For pattern recognition, CNN is one of the most famous in deep 

neural network. In machine learning issues, the CNN performs effectively in applications 

that particular deal with image data such as face detection, image or video recognition. The 

layers of CNN consist of convolutional layer, non-linearity layer, pooling layer and fully 

connected layer (Eremenko, 2018). The distinction between CNN and ANN is CNN can 

recognize patterns in images. It enables the model to encode a specific feature from the input 

images which more suitable for image data (Albawi, Mohammed, & Al-Zawi, 2017). 

 

2.3.1 Structure of Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) consists of four layers which are convolu- 

tional layer, pooling layer, flattening layer and fully connected layer is shown in figure 2.1. 

 

 
Figure 2.1 Layers of CNN model (Eremenko, 2018). 
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2.3.1.1 Convolutional Layer 

Convolutional layer is used to reduce input image size and also perform to sharpen 

image, edge detection, or blur image. There is a feature detector or a filter which will apply 

in every pixels of input image and the result will be stored in feature map is shown in figure 

2.2. 
 

 
Figure 2.2 Convolutional layer (Eremenko, 2018). 

 

 
2.3.1.2 Pooling Layer 

In pooling layer, the filter will apply in every pixels of feature map image from 

convolutional process. In this step, the maximum value will be picked and store in pooled 

feature map. This step can help model to be robust with different manner of images. The 

process of this step is shown in figure 2.3. 

 

 
Figure 2.3 Pooling layer (Eremenko, 2018). 
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2.3.1.3 Flattening Layer 

The output from pooling layer will be flatten in to one dimension to be able to per- 

form as an input for Artificial Neutral Network (ANN) model. The process of this step is 

shown in figure 2.4. 

 

 
Figure 2.4 Flattening layer (Eremenko, 2018). 

 
 

2.3.1.4 Fully Connected Layer 

In the last step, the data will be fed into an ANN model which consists of input layer, 

fully connection layer or hidden layer and output layer. The output will show the value of 

most likely of input image and the model will selected the best value to be the label of that 

image. The process of this step is shown in figure 2.5. 

 

 
Figure 2.5 Fully connected layer (Eremenko, 2018). 
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2.3.2 Performance Evaluation 

To evaluate the model performance, precision, recall, F1-score have been used in this 

section (Leung, 2022). 

2.3.2.1 Precision 

The precision is calculated by number of true positive divided by total positive. The 

formula for calculating precision is shown in equation 2.1. 

 

 

Precision = 
 TP 

 
TP + FP 

 

(2.1) 

 

2.3.2.2 Recall 

The recall is calculated by number of true positive divided by total of true positive 

and false negative. The formula for calculating recall is shown in equation 2.2. 

 

 

Recall = 
 TP 

 
TP + FN 

 

(2.2) 

 

2.3.2.3 F1-score 

The F1-score is calculated by precision and recall harmonic mean. The formula for 

calculating F1-score is shown in equation 2.3. 

 

 

F1 score = 2 
Precision × Recall 

Precision + Recall 

 

(2.3) 

 

Where TP is True positive, TN is True negative, FP is False positive and FN is False 

negative. 
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CHAPTER 3 

METHODOLOGY 

 

The methodology section has divided into four steps which are data collection, data 

preparation, Convolutional Neural Network (CNN) model and hyperparameters tuning. The 

overall process is shown in figure 3.1. 

 

 

 

Figure 3.1 Methodology process. 
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3.1 Data Collection 

Firstly, the data has to be collected before classification process. For data collection 

section, they are separated into 3 parts which are image acquisition, visual inspection, and 

data combination. 

 

3.1.1 Image Acquisition 

In image acquisition section, 530 various qualities of limes are collected from the 

farm. The limes that have been used in this research is called Cirtus Aurantifolia Swingle or 

Citrus Aurantifolia (Christm & Panze) Swing from Ratchaburi province. After that, each of 

lime was captured in four angles images. To setup the equipment there are a lightbox for 

controlling the light, an iPhone 11 Pro Max camera that has resolution of 3024 × 4032 pixels 

and a tripod for holding an iPhone to make the distance equally from camera to lime sample. 

The equipment setup and example of four angles of a lime image is shown in figure 3.2 and 

3.3. 

 

 

 

Figure 3.2 Equipment setup. 
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Figure 3.3 Four angles of lime image. 

 

3.1.2 Visual Inspection 

The survey was constructed and given to eight research participants in order to collect 

data for labeling the lime images. Each research participants were assigned to give the score 

range from 1 to 3 (1 is buy, 2 is maybe, 3 is not buy) from visual inspection at each angle of 

a lime images. The data collection table example for visual inspection is shown in table 3.1. 

 
Table 3.1 Visual inspection table. 

Lime number Angle image Saleability Remark 

1 A 1 Buy 

1 B 2 Maybe 

1 C 1 Buy 

1 D 3 Not buy 

Ref. code: 25646422040227QGW



13 
 

3.2 Data Preparation 

After acquired all data from the survey, mode is used to identify the label of lime 

images. The most frequently score that given from every researcher participants has been 

used to categorise the images into three different folders (buy, maybe, and not buy). The 

lime image size was reduced to 1000 × 1000 pixels to reduce the computation time and avoid 

reaching limitation of GPU memory. 

 

3.3 Convolutional Neural Network (CNN) Model 

In this section, CNN has been used to classify the lime saleability into 3 categories 

which are buy, maybe and not buy. Since the input data are images, CNN is one of the best 

model in the field of computer vision in image pattern recognition. The CNN was trained in 

Google Colaboratory. The code of this model is shown in appendix C. 

