

CLASSIFYING SALEABILITY OF LIME BY USING

CONVOLUTIONAL NEURAL NETWORK (CNN) APPROACH

BY

NIRACHA CHAIWONG

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY

CHAIN SYSTEMS ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2021

COPYRIGHT OF THAMMASAT UNIVERSITY

Ref. code: 25646422040227QGW

(1)

Independent Study Title CLASSIFYING SALEABILITY OF LIME

BY USING CONVOLUTIONAL NEURAL

NETWORK (CNN) APPROACH

Author Niracha Chaiwong

Degree Master of Engineering (Logistics and Supply

Chain Systems Engineering)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Advisor Assistant Professor Warut Pannakkong, Ph.D

Co-Advisor Associate Professor Jirachai Buddhakulsomsiri,

Ph.D.

Academic Years 2021

ABSTRACT

Nowadays, there are many applications that have been used in agriculture field to

facilitate human workers. Many researches have been focused on fruits grading based on

appearance features. Since lime is one of Thai economic corp that have high demand and

price all the year, a lot of limes are continually exported into the market. The appearance of

limes strongly impact the market value. So, the quality inspection is needed to avoid sell-

ing bad limes to customers which cause greatly affects to the customer base. Determining

saleability of lime can be done by using humans or machines. Using human workers is time-

consuming, high cost and not accurate. Although there are fruit grading machines, they are

expensive and difficult to reach for general farmers. This research has proposed method to

classify saleability of lime into three categories which are buy, maybe, and not buy by us-

ing Convolutional Neural Network (CNN) because it is a deep neural network that has high

performance in terms of images classification tasks. Hyperparameters tuning process has

been used to search for the best model performance by using full factorial design. The hy-

perparameters that have been considered in the model are Epoch, Learning Rate, Decaying

Rate and Momentum. Two experiments of hyperparameters tuning were constructed. The

first experiment constructed by initial 25 full factorial by setting low and high value. After

Ref. code: 25646422040227QGW

(2)

that, the result from first experiment was analysed by using Minitab to remove unimportant

factors. The model performance in this research has been evaluated by F1-score which the

first experiment gave the highest results as 76%, 79%, 80% in training model, 73%, 77%,

77% in validation and 74%, 77%, 77% of testing for buy, maybe and not buy respectively.

Keywords: Neural Network, Convolutional Neureal Network (CNN), Artificial Intelli-

gent, Lime prediction, Saleablilty of lime

Ref. code: 25646422040227QGW

(3)

ACKNOWLEDGEMENTS

I would like to express my special thanks to my advisor, Assistant Professor Dr.

Warut Pannakkong, Associate Professor Dr. Jirachai Buddhakulsomsiri and Dr. Pham Duc

Tai who are invaluable supportive for this project, gave advice and constant encouragement.

I strongly appreciate a Lime farm at Ratchaburi, Thailand which provided information and

lime samples for this project. Moreover, Sirindhorn International Institute of Technology

(SIIT), Thammasat University which provided facility area so that I was able to conduct the

experiment and research. I am also grateful to my family who encourage me from the

beginning throughout this project. And finally, this work would not be possible without the

funding and support from SIIT.

Niracha Chaiwong

Ref. code: 25646422040227QGW

(4)

TABLE OF CONTENTS

Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (3)

LIST OF TABLES (6)

LIST OF FIGURES (7)

LIST OF SYMBOLS/ABBREVIATIONS (8)

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement 2

1.2 Research Objective 2

CHAPTER 2 LITERATURE REVIEW 3

2.1 Related Work 3

2.2 Research Gap 5

2.3 Convolutional Neural Network (CNN) 6

2.3.1 Structure of Convolutional Neural Network (CNN) 6

2.3.2 Performance Evaluation 9

CHAPTER 3 METHODOLOGY 10

3.1 Data Collection 11

3.1.1 Image Acquisition 11

3.1.2 Visual Inspection 12

3.2 Data Preparation 13

3.3 Convolutional Neural Network (CNN) Model 13

3.3.1 Structure of Convolutional Neural Network (CNN) Model 13

3.3.2 Process of Convolutional Neural Network (CNN) 14

3.3.3 Model Selection 15

Ref. code: 25646422040227QGW

(5)

3.4 Hyperparameters Tuning 16

3.4.1 Initial Full Factorial Design 16

3.4.2 Reduced Full Factorial Design 18

CHAPTER 4 RESULT AND DISCUSSION 19

4.1 Result of Hyperparameters Tuning Process 19

4.1.1 Result of Initial Full Factorial Design 19

4.1.2 Result After Reduced Full Factorial Design 20

4.1.3 Result Comparison 21

4.2 Discussion 24

CHAPTER 5 CONCLUSION AND FUTURE WORK 25

5.1 Conclusion 25

5.2 Future Work 25

REFERENCES 26

APPENDICES 29

APPENDIX A 30

APPENDIX B 32

APPENDIX C 38

BIOGRAPHY 48

Ref. code: 25646422040227QGW

(6)

LIST OF TABLES

Tables Page

2.1 Summary of related research. 5

3.1 Visual inspection table. 12

3.2 25 full factorial design low and high value setting. 16

3.3 Hyperparameters setting table in initial full factorial design. 17

4.1 Summary result for training set in initial full factorial design. 19

4.2 Summary result for validation set in initial full factorial design. 20

4.3 Summary result for testing set in initial full factorial design. 20

4.4 Summary result for training set after reduced full factorial design. 20

4.5 Summary result for validation set after reduced full factorial design. 21

4.6 Summary result for testing set after reduced full factorial design. 21

4.7 Best hyperparameters setting. 23

4.8 Summary of the best F1-score result. 23

A.1 First experiment for hyperparameter setting. 30

A.2 Second experiment for hyperparameter setting. 31

B.1 Training result from first experiment. 32

B.2 Validation result from first experiment. 33

B.3 Testing result from first experiment. 34

B.4 Training result from second experiment. 35

B.5 Validation result from second experiment. 36

B.6 Testing result from second experiment. 37

Ref. code: 25646422040227QGW

(7)

LIST OF FIGURES

Figures Page

2.1 Layers of CNN model (Eremenko, 2018). 6

2.2 Convolutional layer (Eremenko, 2018). 7

2.3 Pooling layer (Eremenko, 2018). 7

2.4 Flattening layer (Eremenko, 2018). 8

2.5 Fully connected layer (Eremenko, 2018). 8

3.1 Methodology process. 10

3.2 Equipment setup. 11

3.3 Four angles of lime image. 12

3.4 Structure of CNN model (Sudha & Aji, 2021). 13

3.5 Training process of model. 15

3.6 Hyperparameters tuning process. 18

4.1 Weighted average of F1-score in first experiment. 22

4.2 Weighted average of F1-score in second experiment. 22

Ref. code: 25646422040227QGW

(8)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

CNN Convolutional Neural Network

ANN Artificial Neural Network

KNN K-Nearest Neighbor

SVM Support Vector Machine

SVMR Support Vector Machine Regression

FCM Fuzzy C-Mean

RBF Radial Basis Function

ANFIS Clustered Adaptive Neuro-Fuzzy Inference System

SC Subtractive Clustering

GP Grid Partitioning

CVS Computer Vision System

BPNN Backpropagation Neural Network

CFS Correlation-Based Feature Selection Subset

CONS Consistency Subsets

RMSE Root Mean Square Error

TP True Positive

TN True Negative

FP False Positive

FN False Negative

Ref. code: 25646422040227QGW

1

CHAPTER 1

INTRODUCTION

Citrus aurantifolia has been grown worldwide, particularly in the tropical and

subtropical area. Citrus fruit is beneficial to people’s health because it contains numerous

natural metabolites. It can prevent heart, liver, bone, and urinary diseases (Narang & Ji-

raungkoorskul, 2016). Lime (Citrus aurantifolia Swingle cv. Paan) is an economic crop in

Thailand which harvest season is from July to September. It is normally harvested when it

has green skin and strong aromatic smell. The price of lime fruit is mostly determined by

season and it’s quality (Kaewsuksaeng, Tatmala, Srilaong, & Pongprasert, 2015). Lime is

used in a variety of Thai dishes and beverages. The selling price of lime fruit is constantly

high which is attractive to agriculturists (Booranawong & Booranawong, 2018). Many parts

of Thailand are suitable for plating lime which are central, southern, and northern (Boorana-

wong & Booranawong, 2017).

In the agriculture field, automation has been used to improve country’s quality,

economic growth and productivity. Sorting fruits and vegetables have impact on export

market which quality evaluation is needed. The appearance of the fruits and vegetables also

strongly impact the market value, customer preference and decision. An autonomous system

has the ability to reduce time, cost and human error which human workers are easily

disrupted by the environment (Bhargava & Bansal, 2021). Before setting prices for fruits

and vegetables, quality determination and product testing are needed for manufacturing

process. In some food industries image processing techniques have been used to monitor

quality of agricultural products (Pathmanaban, Gnanavel, & Anandan, 2019).

Ref. code: 25646422040227QGW

2

Academics and industries have been interested in agriculture post-harvest operation

to reduce the losses (Phate, Malmathanraj, & Palanisamy, 2021). Computer vision has been

improved to replace manual inspection and assist human workers to improve their skills

which are classification, quality estimation by observing internal and external features

(Saldaña, Siche, Luján, & Quevedo, 2013). Machine learning approaches were combined

with sufficient image processing that have the potential to develop an automation system

because fruit identification, classification and grading cannot be done accurately by human

perception (Behera, Rath, Mahapatra, & Sethy, 2020).

1.1 Problem Statement

Lime is one of the economic crops in Thailand which has high demand all the year.

Selling bad limes to customers can cause losing customers base and trust of company. So,

the quality inspection process is needed to determine saleability of limes before selling in

the market. The lime with green skin and fewer defects has more chance to sale than the

defective lime. Although quality inspection can be done by human workers, using human is

time consuming, high cost, and not accurate. Moreover, using machine is expensive and

difficult to reach for general farmers. So, this research has proposed method to classify

saleability of limes automatically by using Convolutional Neural Network (CNN).

1.2 Research Objective

The main objective of this research is to train the CNN model for classifying various

quality of lime images into three categories which are buy, maybe and not buy. Furthermore,

to evaluate the model performance in train, validation and test set. Lastly, to implement

CNN model with real-world data set or test set of lime images that the model never seen

before.

Ref. code: 25646422040227QGW

3

CHAPTER 2

LITERATURE REVIEW

2.1 Related Work

Computer vision and machine learning have been used in many applications in the

agriculture field. This chapter is to review previous works which related to this paper.

Clustered adaptive neuro-fuzzy inference system (ANFIS) has been developed to predict the

weight of Indian sweet lime with 1D and 2D features which extracted from computer vision.

Three clustering methods have been compared which are Fuzzy C-mean clustering (FCM),

Subtractive clustering (SC) and Grid partitioning (GP). The result shows that using ANFIS

with FCM gives the most accuracy and less error between 5.13% and -6.25% (Phate, Mal-

mathanraj, & Palanisamy, 2019). The computer vision system (CVS) has been developed

to determine sweet lime weight by using image processing to extract geometrical features.

The dimensional features are used to predict the weight of the sweet lime. A support

vector machine regression (SVMR) has been used to estimate the weight of the samples.

The R2 coefficient is 0.9866 and RMSE is 6.435 (Phate, Malmathanraj, & Palanisamy,

2020). Machine learning and Meta-heuristic approach have been developed for estimating

sweet lime weight by using computer vision with GA-ANFIS and PSO-ANFIS which GA-

ANFIS gave better result and less time with RMSE = 4.1581 (Phate et al., 2021). The

defective and ripeness of tomatoes has been estimated by RGB extraction and ANN for

classification with an accuracy of 96.47 % (Arakeri, 2016). Backpropagation neural network

(BPNN) has been developed for tomato maturity detection which are green, orange and red.

The RGB values are extracted from images and converted to HSI model. The results shows

that H had the most accuracy to extract and identify the maturity of tomatoes by 99.31%

with SD 1.2% (Wan, Toudeshki, Tan, & Ehsani, 2018). Mass and volume of cherry tomato

has been predicted by support vector machine (SVM), radial basis function (RBF) and

Bayesian artificial neural network (Bayesian-ANN) with 2D and 3D images analysis

(Nyalala et al., 2019). Discriminate defects and grading of tomatoes by using color, texture

and shape features to determine defects or healthy area extracted in LAB space. Histogram

of the image corresponding to different grading which healthy tomato has higher pixel value

than detected one. RBF-SVM was the best model which gave the most accuracy which

estimated 0.9515 (Ireri, Belal, Okinda, Makange, & Ji, 2019). SVM and K-means cluster

 Ref. code: 25646422040227QGW

4

have been developed for classifying severity disease of orange with 90% accuracy (Behera,

Jena, Rath, & Sethy, 2018). A three-variety automatic and non-instructive computer vision

system has been developed to estimate PH value of orange based on hybrid ANN-ABC

which can use with various orange types (ASabzi, Javadikia, & Arribas, 2020). A mobile

platform also developed for pre-grading automation which can analyze color and size of

citrus by using RGB extraction and sum of pixels from the images. R2 coefficient of size is

0.993 and 0.918 for color (Cubero et al., 2014). For Cherry classification, Convolutional

Numeral Network (CNN) with hybrid pooling method has been proposed to determine the

appearance feature in regular or irregular shape with 99.4% of accuracy (Momeny,

Jahanbakhshi, Jafarnezhad, & Zhang, 2020). For banana grading, Neural Network

Arbitration has been developed to reduce human error and time which can determine if the

banana is healthy or defective with 97% accuracy (Olaniyi, Oyedotun, & Adnan, 2017). The

size of banana has been deter- mined by using computer vision to find five point at the edge

then measure the length and arc height (Hu, Dong, Malakar, Liu, & Jaganathan, 2015).

Blueberry maturity has been classified by using histogram orientated gradients (HOG)

which are mature, intermediate and young. The images were acquired from outdoor. Support

Vector Machine (SVM) used to detect fruit region. K-nearest Neighbor (KNN) and

Template Matching with Weighted Euclidean Distance (TMWE) has been used to classify

the maturity state with low computation cost and high accuracy of 86.0% for young, 94.2%

for intermediate and 96.0% for mature (Tan, Lee, Gan, & Wang, 2018). Artificial neural

networks (ANNs) and support vector machine (SVM) has been developed for determining

mulberry ripeness level. The image has been segmented in RGB channel which B was the

best channel to classify the fruits. Color, geometric and texture features has been extracted

by using Correlation-based Feature Selection subset (CFS) and Consistency subsets (CONS).