 

3.3.1 Structure of Convolutional Neural Network (CNN) Model 

The structure of CNN model consists of convolutional layer, pooling layer and fully 

connected layer. First, the input image was convoluted with the feature detector or filter size 

3 × 3. Then in pooling layer, the filter 2 × 2 was applied and stored the maximum value in the 

pooled feature map. After that the flattening process was applied to be an input of the fully 

connected layer which has dense layer and output layer (Sudha & Aji, 2021). In this layer, 

the images will be categorised in to three categories which are buy, maybe and not buy. The 

flow chart of CNN structure is shown in figure 3.4. 

 

 
 

Figure 3.4 Structure of CNN model (Sudha & Aji, 2021). 
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3.3.2 Process of Convolutional Neural Network (CNN) 

The data that fed into the CNN model consists of total 1128 lime images in three 

categories which are equally contain 376 images in buy, maybe and not buy. After that, the 

data was split into three portions of 80:10:10. The first 80 percent is for training set and the 

last 10 percent is for validation and testing set respectively. Training set is used to feed in 

the model for model training process, validation set is used to see how the model works after 

process of tuning hyperparameters and searching for the output that gives the most satisfy 

performance and testing set is used to experiment the best model that was selected to test 

model performance with the real-world data or the data that model never seen before. After 

data has split, training data is fed into CNN model for training process in this step the model 

will learn all images and classify the images in to three categories which are buy, maybe, 

and not buy. After the model is trained completely, the model performance will be evaluated 

with the data from validation set. The performance of each trained models will be compared 

with several experiments to find the best model for categorising lime’s saleablilty. To obtain 

the optimal value, hyperparameters tuning process is needed for parameters searching. If the 

performance still not satisfy, hyperparameters tuning process will be applied until the best 

performance is acquired. Finally, the model that gave the best performance in validation set 

and had already confirmed the results with the testing set will be selected as the final model. 

The flowchart of model training process is shown in figure 3.5. 
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Figure 3.5 Training process of model. 

 

 
3.3.3 Model Selection 

The model performance evaluation methods that have been used in this research are 

recall, precision and F1-score. The performance that mostly focused was the F1-score         

because it is the combination of recall and precision which should be considered in term of 

model evaluation. It is calculated from the harmonic mean from both of them and provides 

more balance model performance for summarising the model. After that, accuracy, macro 

average and weighted average were calculated to combine the three performances from three 

categories which are buy, maybe and not buy. The method that mostly focus on was weighted 

average which consider each classes contribution or the support. F1-score will be calculated 

according to its size while macro average will treat all classes equally. So, in this research 

will be mainly focus on weighted average of F1-score for model evaluation process and the 

best model will be selected based on this criteria. 
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3.4 Hyperparameters Tuning 

In hyperparameters tuning section, the experiment was constructed by using Design 

of Experiment (DOE) method to search for an optimal set of hyperparameters which give the 

best model performance. First experiment is constructed by using 25 full factorial design as 

initial experiment. The performances of each set of hyperparameters setting were collected 

in table of train recall, train precision, train F1-score, validate recall, validate precision, 

validate F1-score, test recall, test precision and test F1-score. After obtaining the 

performances form the first round, next experiment will be constructed based on the first 

experiment result which analysed by using Minitab. 

 

3.4.1 Initial Full Factorial Design 

To construct the first experiment for tuning the model, initial 25 full factorial design 

has been used in this step. There are five hyperparameters have been considered which are 

Batch size, Epoch, Learning rate, Decaying rate, and Momentum. Each hyperparameters 

was set low and high value as follow. Batch size is set to 64 and 128. Epoch is set to 250 and 

500. Learning rate is set to 0.0125 and 0.0250. Decaying rate is set to 0.00125 and 0.00250. 

Momentum is set to 0.6 and 0.9. The low and high value setting is shown in table 3.2. The 

list of hyperparameters in the first experiment is shown in table 3.3. 

Table 3.2 25 full factorial design low and high value setting. 

hyperparameters Low High 

Batch size 64 128 

Epoch 250 500 

Learning rate 0.0125 0.0250 

Decaying rate 0.00125 0.00250 

Momentum 0.6 0.9 
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Table 3.3 Hyperparameters setting table in initial full factorial design. 

RunOrder Batch size Epoch Learning rate Decaying Rate Momentum 

1 64 250 0.0125 0.00125 0.6 

2 128 250 0.0125 0.00125 0.6 

3 64 500 0.0125 0.00125 0.6 

4 128 500 0.0125 0.00125 0.6 

5 64 250 0.025 0.00125 0.6 

6 128 250 0.025 0.00125 0.6 

7 64 500 0.025 0.00125 0.6 

8 128 500 0.025 0.00125 0.6 

9 64 250 0.0125 0.0025 0.6 

10 128 250 0.0125 0.0025 0.6 

11 64 500 0.0125 0.0025 0.6 

12 128 500 0.0125 0.0025 0.6 

13 64 250 0.025 0.0025 0.6 

14 128 250 0.025 0.0025 0.6 

15 64 500 0.025 0.0025 0.6 

16 128 500 0.025 0.0025 0.6 

17 64 250 0.0125 0.00125 0.9 

18 128 250 0.0125 0.00125 0.9 

19 64 500 0.0125 0.00125 0.9 

20 128 500 0.0125 0.00125 0.9 

21 64 250 0.025 0.00125 0.9 

22 128 250 0.025 0.00125 0.9 

23 64 500 0.025 0.00125 0.9 

24 128 500 0.025 0.00125 0.9 

25 64 250 0.0125 0.0025 0.9 

26 128 250 0.0125 0.0025 0.9 

27 64 500 0.0125 0.0025 0.9 

28 128 500 0.0125 0.0025 0.9 

29 64 250 0.025 0.0025 0.9 

30 128 250 0.025 0.0025 0.9 

31 64 500 0.025 0.0025 0.9 

32 128 500 0.025 0.0025 0.9 

33 96 375 0.01875 0.001875 0.75 

34 96 375 0.01875 0.001875 0.75 

35 96 375 0.01875 0.001875 0.75 

36 96 375 0.01875 0.001875 0.75 

37 96 375 0.01875 0.001875 0.75 

Ref. code: 25646422040227QGW
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3.4.2 Reduced Full Factorial Design 