ANN and SVM have been used for classification. ANN with CFS gave the best result with

more minor error which are 100%, 100% and 99.1% of accuracy (Azarmdel, Jahanbakhshi,

& Muñoz, 2020).

Ref. code: 25646422040227QGW

5

2.2 Research Gap

Several works have been studied from the literature review chapter which image

processing and machine learning have been improved for fruits and vegetable quality

assessment. This research will mainly focus on the machine learning part. There are various

methods proposed recently. For instance, Fuzzy C-mean (FCM), Support vector machine

(SVM), Artificial neural network (ANN), K-mean clustering and Convolutional Neural

Network (CNN). Most research has been focused on appearance features. For instance, size,

defect, color and ripeness. The objectives of machine vision have been discussed that

quality inspection is needed before setting a price but there is no research about purchasing

opportunity. So, this research objective is to classify the saleability of the lime by its external

features. The summary of the related work is shown in the table 2.1.

Table 2.1 Summary of related research.

Research Paper Objective Method

Phate et al., 2021 Weight of lime ANFIS

Phate et al., 2020 Weight of lime SVM

ASabzi et al., 2020 PH value of orange ANN

Momeny et al., 2020 Cherry classification CNN

Phate et al., 2019 Weight of lime FCM, SC, GP, ANFIS

Azarmdel et al., 2020 Mulberry ripeness level SVM, ANN

Nyalala et al., 2019 Mass and volume of cherry tomatoes SVM, ANN, RBF

Ireri et al., 2019 Defect of tomatoes SVM, RBF

Wan et al., 2018 Maturity of tomatoes BPNN

Behera et al., 2018 Severity disease K-mean, SVM

Tan et al., 2018 Blueberry maturity SVM, KNN

Olaniyi et al., 2017 Banana classification BPNN

Arakeri,2016 Defective and ripeness of tomatoes ANN

Hu et al., 2015 Size of banana Computer vision

Cubero et al., 2014 Grading of citrus Computer vision

This research Classifying saleability of lime CNN

Ref. code: 25646422040227QGW

6

2.3 Convolutional Neural Network (CNN)

The Artificial Neural Network (ANN) is a computer processing system that based on

the biological nervous system. There are composed of many connected nodes as known as

neurons. ANN has ability to learn from input to optimise the final output. The input usually

in multidimensional data which will feed to the hidden layer and it will learn from previous

layer to improve the output. Two main methods for training neural network are supervised and

unsupervised learning. Supervised learning has the labeled input. Otherwise, unsupervised

learning has no labels. The image pattern recognition is better to use supervised learning

(O’Shea & Nash, 2015). For pattern recognition, CNN is one of the most famous in deep

neural network. In machine learning issues, the CNN performs effectively in applications

that particular deal with image data such as face detection, image or video recognition. The

layers of CNN consist of convolutional layer, non-linearity layer, pooling layer and fully

connected layer (Eremenko, 2018). The distinction between CNN and ANN is CNN can

recognize patterns in images. It enables the model to encode a specific feature from the input

images which more suitable for image data (Albawi, Mohammed, & Al-Zawi, 2017).

2.3.1 Structure of Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) consists of four layers which are convolu-

tional layer, pooling layer, flattening layer and fully connected layer is shown in figure 2.1.

Figure 2.1 Layers of CNN model (Eremenko, 2018).

Ref. code: 25646422040227QGW

7

2.3.1.1 Convolutional Layer

Convolutional layer is used to reduce input image size and also perform to sharpen

image, edge detection, or blur image. There is a feature detector or a filter which will apply

in every pixels of input image and the result will be stored in feature map is shown in figure

2.2.

Figure 2.2 Convolutional layer (Eremenko, 2018).

2.3.1.2 Pooling Layer

In pooling layer, the filter will apply in every pixels of feature map image from

convolutional process. In this step, the maximum value will be picked and store in pooled

feature map. This step can help model to be robust with different manner of images. The

process of this step is shown in figure 2.3.

Figure 2.3 Pooling layer (Eremenko, 2018).

Ref. code: 25646422040227QGW

8

2.3.1.3 Flattening Layer

The output from pooling layer will be flatten in to one dimension to be able to per-

form as an input for Artificial Neutral Network (ANN) model. The process of this step is

shown in figure 2.4.

Figure 2.4 Flattening layer (Eremenko, 2018).

2.3.1.4 Fully Connected Layer

In the last step, the data will be fed into an ANN model which consists of input layer,

fully connection layer or hidden layer and output layer. The output will show the value of

most likely of input image and the model will selected the best value to be the label of that

image. The process of this step is shown in figure 2.5.

Figure 2.5 Fully connected layer (Eremenko, 2018).

Ref. code: 25646422040227QGW

9

– ×

2.3.2 Performance Evaluation

To evaluate the model performance, precision, recall, F1-score have been used in this

section (Leung, 2022).

2.3.2.1 Precision

The precision is calculated by number of true positive divided by total positive. The

formula for calculating precision is shown in equation 2.1.

Precision =
 TP

TP + FP

(2.1)

2.3.2.2 Recall

The recall is calculated by number of true positive divided by total of true positive

and false negative. The formula for calculating recall is shown in equation 2.2.

Recall =
 TP

TP + FN

(2.2)

2.3.2.3 F1-score

The F1-score is calculated by precision and recall harmonic mean. The formula for

calculating F1-score is shown in equation 2.3.

F1 score = 2
Precision × Recall

Precision + Recall

(2.3)

Where TP is True positive, TN is True negative, FP is False positive and FN is False

negative.

Ref. code: 25646422040227QGW

10

CHAPTER 3

METHODOLOGY

The methodology section has divided into four steps which are data collection, data

preparation, Convolutional Neural Network (CNN) model and hyperparameters tuning. The

overall process is shown in figure 3.1.

Figure 3.1 Methodology process.

Ref. code: 25646422040227QGW

11

3.1 Data Collection

Firstly, the data has to be collected before classification process. For data collection

section, they are separated into 3 parts which are image acquisition, visual inspection, and

data combination.

3.1.1 Image Acquisition

In image acquisition section, 530 various qualities of limes are collected from the

farm. The limes that have been used in this research is called Cirtus Aurantifolia Swingle or

Citrus Aurantifolia (Christm & Panze) Swing from Ratchaburi province. After that, each of

lime was captured in four angles images. To setup the equipment there are a lightbox for

controlling the light, an iPhone 11 Pro Max camera that has resolution of 3024 × 4032 pixels

and a tripod for holding an iPhone to make the distance equally from camera to lime sample.

The equipment setup and example of four angles of a lime image is shown in figure 3.2 and

3.3.

Figure 3.2 Equipment setup.

Ref. code: 25646422040227QGW

12

Figure 3.3 Four angles of lime image.

3.1.2 Visual Inspection

The survey was constructed and given to eight research participants in order to collect

data for labeling the lime images. Each research participants were assigned to give the score

range from 1 to 3 (1 is buy, 2 is maybe, 3 is not buy) from visual inspection at each angle of

a lime images. The data collection table example for visual inspection is shown in table 3.1.

Table 3.1 Visual inspection table.