After all performances from first experiment are collected, second experiment will 

be constructed based on 25 full factorial design that eliminated unimportant factors by using 

Minitab. After the performances from second experiment are collected, the first and second 

experiment will be compared. If the second experiment gives better performance than first 

experiment. The third experiment will be constructed. This process will be repleted until the 

best performances are acquired. The hyperparameters tuning process is shown in figure 3.6. 

 
 

 
 

Figure 3.6 Hyperparameters tuning process. 
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CHAPTER 4 

RESULT AND DISCUSSION 

 

Nowadays, machine learning has been used to facilitate human in many applications. 

In this research, CNN has been developed to classify saleability of limes. The expected 

result of this research is the model can classify lime images into 3 categories which are buy, 

maybe and not buy that perform well with testing data set of lime images and give satisfied 

performance. 

 

4.1 Result of Hyperparameters Tuning Process 

To achieve the best performance, two hyperparameters tuning experiments were      

constructed. To evaluate the model performance, weighted average of F1-score has been 

used because it is one of the robust methods to evaluate the model performance of 

classification approach. 

 

4.1.1 Result of Initial Full Factorial Design 

After running the first experiment which constructed based on 25 full factorial design, 

all performances were collected. The performances from first experiment are shown in table 

B.1, B.2 and B.3 in appendix B. Hyperparameters set that gave the highest weighted average 

of  F1-score was selected as the best performance in the first experiment. The summary of the 

best performance in first experiment is shown in table 4.1, 4.2 and 4.3. 

Table 4.1 Summary result for training set in initial full factorial design. 

Training set Precision Recall F1-score Support 

Buy 67% 85% 75% 298 

Maybe 62% 62% 62% 302 

Not buy 100% 73% 85% 302 

Accuracy   73% 902 

Macro average 76% 73% 74% 902 

Weighted average 76% 73% 74% 902 

Ref. code: 25646422040227QGW
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Table 4.2 Summary result for validation set in initial full factorial design. 

Validation set Precision Recall F1-score Support 

Buy 77% 77% 77% 44 

Maybe 65% 76% 70% 37 

Not buy 96% 78% 86% 32 

Accuracy   77% 113 

Macro average 80% 77% 78% 113 

Weighted average 79% 77% 77% 113 

Table 4.3 Summary result for testing set in initial full factorial design. 

Testing set Precision Recall F1-score Support 

Buy 72% 91% 81% 34 

Maybe 64% 68% 66% 37 

Not buy 100% 74% 85% 42 

Accuracy   77% 113 

Macro average 79% 78% 77% 113 

Weighted average 80% 77% 77% 113 

 
4.1.2 Result After Reduced Full Factorial Design 

After all performances from the first experiment were collected, Minitab was used to 

analyse the performance in the first experiment to eliminate unimportant factors and second 

experiment was constructed based on 25 full factorial design. The hyperparameters table of 

second experiment is shown in table A.2 in appendix A. After run second experiment, the 

hyperparameters set that gave the highest weighted average of F1-score was selected as the 

best performance in second experiment. The summary of the best performance in second 

experiment is shown in table 4.4, 4.5 and 4.6. All performances from second experiment are 

shown in table B.4, B.5 and B.6 in appendix B. 

 
Table 4.4 Summary result for training set after reduced full factorial design. 

Training set Precision Recall F1-score Support 

Buy 73% 74% 74% 298 

Maybe 65% 66% 65% 302 

Not buy 90% 88% 89% 302 

Accuracy   76% 902 

Macro average 76% 76% 76% 902 

Weighted average 76% 76% 76% 902 

Ref. code: 25646422040227QGW
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Table 4.5 Summary result for validation set after reduced full factorial design. 

Validation set Precision Recall F1-score Support 

Buy 79% 68% 73% 44 

Maybe 68% 68% 63% 37 

Not buy 82% 84% 83% 32 

Accuracy   73% 113 

Macro average 73% 73% 73% 113 

Weighted average 73% 73% 73% 113 

 
Table 4.6 Summary result for testing set after reduced full factorial design. 

Testing set Precision Recall F1-score Support 

Buy 73% 79% 76% 34 

Maybe 62% 57% 59% 37 

Not buy 86% 86% 86% 42 

Accuracy   74% 113 

Macro average 73% 74% 74% 113 

Weighted average 74% 74% 74% 113 

 

 
4.1.3 Result Comparison 

Comparing the weighted average of F1-score in validation set as shown in graph figure 

4.1 and 4.2, first experiment gave better performance than second experiment. The perfor- 

mance in second experiment did not change much in in the beginning and decreasing rapidly 

after run 16. So, the run order from first experiment that gave the highest weighted average 

of F1-score in validation set was selected to be the best performance of this research which 

indicated in run order 31. In training section, the F1-score is 75%, 62%, 85%. In validation 

section, the F1-score is 77%, 70%, 86%. In testing section, the F1-score is 81%, 66%, 85% 

for buy, maybe and not buy respectively. For weighted average of F1-score, training gives 

performance of 74% and 77% for validation and testing. To get these results, the 

hyperparameters were set as batch size is equal to 64, epoch is 500, learning rate is 0.025, 

decaying rate is 0.0025, and momentum is 0.9. The summary of best performance setting 

and result are shown in table 4.7 and 4.8. 

Ref. code: 25646422040227QGW
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Figure 4.1 Weighted average of F1-score in first experiment. 
 

 

 

 

Figure 4.2 Weighted average of F1-score in second experiment. 
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Table 4.7 Best hyperparameters setting. 

RunOrder 31 

Batch Size 64 

Epoch 500 

Learning Rate 0.025 

Decaying Rate 0.0025 

Momentum 0.9 

 

Table 4.8 Summary of the best F1-score result. 

Category 
F1 score 

Train Validation Test 

Buy 75 % 77 % 81 % 

Maybe 62 % 70 % 66 % 

Not buy 85 % 86 % 85 % 

Weighted average 74 % 77 % 77 % 

Ref. code: 25646422040227QGW
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4.2 Discussion 

From the summary result of the best performance that shown in table 4.8, the highest 

F1-score is not buy category which gave 85% on testing data set. It gave outstanding    

performance than buy and maybe categories. Indicated that this model is good for sorting 

out the unwanted limes. Lime is one of Thai economic crops that has high demand all the 

year. According to statistical research from Trade Policy and Strategy Office (TPSO) of 

Thailand, limes were produced 483,930 tons in 2020 and exported 1,413 tons or 24.55 

millions Baht in 2021 (TPSO, 2021). Sorting the not buy or unwanted limes out from 

saleable limes is very important in quality inspection process before selling to customers 

since customers   satisfaction is one of the main goals of many companies which they want 

to avoid selling bad quality of limes to the market. Selling bad quality of lime to customer 

may cause losing their customer bases. In this research, although there is a chance that the 

model will classify limes into wrong category which the 15% of saleable limes could be sorted 

out. Tradeoff between customer unsatisfied cost and losing some saleable limes, it is worthy 

to maintain customer satisfaction. For the unwanted lime, it can be sold in the lower price 

as defect products to make processed food or fertilizer. 

Ref. code: 25646422040227QGW
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

 
5.1 Conclusion 

The CNN model can classify lime images into three categories (buy, maybe, not buy). 

The model hyperparameters have been tuned to achieve the optimal performance for    

classifying lime images. Two experiments were constructed based on 25 full factorial 

method. The first experiment gave better performance than second experiment. The best 

performance gave F1-score in testing set of 81%, 66% and 85% in buy, maybe and not buy 

categories while the weighted average of F1-score is 77%. Since the not buy category gave 

higher performance than other two categories, indicated that the model is better in sorting 

unwanted lime out. This research demonstrated the effectiveness of CNN for agriculturists 

to classify saleability instead of using human or large machine which has high enough 

performance to classify the lime images into correct categories. The limitation of this 

research is that it has been experimented only with Citrus Aurantifolia Swingle lime samples 

and the equipment setting is used for experiment only which cannot perform in the real 

situation. 

5.2 Future Work 

For future work, this model can be adapted with real time camera. So, it can be used 

for lime classifying machine by connecting the camera that help human to detect the limes 

in conveyor. Moreover, it can be used in the mobile phone application to help customer to 

select the lime. Lastly, the performance could be improved by collecting more lime samples 

for training the CNN model. 
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APPENDIX A 

TABLES OF HYPERPARAMETERS IN FULL FACTORIAL METHOD 

 
Table A.1 First experiment for hyperparameter setting. 

RunOrder Batch size Epoch Learning rate Decaying Rate Momentum 

1 64 250 0.0125 0.00125 0.6 

2 128 250 0.0125 0.00125 0.6 

3 64 500 0.0125 0.00125 0.6 

4 128 500 0.0125 0.00125 0.6 

5 64 250 0.025 0.00125 0.6 

6 128 250 0.025 0.00125 0.6 

7 64 500 0.025 0.00125 0.6 

8 128 500 0.025 0.00125 0.6 

9 64 250 0.0125 0.0025 0.6 

10 128 250 0.0125 0.0025 0.6 

11 64 500 0.0125 0.0025 0.6 

12 128 500 0.0125 0.0025 0.6 

13 64 250 0.025 0.0025 0.6 

14 128 250 0.025 0.0025 0.6 

15 64 500 0.025 0.0025 0.6 

16 128 500 0.025 0.0025 0.6 

17 64 250 0.0125 0.00125 0.9 

18 128 250 0.0125 0.00125 0.9 

19 64 500 0.0125 0.00125 0.9 

20 128 500 0.0125 0.00125 0.9 

21 64 250 0.025 0.00125 0.9 

22 128 250 0.025 0.00125 0.9 

23 64 500 0.025 0.00125 0.9 

24 128 500 0.025 0.00125 0.9 

25 64 250 0.0125 0.0025 0.9 

26 128 250 0.0125 0.0025 0.9 

27 64 500 0.0125 0.0025 0.9 

28 128 500 0.0125 0.0025 0.9 

29 64 250 0.025 0.0025 0.9 

30 128 250 0.025 0.0025 0.9 

31 64 500 0.025 0.0025 0.9 

32 128 500 0.025 0.0025 0.9 

33 96 375 0.01875 0.001875 0.75 

34 96 375 0.01875 0.001875 0.75 

35 96 375 0.01875 0.001875 0.75 

36 96 375 0.01875 0.001875 0.75 

37 96 375 0.01875 0.001875 0.75 
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Table A.2 Second experiment for hyperparameter setting. 