Lime number Angle image Saleability Remark

1 A 1 Buy

1 B 2 Maybe

1 C 1 Buy

1 D 3 Not buy

Ref. code: 25646422040227QGW

13

3.2 Data Preparation

After acquired all data from the survey, mode is used to identify the label of lime

images. The most frequently score that given from every researcher participants has been

used to categorise the images into three different folders (buy, maybe, and not buy). The

lime image size was reduced to 1000 × 1000 pixels to reduce the computation time and avoid

reaching limitation of GPU memory.

3.3 Convolutional Neural Network (CNN) Model

In this section, CNN has been used to classify the lime saleability into 3 categories

which are buy, maybe and not buy. Since the input data are images, CNN is one of the best

model in the field of computer vision in image pattern recognition. The CNN was trained in

Google Colaboratory. The code of this model is shown in appendix C.

3.3.1 Structure of Convolutional Neural Network (CNN) Model

The structure of CNN model consists of convolutional layer, pooling layer and fully

connected layer. First, the input image was convoluted with the feature detector or filter size

3 × 3. Then in pooling layer, the filter 2 × 2 was applied and stored the maximum value in the

pooled feature map. After that the flattening process was applied to be an input of the fully

connected layer which has dense layer and output layer (Sudha & Aji, 2021). In this layer,

the images will be categorised in to three categories which are buy, maybe and not buy. The

flow chart of CNN structure is shown in figure 3.4.

Figure 3.4 Structure of CNN model (Sudha & Aji, 2021).

Ref. code: 25646422040227QGW

14

3.3.2 Process of Convolutional Neural Network (CNN)

The data that fed into the CNN model consists of total 1128 lime images in three

categories which are equally contain 376 images in buy, maybe and not buy. After that, the

data was split into three portions of 80:10:10. The first 80 percent is for training set and the

last 10 percent is for validation and testing set respectively. Training set is used to feed in

the model for model training process, validation set is used to see how the model works after

process of tuning hyperparameters and searching for the output that gives the most satisfy

performance and testing set is used to experiment the best model that was selected to test

model performance with the real-world data or the data that model never seen before. After

data has split, training data is fed into CNN model for training process in this step the model

will learn all images and classify the images in to three categories which are buy, maybe,

and not buy. After the model is trained completely, the model performance will be evaluated

with the data from validation set. The performance of each trained models will be compared

with several experiments to find the best model for categorising lime’s saleablilty. To obtain

the optimal value, hyperparameters tuning process is needed for parameters searching. If the

performance still not satisfy, hyperparameters tuning process will be applied until the best

performance is acquired. Finally, the model that gave the best performance in validation set

and had already confirmed the results with the testing set will be selected as the final model.

The flowchart of model training process is shown in figure 3.5.

Ref. code: 25646422040227QGW

15

Figure 3.5 Training process of model.

3.3.3 Model Selection

The model performance evaluation methods that have been used in this research are

recall, precision and F1-score. The performance that mostly focused was the F1-score

because it is the combination of recall and precision which should be considered in term of

model evaluation. It is calculated from the harmonic mean from both of them and provides

more balance model performance for summarising the model. After that, accuracy, macro

average and weighted average were calculated to combine the three performances from three

categories which are buy, maybe and not buy. The method that mostly focus on was weighted

average which consider each classes contribution or the support. F1-score will be calculated

according to its size while macro average will treat all classes equally. So, in this research

will be mainly focus on weighted average of F1-score for model evaluation process and the

best model will be selected based on this criteria.

Ref. code: 25646422040227QGW

16

3.4 Hyperparameters Tuning

In hyperparameters tuning section, the experiment was constructed by using Design

of Experiment (DOE) method to search for an optimal set of hyperparameters which give the

best model performance. First experiment is constructed by using 25 full factorial design as

initial experiment. The performances of each set of hyperparameters setting were collected

in table of train recall, train precision, train F1-score, validate recall, validate precision,

validate F1-score, test recall, test precision and test F1-score. After obtaining the

performances form the first round, next experiment will be constructed based on the first

experiment result which analysed by using Minitab.

3.4.1 Initial Full Factorial Design

To construct the first experiment for tuning the model, initial 25 full factorial design

has been used in this step. There are five hyperparameters have been considered which are

Batch size, Epoch, Learning rate, Decaying rate, and Momentum. Each hyperparameters

was set low and high value as follow. Batch size is set to 64 and 128. Epoch is set to 250 and

500. Learning rate is set to 0.0125 and 0.0250. Decaying rate is set to 0.00125 and 0.00250.

Momentum is set to 0.6 and 0.9. The low and high value setting is shown in table 3.2. The

list of hyperparameters in the first experiment is shown in table 3.3.

Table 3.2 25 full factorial design low and high value setting.

hyperparameters Low High

Batch size 64 128

Epoch 250 500

Learning rate 0.0125 0.0250

Decaying rate 0.00125 0.00250

Momentum 0.6 0.9

Ref. code: 25646422040227QGW

17

Table 3.3 Hyperparameters setting table in initial full factorial design.

RunOrder Batch size Epoch Learning rate Decaying Rate Momentum

1 64 250 0.0125 0.00125 0.6

2 128 250 0.0125 0.00125 0.6

3 64 500 0.0125 0.00125 0.6

4 128 500 0.0125 0.00125 0.6

5 64 250 0.025 0.00125 0.6

6 128 250 0.025 0.00125 0.6

7 64 500 0.025 0.00125 0.6

8 128 500 0.025 0.00125 0.6

9 64 250 0.0125 0.0025 0.6

10 128 250 0.0125 0.0025 0.6

11 64 500 0.0125 0.0025 0.6

12 128 500 0.0125 0.0025 0.6

13 64 250 0.025 0.0025 0.6

14 128 250 0.025 0.0025 0.6

15 64 500 0.025 0.0025 0.6

16 128 500 0.025 0.0025 0.6

17 64 250 0.0125 0.00125 0.9

18 128 250 0.0125 0.00125 0.9

19 64 500 0.0125 0.00125 0.9

20 128 500 0.0125 0.00125 0.9

21 64 250 0.025 0.00125 0.9

22 128 250 0.025 0.00125 0.9

23 64 500 0.025 0.00125 0.9

24 128 500 0.025 0.00125 0.9

25 64 250 0.0125 0.0025 0.9

26 128 250 0.0125 0.0025 0.9

27 64 500 0.0125 0.0025 0.9

28 128 500 0.0125 0.0025 0.9

29 64 250 0.025 0.0025 0.9

30 128 250 0.025 0.0025 0.9

31 64 500 0.025 0.0025 0.9

32 128 500 0.025 0.0025 0.9

33 96 375 0.01875 0.001875 0.75

34 96 375 0.01875 0.001875 0.75

35 96 375 0.01875 0.001875 0.75

36 96 375 0.01875 0.001875 0.75

37 96 375 0.01875 0.001875 0.75

Ref. code: 25646422040227QGW

18

3.4.2 Reduced Full Factorial Design

After all performances from first experiment are collected, second experiment will

be constructed based on 25 full factorial design that eliminated unimportant factors by using

Minitab. After the performances from second experiment are collected, the first and second

experiment will be compared. If the second experiment gives better performance than first

experiment. The third experiment will be constructed. This process will be repleted until the

best performances are acquired. The hyperparameters tuning process is shown in figure 3.6.

Figure 3.6 Hyperparameters tuning process.

Ref. code: 25646422040227QGW

19

CHAPTER 4

RESULT AND DISCUSSION

Nowadays, machine learning has been used to facilitate human in many applications.

In this research, CNN has been developed to classify saleability of limes. The expected

result of this research is the model can classify lime images into 3 categories which are buy,

maybe and not buy that perform well with testing data set of lime images and give satisfied

performance.

4.1 Result of Hyperparameters Tuning Process

To achieve the best performance, two hyperparameters tuning experiments were

constructed. To evaluate the model performance, weighted average of F1-score has been

used because it is one of the robust methods to evaluate the model performance of

classification approach.

4.1.1 Result of Initial Full Factorial Design

After running the first experiment which constructed based on 25 full factorial design,

all performances were collected. The performances from first experiment are shown in table

B.1, B.2 and B.3 in appendix B. Hyperparameters set that gave the highest weighted average

of F1-score was selected as the best performance in the first experiment. The summary of the

best performance in first experiment is shown in table 4.1, 4.2 and 4.3.

Table 4.1 Summary result for training set in initial full factorial design.

Training set Precision Recall F1-score Support

Buy 67% 85% 75% 298

Maybe 62% 62% 62% 302

Not buy 100% 73% 85% 302

Accuracy 73% 902

Macro average 76% 73% 74% 902

Weighted average 76% 73% 74% 902

Ref. code: 25646422040227QGW

20

Table 4.2 Summary result for validation set in initial full factorial design.

Validation set Precision Recall F1-score Support

Buy 77% 77% 77% 44

Maybe 65% 76% 70% 37

Not buy 96% 78% 86% 32

Accuracy 77% 113

Macro average 80% 77% 78% 113

Weighted average 79% 77% 77% 113

Table 4.3 Summary result for testing set in initial full factorial design.

Testing set Precision Recall F1-score Support

Buy 72% 91% 81% 34

Maybe 64% 68% 66% 37

Not buy 100% 74% 85% 42

Accuracy 77% 113

Macro average 79% 78% 77% 113

Weighted average 80% 77% 77% 113

4.1.2 Result After Reduced Full Factorial Design

After all performances from the first experiment were collected, Minitab was used to

analyse the performance in the first experiment to eliminate unimportant factors and second

experiment was constructed based on 25 full factorial design. The hyperparameters table of

second experiment is shown in table A.2 in appendix A. After run second experiment, the

hyperparameters set that gave the highest weighted average of F1-score was selected as the

best performance in second experiment. The summary of the best performance in second

experiment is shown in table 4.4, 4.5 and 4.6. All performances from second experiment are

shown in table B.4, B.5 and B.6 in appendix B.

Table 4.4 Summary result for training set after reduced full factorial design.

Training set Precision Recall F1-score Support

Buy 73% 74% 74% 298

Maybe 65% 66% 65% 302

Not buy 90% 88% 89% 302

Accuracy 76% 902

Macro average 76% 76% 76% 902

Weighted average 76% 76% 76% 902

Ref. code: 25646422040227QGW

21

Table 4.5 Summary result for validation set after reduced full factorial design.

Validation set Precision Recall F1-score Support

Buy 79% 68% 73% 44

Maybe 68% 68% 63% 37

Not buy 82% 84% 83% 32

Accuracy 73% 113

Macro average 73% 73% 73% 113

Weighted average 73% 73% 73% 113

Table 4.6 Summary result for testing set after reduced full factorial design.

Testing set Precision Recall F1-score Support

Buy 73% 79% 76% 34

Maybe 62% 57% 59% 37

Not buy 86% 86% 86% 42

Accuracy 74% 113

Macro average 73% 74% 74% 113

Weighted average 74% 74% 74% 113

4.1.3 Result Comparison

Comparing the weighted average of F1-score in validation set as shown in graph figure

4.1 and 4.2, first experiment gave better performance than second experiment. The perfor-

mance in second experiment did not change much in in the beginning and decreasing rapidly

after run 16. So, the run order from first experiment that gave the highest weighted average

of F1-score in validation set was selected to be the best performance of this research which

indicated in run order 31. In training section, the F1-score is 75%, 62%, 85%. In validation

section, the F1-score is 77%, 70%, 86%. In testing section, the F1-score is 81%, 66%, 85%

for buy, maybe and not buy respectively. For weighted average of F1-score, training gives

performance of 74% and 77% for validation and testing. To get these results, the

hyperparameters were set as batch size is equal to 64, epoch is 500, learning rate is 0.025,

decaying rate is 0.0025, and momentum is 0.9. The summary of best performance setting

and result are shown in table 4.7 and 4.8.

Ref. code: 25646422040227QGW

22

Figure 4.1 Weighted average of F1-score in first experiment.

Figure 4.2 Weighted average of F1-score in second experiment.

Ref. code: 25646422040227QGW

23

Table 4.7 Best hyperparameters setting.

RunOrder 31

Batch Size 64

Epoch 500

Learning Rate 0.025

Decaying Rate 0.0025

Momentum 0.9

Table 4.8 Summary of the best F1-score result.

Category
F1 score

Train Validation Test

Buy 75 % 77 % 81 %

Maybe 62 % 70 % 66 %

Not buy 85 % 86 % 85 %

Weighted average 74 % 77 % 77 %

Ref. code: 25646422040227QGW

24

4.2 Discussion

From the summary result of the best performance that shown in table 4.8, the highest

F1-score is not buy category which gave 85% on testing data set. It gave outstanding

performance than buy and maybe categories. Indicated that this model is good for sorting

out the unwanted limes. Lime is one of Thai economic crops that has high demand all the

year. According to statistical research from Trade Policy and Strategy Office (TPSO) of

Thailand, limes were produced 483,930 tons in 2020 and exported 1,413 tons or 24.55

millions Baht in 2021 (TPSO, 2021). Sorting the not buy or unwanted limes out from

saleable limes is very important in quality inspection process before selling to customers

since customers satisfaction is one of the main goals of many companies which they want

to avoid selling bad quality of limes to the market. Selling bad quality of lime to customer

may cause losing their customer bases. In this research, although there is a chance that the

model will classify limes into wrong category which the 15% of saleable limes could be sorted

out. Tradeoff between customer unsatisfied cost and losing some saleable limes, it is worthy

to maintain customer satisfaction. For the unwanted lime, it can be sold in the lower price

as defect products to make processed food or fertilizer.

Ref. code: 25646422040227QGW

25

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The CNN model can classify lime images into three categories (buy, maybe, not buy).

The model hyperparameters have been tuned to achieve the optimal performance for

classifying lime images. Two experiments were constructed based on 25 full factorial

method. The first experiment gave better performance than second experiment. The best

performance gave F1-score in testing set of 81%, 66% and 85% in buy, maybe and not buy

categories while the weighted average of F1-score is 77%. Since the not buy category gave

higher performance than other two categories, indicated that the model is better in sorting

unwanted lime out. This research demonstrated the effectiveness of CNN for agriculturists

to classify saleability instead of using human or large machine which has high enough

performance to classify the lime images into correct categories. The limitation of this

research is that it has been experimented only with Citrus Aurantifolia Swingle lime samples

and the equipment setting is used for experiment only which cannot perform in the real

situation.

5.2 Future Work

For future work, this model can be adapted with real time camera. So, it can be used

for lime classifying machine by connecting the camera that help human to detect the limes

in conveyor. Moreover, it can be used in the mobile phone application to help customer to

select the lime. Lastly, the performance could be improved by collecting more lime samples

for training the CNN model.