RunOrder Batch size Epoch Learning rate Decaying Rate Momentum 

0 96 375 0.01875 0.001875 0.75 

1 96 421 0.017827 0.001992 0.725 

2 96 467 0.016904 0.002109 0.7 

3 96 513 0.015982 0.002227 0.675 

4 96 559 0.015059 0.002344 0.65 

5 96 605 0.014136 0.002461 0.625 

6 96 651 0.013213 0.002578 0.6 

7 96 698 0.012291 0.002695 0.575 

8 96 744 0.011368 0.002813 0.55 

9 96 790 0.010445 0.00293 0.525 

10 96 836 0.009522 0.003047 0.5 

11 96 882 0.008599 0.003164 0.475 

12 96 928 0.007677 0.003281 0.45 

13 96 974 0.006754 0.003398 0.425 

14 96 1020 0.005831 0.003516 0.4 

15 96 1066 0.004908 0.003633 0.375 

16 96 1112 0.003986 0.00375 0.35 

17 96 1158 0.003063 0.003867 0.325 

18 96 1204 0.00214 0.003984 0.3 

19 96 1251 0.001217 0.004102 0.275 

20 96 1297 0.000294 0.004219 0.25 
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APPENDIX B 

RESULTS OF HYPERPARAMETERS TUNING PROCESS 

 
Table B.1 Training result from first experiment. 

RunOrder Train recall Train precision Train F1 
score 

1 0.701 0.665 0.658 

2 0.680 0.645 0.638 

3 0.749 0.725 0.726 

4 0.675 0.633 0.620 

5 0.749 0.743 0.745 

6 0.618 0.590 0.556 

7 0.657 0.608 0.610 

8 0.656 0.614 0.608 

9 0.712 0.690 0.681 

10 0.664 0.620 0.604 

11 0.706 0.683 0.676 

12 0.688 0.661 0.658 

13 0.735 0.735 0.732 

14 0.659 0.626 0.607 

15 0.642 0.605 0.597 

16 0.682 0.647 0.652 

17 0.624 0.579 0.535 

18 0.664 0.634 0.642 

19 0.826 0.814 0.817 

20 0.737 0.714 0.714 

21 0.328 0.490 0.391 

22 0.477 0.486 0.410 

23 0.654 0.618 0.614 

24 0.607 0.609 0.592 

25 0.723 0.694 0.687 

26 0.661 0.631 0.617 

27 0.762 0.745 0.750 

28 0.754 0.743 0.744 

29 0.637 0.600 0.566 

30 0.727 0.711 0.711 

31 0.762 0.733 0.737 

32 0.658 0.612 0.605 

33 0.798 0.789 0.791 

34 0.764 0.751 0.754 

35 0.728 0.704 0.707 

36 0.735 0.721 0.723 

37 0.767 0.757 0.760 
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Table B.2 Validation result from first experiment. 

RunOrder Validate recall Validate precision Validate F1 
score 

1 0.701 0.690 0.685 

2 0.724 0.717 0.710 

3 0.705 0.699 0.700 

4 0.646 0.637 0.616 

5 0.706 0.690 0.693 

6 0.624 0.628 0.608 

7 0.772 0.761 0.763 

8 0.679 0.673 0.664 

9 0.695 0.690 0.689 

10 0.730 0.708 0.699 

11 0.704 0.699 0.697 

12 0.698 0.699 0.694 

13 0.650 0.646 0.647 

14 0.635 0.637 0.615 

15 0.752 0.743 0.739 

16 0.772 0.761 0.763 

17 0.637 0.619 0.588 

18 0.722 0.717 0.719 

19 0.751 0.726 0.730 

20 0.739 0.735 0.734 

21 0.304 0.434 0.349 

22 0.441 0.487 0.418 

23 0.693 0.690 0.682 

24 0.699 0.708 0.697 

25 0.681 0.681 0.671 

26 0.655 0.655 0.642 

27 0.698 0.681 0.686 

28 0.688 0.690 0.688 

29 0.646 0.637 0.597 

30 0.707 0.708 0.707 

31 0.786 0.770 0.774 

32 0.732 0.717 0.710 

33 0.705 0.699 0.701 

34 0.691 0.681 0.677 

35 0.689 0.681 0.683 

36 0.705 0.708 0.705 

37 0.699 0.681 0.684 
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Table B.3 Testing result from first experiment. 

RunOrder Test recall Test precision Test F1 
score 

1 0.734 0.708 0.695 

2 0.732 0.717 0.708 

3 0.728 0.708 0.706 

4 0.656 0.646 0.620 

5 0.743 0.743 0.740 

6 0.648 0.628 0.584 

7 0.706 0.681 0.677 

8 0.677 0.664 0.648 

9 0.726 0.717 0.706 

10 0.667 0.655 0.637 

11 0.702 0.699 0.674 

12 0.723 0.717 0.708 

13 0.722 0.702 0.708 

14 0.669 0.664 0.637 

15 0.704 0.681 0.679 

16 0.730 0.708 0.708 

17 0.615 0.602 0.560 

18 0.692 0.681 0.680 

19 0.815 0.805 0.809 

20 0.730 0.717 0.715 

21 0.326 0.487 0.390 

22 0.617 0.558 0.478 

23 0.743 0.726 0.717 

24 0.638 0.655 0.621 

25 0.721 0.708 0.694 

26 0.662 0.655 0.634 

27 0.750 0.743 0.744 

28 0.735 0.735 0.729 

29 0.666 0.646 0.616 

30 0.717 0.708 0.704 

31 0.798 0.770 0.773 

32 0.688 0.664 0.653 

33 0.756 0.743 0.744 

34 0.745 0.717 0.714 

35 0.746 0.735 0.732 

36 0.733 0.726 0.722 

37 0.780 0.770 0.774 
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Table B.4 Training result from second experiment. 