Ref. code: 25646422040227QGW

26

REFERENCES

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional

neural network. international conference on engineering and technology (ICET),

1–6.

Arakeri, M. P. (2016). Computer vision based fruit grading system for quality evaluation of

tomato in agriculture industry. Procedia Computer Science, 79, 426–433.

ASabzi, S., Javadikia, H., & Arribas, J. I. (2020). A three-variety automatic and non-intrusive

computer vision system for the estimation of orange fruit ph value. Measurement, 152,

107298.

Azarmdel, H., Jahanbakhshi, S., Aa nd Mohtasebi, & Muñoz, A. R. (2020). Evaluation

of image processing technique as an expert system in mulberry fruit grading based on

ripeness level using artificial neural networks (anns) and support vector machine

(svm). Postharvest Biology and Technology, 166, 111201.

Behera, S. K., Rath, A. K., Mahapatra, A., & Sethy, P. K. (2020). Identification, classification

and grading of fruits using machine learning and computer intelligence: A review.

Journal of Ambient Intelligence and Humanized Computing, 1–11.

Behera, S., Jena, L., Rath, A., & Sethy, P. (2018). Disease classification and grading of

orange using machine learning and fuzzy logic. International Conference on Commu-

nication and Signal Processing (ICCSP), 0678–0682.

Bhargava, A., & Bansal, A. (2021). Fruits and vegetables quality evaluation using com-

puter vision: A review. Journal of King Saud University-Computer and Information

Sciences, 33(3), 243–257.

Booranawong, T., & Booranawong, A. (2017). Simple and double exponential smoothing

methods with designed input data for forecasting a seasonal time series: In an applica-

tion for lime prices in thailand. Suranaree Journal of Science and Technology, 24(3).

Booranawong, T., & Booranawong, A. (2018). Double exponential smoothing and holt-

winters methods with optimal initial values and weighting factors for forecasting lime,

thai chili and lemongrass prices in thailand. Engineering and Applied Science Re-

search, 45(1), 32–38.

Cubero, S., Aleixos, N., Albert, F., Torregrosa, A., Ortiz, C., Garc´ıa-Navarrete, O., & Blasco,

J. (2014). Optimised computer vision system for automatic pre-grading of citrus fruit

in the field using a mobile platform. Precision Agriculture, 15(1), 80–94.

Ref. code: 25646422040227QGW

27

Eremenko, K. (2018). The ultimate guide to convolutional neural networks (cnn). Retrieved

from https://www.superdatascience.com/blogs/the-ultimate-guide-to-convolutional-

neural-networks-cnn

Hu, M. H., Dong, Q. L., Malakar, P. K., Liu, B. L., & Jaganathan, G. K. (2015). Determining

banana size based on computer vision. International journal of food properties, 18(3),

508–520.

Ireri, D., Belal, E., Okinda, C., Makange, N., & Ji, C. (2019). A computer vision system for

defect discrimination and grading in tomatoes using machine learning and image

processing. Artificial Intelligence in Agriculture, 2, 28–37.

Kaewsuksaeng, S., Tatmala, N., Srilaong, V., & Pongprasert, N. (2015). Postharvest heat

treatment delays chlorophyll degradation and maintains quality in thai lime (citrus

aurantifolia swingle cv. paan) fruit. Postharvest Biology and Technology, 100, 1–7.

Leung, K. (2022). Micro, macro and weighted averages of F1 score, clearly explained. Re-

trieved from https://towardsdatascience.com/micro-macro-weighted-averages-of-F1-

score-clearly-explained-b603420b292f

Momeny, M., Jahanbakhshi, A., Jafarnezhad, K., & Zhang, Y. D. (2020). Accurate classifi-

cation of cherry fruit using deep cnn based on hybrid pooling approach. Postharvest

Biology and Technology, 166, 111204.

Narang, N., & Jiraungkoorskul, W. (2016). Anticancer activity of key lime, citrus aurantifo-

lia. Pharmacognosy reviews, 10(20), 118.

Nyalala, I., Okinda, C., Nyalala, L., Makange, N., Chao, Q., Chao, L., & Chen, K. (2019).

Tomato volume and mass estimation using computer vision and machine learning al-

gorithms: Cherry tomato model. Journal of Food Engineering, 263, 288–298.

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv

preprint arXiv, 1511, 08458.

Olaniyi, E. O., Oyedotun, O. K., & Adnan, K. (2017). Intelligent grading system for banana

fruit using neural network arbitration. Journal of Food Process Engineering, 40(1),

e13160.

Pathmanaban, P., Gnanavel, B. K., & Anandan, S. S. (2019). Recent application of imaging

techniques for fruit quality assessment. Trends in Food Science and Technology, 94,

32–42.

Phate, V., Malmathanraj, R., & Palanisamy, P. (2019). Clustered anfis weighing models for

sweet lime (citrus limetta) using computer vision system. Journal of Food Process

Engineering, 42(6), e13160.

Ref. code: 25646422040227QGW

28

Phate, V., Malmathanraj, R., & Palanisamy, P. (2020). An indirect method to estimate sweet

lime weight through machine learning algorithm. Fourth International Conference on

Computing Methodologies and Communication (ICCMC), 194–198.

Phate, V., Malmathanraj, R., & Palanisamy, P. (2021). Classification and indirect weighing of

sweet lime fruit through machine learning and meta-heuristic approach. International

Journal of Fruit Science, 21(1), 528–545.

Saldaña, E., Siche, R., Luján, M., & Quevedo, R. (2013). Brazilian journal of food technol-

ogy. Pharmacognosy reviews, 16, 254–272.

Sudha, S. K., & Aji, S. (2021). An analysis on deep learning approaches: Addressing the

challenges in remote sensing image retrieval. International Journal of Remote Sensing,

42(24), 9405–9441.

Tan, K., Lee, W. S., Gan, H., & Wang, S. (2018). Recognising blueberry fruit of different

maturity using histogram oriented gradients and colour features in outdoor scenes.

Biosystems engineering, 176, 59–72.

TPSO. (2021). Analysis of thai economic and trade situations. Retrieved from http://www.

tpso.moc.go.th/sites/default/files/wiekhraaahsthaankaarnesrsthkicchkaarkhaa rwmeduue.

pdf

Wan, P., Toudeshki, A., Tan, H., & Ehsani, R. (2018). A methodology for fresh tomato

maturity detection using computer vision. Computers and electronics in agriculture,

146, 43–50.

Ref. code: 25646422040227QGW

29

APPENDICES

Ref. code: 25646422040227QGW

30

APPENDIX A

TABLES OF HYPERPARAMETERS IN FULL FACTORIAL METHOD

Table A.1 First experiment for hyperparameter setting.