RunOrder Train recall Train precision Train F1 
score 

0 0.748 0.746 0.746 

1 0.721 0.700 0.701 

2 0.788 0.783 0.784 

3 0.790 0.778 0.779 

4 0.758 0.737 0.738 

5 0.752 0.738 0.738 

6 0.760 0.758 0.759 

7 0.755 0.739 0.743 

8 0.775 0.769 0.771 

9 0.774 0.762 0.766 

10 0.681 0.641 0.627 

11 0.727 0.705 0.706 

12 0.752 0.734 0.738 

13 0.704 0.684 0.684 

14 0.696 0.663 0.662 

15 0.697 0.675 0.673 

16 0.687 0.663 0.665 

17 0.640 0.616 0.620 

18 0.585 0.562 0.565 

19 0.534 0.542 0.534 

20 0.266 0.410 0.320 
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Table B.5 Validation result from second experiment. 

RunOrder Validate recall Validate precision Validate F1 
score 

0 0.713 0.708 0.709 

1 0.681 0.673 0.675 

2 0.715 0.717 0.716 

3 0.713 0.708 0.707 

4 0.700 0.690 0.691 

5 0.673 0.673 0.669 

6 0.734 0.726 0.727 

7 0.705 0.699 0.701 

8 0.682 0.681 0.681 

9 0.701 0.690 0.694 

10 0.678 0.673 0.662 

11 0.695 0.690 0.690 

12 0.682 0.681 0.681 

13 0.690 0.690 0.687 

14 0.693 0.690 0.690 

15 0.671 0.673 0.671 

16 0.670 0.673 0.671 

17 0.514 0.522 0.518 

18 0.442 0.434 0.437 

19 0.453 0.469 0.457 

20 0.236 0.389 0.289 
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Table B.6 Testing result from second experiment. 

RunOrder Test recall Test precision Test F1 
score 

0 0.734 0.735 0.732 

1 0.752 0.743 0.739 

2 0.728 0.726 0.721 

3 0.727 0.717 0.714 

4 0.708 0.681 0.679 

5 0.721 0.717 0.713 

6 0.740 0.743 0.741 

7 0.735 0.726 0.726 

8 0.752 0.752 0.750 

9 0.740 0.735 0.735 

10 0.690 0.681 0.660 

11 0.687 0.681 0.670 

12 0.714 0.708 0.708 

13 0.727 0.717 0.711 

14 0.727 0.717 0.705 

15 0.732 0.726 0.713 

16 0.724 0.717 0.714 

17 0.663 0.646 0.647 

18 0.519 0.504 0.505 

19 0.500 0.522 0.507 

20 0.316 0.469 0.376 
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APPENDIX C

PYTHON CODE OF CNN MODEL

1

2

3

4 # CNN model for predicting saleablity

5

6 # 1. Model preparation

7

8

9 from keras.preprocessing.image import img_to_array

10

11 class ImageToArrayPreprocessor:

12 def __init__(self, dataFormat=None):

13 # store the image data format

14 self.dataFormat = dataFormat

15

16 def preprocess(self, image):

17 # apply the Keras utility function that correctly rearranges

18 # the dimensions of the image

19 return img_to_array(image, data_format=self.dataFormat)

20

21 import numpy as np

22 import cv2

23 import os

24

25 class SimpleDatasetLoader:

26 def __init__(self, preprocessors=None):

27 # store the image preprocessor

28 self.preprocessors = preprocessors

29

30 # if the preprocessors are None, initialize them as an

31 # empty list

32 if self.preprocessors is None:

33 self.preprocessors = []

34

35 def load(self, imagePaths, verbose=-1):

36 # initialize the list of features and labels

37 data = []
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38 labels = []

39

40 # loop over the input images

41 for (i, imagePath) in enumerate(imagePaths):

42 # load the image and extract the class label assuming

43 # that our path has the following format:

44 # /path/to/dataset/{class}/{image}.jpg

45 image = cv2.imread(imagePath)

46 label = imagePath.split(os.path.sep)[-2]

47 # check to see if our preprocessors are not None

48 if self.preprocessors is not None:

49

50 for p in self.preprocessors:

51 image = p.preprocess(image)

52

53 # treat our processed image as a "feature vector"

54 # by updating the data list followed by the labels

55

56 data.append(image)

57 labels.append(label)

58

59 # show an update every verbose images

60 if verbose > 0 and i > 0 and (i + 1) % verbose == 0:

61 print("[INFO] processed {}/{}".format(i + 1,len(imagePaths)))

62

63 # return a tuple of the data and labels

64 return (np.array(data), np.array(labels))

65

66 import imutils

67 import cv2

68

69 class AspectAwarePreprocessor:

70 def __init__(self, width, height, inter=cv2.INTER_AREA):

71 # store the target image width, height, and interpolation

72 # method used when resizing

73 self.width = width

74 self.height = height

75 self.inter = inter

76

77 def preprocess(self, image):

78 # grab the dimensions of the image and then initialize
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79 # the deltas to use when cropping

80 (h, w) = image.shape[:2]

81 dW = 0

82 dH = 0

83

84 # if the width is smaller than the height, then resize

85 # along the width (i.e., the smaller dimension) and then

86 # update the deltas to crop the height to the desired

87 # dimension

88 if w < h:

89 image = imutils.resize(image, width=self.width,

90 inter=self.inter)

91 dH = int((image.shape[0] - self.height) / 2.0)

92

93 # otherwise, the height is smaller than the width so

94 # resize along the height and then update the deltas

95 # to crop along the width

96 else:

97 image = imutils.resize(image, height=self.height,

98 inter=self.inter)

99 dW = int((image.shape[1] - self.width) / 2.0)

100

101 # now that our images have been resized, we need to

102 # re-grab the width and height, followed by performing

103 # the crop

104 (h, w) = image.shape[:2]

105 image = image[dH:h - dH, dW:w - dW]

106

107 # finally, resize the image to the provided spatial

108 # dimensions to ensure our output image is always a fixed

109 # size

110 return cv2.resize(image, (self.width, self.height),

111 interpolation=self.inter)

112

113 from sklearn.metrics import classification_report

114 from keras.models import Sequential

115 from keras.layers.convolutional import Conv2D

116 from keras.layers.convolutional import MaxPooling2D

117 from keras.layers.core import Activation

118 from keras.layers.core import Dense

119 from keras.layers.core import Flatten
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120 import matplotlib.pyplot as plt

121 from tensorflow import keras

122 from keras.applications import imagenet_utils

123 from tensorflow.keras.preprocessing import image_dataset_from_directory

124 from keras.preprocessing.image import ImageDataGenerator

125 from keras.layers import Rescaling

126 import numpy as np

127 import argparse

128 import cv2

129 from imutils import paths

130 from sklearn.model_selection import train_test_split

131 from sklearn.preprocessing import LabelBinarizer

132 from keras.callbacks import ModelCheckpoint

133 from keras.models import load_model

134

135 """## 2. Parameters setting"""

136

137 from google.colab import drive

138 drive.mount(’/content/drive’)

139

140 #Parameters setting secction

--------------------------------------------------------------------------------------

141

142 #Model Train Parameters (the values are obtained from the DOE)

143 BATCH_SIZE = 96

144 ep = 175

145 Learning_Rate = 0.031893

146 Decay_Rate = 0.000781

147 Momentum_Rate = 0.99

148

149 # create a weight file name based on settings of an experiments

150 weight_f = ’CNN_saleability_expt_BATCH_%d_EP_%d_LR_%f_DECAY_%f_MOMENT_%f.h5’%(

BATCH_SIZE,

151

ep,

152

Learning_Rate,

153

Decay_Rate,

154
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Momentum_Rate)

155 print(weight_f) # for debugging purpose

156

157 # create a report file name based on settings of an experiments

158 train_report_f = ’train_CNN_saleability_expt_BATCH_%d_EP_%d_LR_%f_DECAY_%f_MOMENT_%

f.csv’%(BATCH_SIZE,

159

ep,

160

Learning_Rate,

161

Decay_Rate,

162

Momentum_Rate)

163 print(train_report_f) # for debugging purpose

164

165 test_report_f = ’test_CNN_saleability_expt_BATCH_%d_EP_%d_LR_%f_DECAY_%f_MOMENT_%f.

csv’%(BATCH_SIZE,

166

ep,

167

Learning_Rate,

168

Decay_Rate,

169

Momentum_Rate)

170 print(test_report_f) # for debugging purpose

171

172 val_report_f = ’val_CNN_saleability_expt_BATCH_%d_EP_%d_LR_%f_DECAY_%f_MOMENT_%f.

csv’%(BATCH_SIZE,

173

ep,

174

Learning_Rate,

175

Decay_Rate,

176

Momentum_Rate)

177 print(val_report_f) # for debugging purpose

178

179 #Image File Directories
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180

181 # This is the location of the entire dataset

182 image_path_train = ’/content/drive/MyDrive/CNN_saleability/v3’

183

184 #Weight Save Directory

185 Weight_Save_Path = ’/content/drive/MyDrive/CNN_saleability/v3_weights/Round2’ +

weight_f

186

187 #Report Directory

188 train_report_path = ’/content/drive/MyDrive/CNN_saleability/v3_reports/Round2’ +

train_report_f

189 test_report_path = ’/content/drive/MyDrive/CNN_saleability/v3_reports/Round2’ +

test_report_f

190 val_report_path = ’/content/drive/MyDrive/CNN_saleability/v3_reports/Round2’ +

val_report_f

191

192 """## 3. Model training"""

193

194 #Model Training Section

------------------------------------------------------------------------------------------

195

196 imagePaths = list(paths.list_images(image_path_train))

197

198 # initialize the image preprocessors

199 sp = AspectAwarePreprocessor(128,128)

200 iap = ImageToArrayPreprocessor()

201

202 # load the dataset from disk then scale the raw pixel intensities

203 # to the range [0, 1]

204 sdl = SimpleDatasetLoader(preprocessors=[sp, iap])

205 (data, labels) = sdl.load(imagePaths, verbose=500)

206 data = data.astype("float") / 255.0

207

208 # set aside 10% of train and test data for evaluation

209 X_train, testX, Y_train, testY = train_test_split(data, labels,

210 test_size=0.1, random_state = 32)

211

212 # Use the same function above for the validation set

213 trainX, valX, trainY, valY = train_test_split(X_train, Y_train,

214 test_size=1/9, random_state= 32) # 1/9 x 0.9 = 0.1
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215

216 # convert the labels from integers to vectors

217 trainY = LabelBinarizer().fit_transform(trainY)

218 valY = LabelBinarizer().fit_transform(valY)

219 testY = LabelBinarizer().fit_transform(testY)

220

221 # construct the image generator for data augmentation

222 aug = ImageDataGenerator(rotation_range=30, width_shift_range=0.1,

223 height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,

224 horizontal_flip=True, fill_mode="nearest")

225

226

227 classes = 3

228 batch = BATCH_SIZE

229 chanDim = 1

230

231 # define model

232 model = Sequential()