RunOrder Batch size Epoch Learning rate Decaying Rate Momentum

1 64 250 0.0125 0.00125 0.6

2 128 250 0.0125 0.00125 0.6

3 64 500 0.0125 0.00125 0.6

4 128 500 0.0125 0.00125 0.6

5 64 250 0.025 0.00125 0.6

6 128 250 0.025 0.00125 0.6

7 64 500 0.025 0.00125 0.6

8 128 500 0.025 0.00125 0.6

9 64 250 0.0125 0.0025 0.6

10 128 250 0.0125 0.0025 0.6

11 64 500 0.0125 0.0025 0.6

12 128 500 0.0125 0.0025 0.6

13 64 250 0.025 0.0025 0.6

14 128 250 0.025 0.0025 0.6

15 64 500 0.025 0.0025 0.6

16 128 500 0.025 0.0025 0.6

17 64 250 0.0125 0.00125 0.9

18 128 250 0.0125 0.00125 0.9

19 64 500 0.0125 0.00125 0.9

20 128 500 0.0125 0.00125 0.9

21 64 250 0.025 0.00125 0.9

22 128 250 0.025 0.00125 0.9

23 64 500 0.025 0.00125 0.9

24 128 500 0.025 0.00125 0.9

25 64 250 0.0125 0.0025 0.9

26 128 250 0.0125 0.0025 0.9

27 64 500 0.0125 0.0025 0.9

28 128 500 0.0125 0.0025 0.9

29 64 250 0.025 0.0025 0.9

30 128 250 0.025 0.0025 0.9

31 64 500 0.025 0.0025 0.9

32 128 500 0.025 0.0025 0.9

33 96 375 0.01875 0.001875 0.75

34 96 375 0.01875 0.001875 0.75

35 96 375 0.01875 0.001875 0.75

36 96 375 0.01875 0.001875 0.75

37 96 375 0.01875 0.001875 0.75

Ref. code: 25646422040227QGW

31

Table A.2 Second experiment for hyperparameter setting.

RunOrder Batch size Epoch Learning rate Decaying Rate Momentum

0 96 375 0.01875 0.001875 0.75

1 96 421 0.017827 0.001992 0.725

2 96 467 0.016904 0.002109 0.7

3 96 513 0.015982 0.002227 0.675

4 96 559 0.015059 0.002344 0.65

5 96 605 0.014136 0.002461 0.625

6 96 651 0.013213 0.002578 0.6

7 96 698 0.012291 0.002695 0.575

8 96 744 0.011368 0.002813 0.55

9 96 790 0.010445 0.00293 0.525

10 96 836 0.009522 0.003047 0.5

11 96 882 0.008599 0.003164 0.475

12 96 928 0.007677 0.003281 0.45

13 96 974 0.006754 0.003398 0.425

14 96 1020 0.005831 0.003516 0.4

15 96 1066 0.004908 0.003633 0.375

16 96 1112 0.003986 0.00375 0.35

17 96 1158 0.003063 0.003867 0.325

18 96 1204 0.00214 0.003984 0.3

19 96 1251 0.001217 0.004102 0.275

20 96 1297 0.000294 0.004219 0.25

Ref. code: 25646422040227QGW

32

APPENDIX B

RESULTS OF HYPERPARAMETERS TUNING PROCESS

Table B.1 Training result from first experiment.

RunOrder Train recall Train precision Train F1
score

1 0.701 0.665 0.658

2 0.680 0.645 0.638

3 0.749 0.725 0.726

4 0.675 0.633 0.620

5 0.749 0.743 0.745

6 0.618 0.590 0.556

7 0.657 0.608 0.610

8 0.656 0.614 0.608

9 0.712 0.690 0.681

10 0.664 0.620 0.604

11 0.706 0.683 0.676

12 0.688 0.661 0.658

13 0.735 0.735 0.732

14 0.659 0.626 0.607

15 0.642 0.605 0.597

16 0.682 0.647 0.652

17 0.624 0.579 0.535

18 0.664 0.634 0.642

19 0.826 0.814 0.817

20 0.737 0.714 0.714

21 0.328 0.490 0.391

22 0.477 0.486 0.410

23 0.654 0.618 0.614

24 0.607 0.609 0.592

25 0.723 0.694 0.687

26 0.661 0.631 0.617

27 0.762 0.745 0.750

28 0.754 0.743 0.744

29 0.637 0.600 0.566

30 0.727 0.711 0.711

31 0.762 0.733 0.737

32 0.658 0.612 0.605

33 0.798 0.789 0.791

34 0.764 0.751 0.754

35 0.728 0.704 0.707

36 0.735 0.721 0.723

37 0.767 0.757 0.760

Ref. code: 25646422040227QGW

33

Table B.2 Validation result from first experiment.

RunOrder Validate recall Validate precision Validate F1
score

1 0.701 0.690 0.685

2 0.724 0.717 0.710

3 0.705 0.699 0.700

4 0.646 0.637 0.616

5 0.706 0.690 0.693

6 0.624 0.628 0.608

7 0.772 0.761 0.763

8 0.679 0.673 0.664

9 0.695 0.690 0.689

10 0.730 0.708 0.699

11 0.704 0.699 0.697

12 0.698 0.699 0.694

13 0.650 0.646 0.647

14 0.635 0.637 0.615

15 0.752 0.743 0.739

16 0.772 0.761 0.763

17 0.637 0.619 0.588

18 0.722 0.717 0.719

19 0.751 0.726 0.730

20 0.739 0.735 0.734

21 0.304 0.434 0.349

22 0.441 0.487 0.418

23 0.693 0.690 0.682

24 0.699 0.708 0.697

25 0.681 0.681 0.671

26 0.655 0.655 0.642

27 0.698 0.681 0.686

28 0.688 0.690 0.688

29 0.646 0.637 0.597

30 0.707 0.708 0.707

31 0.786 0.770 0.774

32 0.732 0.717 0.710

33 0.705 0.699 0.701

34 0.691 0.681 0.677

35 0.689 0.681 0.683

36 0.705 0.708 0.705

37 0.699 0.681 0.684

Ref. code: 25646422040227QGW

34

Table B.3 Testing result from first experiment.

RunOrder Test recall Test precision Test F1
score

1 0.734 0.708 0.695

2 0.732 0.717 0.708

3 0.728 0.708 0.706

4 0.656 0.646 0.620

5 0.743 0.743 0.740

6 0.648 0.628 0.584

7 0.706 0.681 0.677

8 0.677 0.664 0.648

9 0.726 0.717 0.706

10 0.667 0.655 0.637

11 0.702 0.699 0.674

12 0.723 0.717 0.708

13 0.722 0.702 0.708

14 0.669 0.664 0.637

15 0.704 0.681 0.679

16 0.730 0.708 0.708

17 0.615 0.602 0.560

18 0.692 0.681 0.680

19 0.815 0.805 0.809

20 0.730 0.717 0.715

21 0.326 0.487 0.390

22 0.617 0.558 0.478

23 0.743 0.726 0.717

24 0.638 0.655 0.621

25 0.721 0.708 0.694

26 0.662 0.655 0.634

27 0.750 0.743 0.744

28 0.735 0.735 0.729

29 0.666 0.646 0.616

30 0.717 0.708 0.704

31 0.798 0.770 0.773

32 0.688 0.664 0.653

33 0.756 0.743 0.744

34 0.745 0.717 0.714

35 0.746 0.735 0.732

36 0.733 0.726 0.722

37 0.780 0.770 0.774

Ref. code: 25646422040227QGW

35

Table B.4 Training result from second experiment.