233 model.add(Conv2D(64,(3,3),padding="same", input_shape=(128,128, 3)))

234 model.add(Activation(’relu’))

235 model.add(Conv2D(64, (3, 3), padding="same"))

236 model.add(Activation("relu"))

237 model.add(MaxPooling2D(pool_size=(2, 2)))

238

239 model.add(Conv2D(128,(3,3),padding="same"))

240 model.add(Activation(’relu’))

241 model.add(Conv2D(128, (3, 3), padding="same"))

242 model.add(Activation("relu"))

243 model.add(MaxPooling2D(pool_size=(2, 2)))

244

245 model.add(Conv2D(256,(3,3),padding="same"))

246 model.add(Activation(’relu’))

247 model.add(Conv2D(256, (3, 3), padding="same"))

248 model.add(Activation("relu"))

249 #model.add(Conv2D(256,(3,3),padding="same"))

250 #model.add(Activation(’relu’))

251 #model.add(Conv2D(256, (3, 3), padding="same"))

252 #model.add(Activation("relu"))

253 model.add(MaxPooling2D(pool_size=(2, 2)))

254

255 #model.add(Conv2D(512,(3,3),padding="same"))
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256 #model.add(Activation("relu"))

257 #model.add(Conv2D(512, (3, 3), padding="same"))

258 #model.add(Activation("relu"))

259 #model.add(Conv2D(512,(3,3),padding="same"))

260 #model.add(Activation(’relu’))

261 #model.add(Conv2D(512, (3, 3), padding="same"))

262 #model.add(Activation("relu"))

263 #model.add(MaxPooling2D(pool_size=(2, 2)))

264

265 model.add(Flatten())

266 #model.add(Dense(4096))

267 #model.add(Activation("relu"))

268 model.add(Dense(512))

269 model.add(Activation("relu"))

270 model.add(Dense(128))

271 model.add(Activation("relu"))

272

273 model.add(Dense(classes))

274 model.add(Activation("softmax"))

275

276 print(model.summary())

277

278 # train the model using SGD

279 print("[INFO] training network...")

280 sgd = keras.optimizers.SGD(lr=Learning_Rate, decay=Decay_Rate, momentum=

Momentum_Rate)

281 model.compile(loss="categorical_crossentropy", optimizer=sgd,

282 metrics=["accuracy"])

283

284 #Model check point

285 checkpoint = ModelCheckpoint(Weight_Save_Path, monitor="val_loss",

286 save_best_only=True, verbose=1)

287 callbacks = [checkpoint]

288

289 H = model.fit(aug.flow(trainX, trainY, batch_size=batch), validation_data = (valX,

valY), callbacks=callbacks,

290 epochs=ep, verbose=1)

291

292

293 # plot the training loss and accuracy

294 plt.style.use("ggplot")
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295 plt.figure()

296 plt.plot(np.arange(0, ep), H.history["loss"], label="train_loss")

297 plt.plot(np.arange(0, ep), H.history["val_loss"], label="val_loss")

298 plt.plot(np.arange(0, ep), H.history["accuracy"], label="train_acc")

299 plt.plot(np.arange(0, ep), H.history["val_accuracy"], label="val_acc")

300 plt.title("Training Loss and Accuracy")

301 plt.xlabel("Epoch #")

302 plt.ylabel("Loss/Accuracy")

303 plt.legend()

304 plt.show()

305

306 """## 4. Model testing"""

307

308 #Model Testing Section

------------------------------------------------------------------------------

309 import pandas as pd

310

311 model = load_model(Weight_Save_Path)

312 batch=BATCH_SIZE

313

314 # define label for each class

315 labelNames = [ "Sold","Maybe", "Notbuy"]

316

317 print("[INFO] evaluation testing for training data ...")

318 # run prediction for training data

319 predictions = model.predict(trainX, batch_size=batch)

320 # print(predictions) # for debugging purpose

321 # print(trainY) # for debugging purpose

322 # dsiplay the performance

323 print(classification_report(trainY.argmax(axis=1),

324 predictions.argmax(axis=1),target_names=labelNames))

325

326 # generate report as a dataframe

327 clsf_report = pd.DataFrame(classification_report(trainY.argmax(axis=1),

328 predictions.argmax(axis=1),

329 target_names=labelNames,

330 output_dict=True)).transpose()

331

332 # write the report to csv file

333 clsf_report.to_csv(train_report_path, index= True)

334
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335 print("[INFO] evaluation testing for test data ...")

336 # run prediction for testing data

337 predictions = model.predict(testX, batch_size=batch)

338 # dsiplay the performance

339 print(classification_report(testY.argmax(axis=1),

340 predictions.argmax(axis=1),target_names=labelNames))

341

342 # generate report as a dataframe

343 clsf_report = pd.DataFrame(classification_report(testY.argmax(axis=1),

344 predictions.argmax(axis=1),

345 target_names=labelNames,

346 output_dict=True)).transpose()

347

348 # write the report to csv file

349 clsf_report.to_csv(test_report_path, index= True)

350

351 print("[INFO] evaluation testing for validating data ...")

352 # run prediction for training data

353 predictions = model.predict(valX, batch_size=batch)

354 # dsiplay the performance

355 print(classification_report(valY.argmax(axis=1),

356 predictions.argmax(axis=1),target_names=labelNames))

357

358 # generate report as a dataframe

359 clsf_report = pd.DataFrame(classification_report(valY.argmax(axis=1),

360 predictions.argmax(axis=1),

361 target_names=labelNames,

362 output_dict=True)).transpose()

363

364 # write the report to csv file

365 clsf_report.to_csv(val_report_path, index= True)
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