RunOrder Train recall Train precision Train F1
score

0 0.748 0.746 0.746

1 0.721 0.700 0.701

2 0.788 0.783 0.784

3 0.790 0.778 0.779

4 0.758 0.737 0.738

5 0.752 0.738 0.738

6 0.760 0.758 0.759

7 0.755 0.739 0.743

8 0.775 0.769 0.771

9 0.774 0.762 0.766

10 0.681 0.641 0.627

11 0.727 0.705 0.706

12 0.752 0.734 0.738

13 0.704 0.684 0.684

14 0.696 0.663 0.662

15 0.697 0.675 0.673

16 0.687 0.663 0.665

17 0.640 0.616 0.620

18 0.585 0.562 0.565

19 0.534 0.542 0.534

20 0.266 0.410 0.320

Ref. code: 25646422040227QGW

36

Table B.5 Validation result from second experiment.

RunOrder Validate recall Validate precision Validate F1
score

0 0.713 0.708 0.709

1 0.681 0.673 0.675

2 0.715 0.717 0.716

3 0.713 0.708 0.707

4 0.700 0.690 0.691

5 0.673 0.673 0.669

6 0.734 0.726 0.727

7 0.705 0.699 0.701

8 0.682 0.681 0.681

9 0.701 0.690 0.694

10 0.678 0.673 0.662

11 0.695 0.690 0.690

12 0.682 0.681 0.681

13 0.690 0.690 0.687

14 0.693 0.690 0.690

15 0.671 0.673 0.671

16 0.670 0.673 0.671

17 0.514 0.522 0.518

18 0.442 0.434 0.437

19 0.453 0.469 0.457

20 0.236 0.389 0.289

Ref. code: 25646422040227QGW

37

Table B.6 Testing result from second experiment.

RunOrder Test recall Test precision Test F1
score

0 0.734 0.735 0.732

1 0.752 0.743 0.739

2 0.728 0.726 0.721

3 0.727 0.717 0.714

4 0.708 0.681 0.679

5 0.721 0.717 0.713

6 0.740 0.743 0.741

7 0.735 0.726 0.726

8 0.752 0.752 0.750

9 0.740 0.735 0.735

10 0.690 0.681 0.660

11 0.687 0.681 0.670

12 0.714 0.708 0.708

13 0.727 0.717 0.711

14 0.727 0.717 0.705

15 0.732 0.726 0.713

16 0.724 0.717 0.714

17 0.663 0.646 0.647

18 0.519 0.504 0.505

19 0.500 0.522 0.507

20 0.316 0.469 0.376

Ref. code: 25646422040227QGW

38

APPENDIX C

PYTHON CODE OF CNN MODEL

1

2

3

4 # CNN model for predicting saleablity

5

6 # 1. Model preparation

7

8

9 from keras.preprocessing.image import img_to_array

10

11 class ImageToArrayPreprocessor:

12 def __init__(self, dataFormat=None):

13 # store the image data format

14 self.dataFormat = dataFormat

15

16 def preprocess(self, image):

17 # apply the Keras utility function that correctly rearranges

18 # the dimensions of the image

19 return img_to_array(image, data_format=self.dataFormat)

20

21 import numpy as np

22 import cv2

23 import os

24

25 class SimpleDatasetLoader:

26 def __init__(self, preprocessors=None):

27 # store the image preprocessor

28 self.preprocessors = preprocessors

29

30 # if the preprocessors are None, initialize them as an

31 # empty list

32 if self.preprocessors is None:

33 self.preprocessors = []

34

35 def load(self, imagePaths, verbose=-1):

36 # initialize the list of features and labels

37 data = []

Ref. code: 25646422040227QGW

39

38 labels = []

39

40 # loop over the input images

41 for (i, imagePath) in enumerate(imagePaths):

42 # load the image and extract the class label assuming

43 # that our path has the following format:

44 # /path/to/dataset/{class}/{image}.jpg

45 image = cv2.imread(imagePath)

46 label = imagePath.split(os.path.sep)[-2]

47 # check to see if our preprocessors are not None

48 if self.preprocessors is not None:

49

50 for p in self.preprocessors:

51 image = p.preprocess(image)

52

53 # treat our processed image as a "feature vector"

54 # by updating the data list followed by the labels

55

56 data.append(image)

57 labels.append(label)

58

59 # show an update every verbose images

60 if verbose > 0 and i > 0 and (i + 1) % verbose == 0:

61 print("[INFO] processed {}/{}".format(i + 1,len(imagePaths)))

62

63 # return a tuple of the data and labels

64 return (np.array(data), np.array(labels))

65

66 import imutils

67 import cv2

68

69 class AspectAwarePreprocessor:

70 def __init__(self, width, height, inter=cv2.INTER_AREA):

71 # store the target image width, height, and interpolation

72 # method used when resizing

73 self.width = width

74 self.height = height

75 self.inter = inter

76

77 def preprocess(self, image):

78 # grab the dimensions of the image and then initialize

Ref. code: 25646422040227QGW

40

79 # the deltas to use when cropping

80 (h, w) = image.shape[:2]

81 dW = 0

82 dH = 0

83

84 # if the width is smaller than the height, then resize

85 # along the width (i.e., the smaller dimension) and then

86 # update the deltas to crop the height to the desired

87 # dimension

88 if w < h:

89 image = imutils.resize(image, width=self.width,

90 inter=self.inter)

91 dH = int((image.shape[0] - self.height) / 2.0)

92

93 # otherwise, the height is smaller than the width so

94 # resize along the height and then update the deltas

95 # to crop along the width

96 else:

97 image = imutils.resize(image, height=self.height,

98 inter=self.inter)

99 dW = int((image.shape[1] - self.width) / 2.0)

100

101 # now that our images have been resized, we need to

102 # re-grab the width and height, followed by performing

103 # the crop

104 (h, w) = image.shape[:2]

105 image = image[dH:h - dH, dW:w - dW]

106

107 # finally, resize the image to the provided spatial

108 # dimensions to ensure our output image is always a fixed

109 # size

110 return cv2.resize(image, (self.width, self.height),

111 interpolation=self.inter)

112

113 from sklearn.metrics import classification_report

114 from keras.models import Sequential

115 from keras.layers.convolutional import Conv2D

116 from keras.layers.convolutional import MaxPooling2D

117 from keras.layers.core import Activation

118 from keras.layers.core import Dense

119 from keras.layers.core import Flatten

Ref. code: 25646422040227QGW

41

120 import matplotlib.pyplot as plt

121 from tensorflow import keras

122 from keras.applications import imagenet_utils

123 from tensorflow.keras.preprocessing import image_dataset_from_directory

124 from keras.preprocessing.image import ImageDataGenerator

125 from keras.layers import Rescaling

126 import numpy as np

127 import argparse

128 import cv2

129 from imutils import paths

130 from sklearn.model_selection import train_test_split

131 from sklearn.preprocessing import LabelBinarizer

132 from keras.callbacks import ModelCheckpoint

133 from keras.models import load_model

134

135 """## 2. Parameters setting"""

136

137 from google.colab import drive

138 drive.mount(’/content/drive’)

139

140 #Parameters setting secction

--

141

142 #Model Train Parameters (the values are obtained from the DOE)

143 BATCH_SIZE = 96

144 ep = 175

145 Learning_Rate = 0.031893

146 Decay_Rate = 0.000781

147 Momentum_Rate = 0.99

148

149 # create a weight file name based on settings of an experiments

150 weight_f = ’CNN_saleability_expt_BATCH_%d_EP_%d_LR_%f_DECAY_%f_MOMENT_%f.h5’%(

BATCH_SIZE,

151

ep,

152

Learning_Rate,

153

Decay_Rate,

154

Ref. code: 25646422040227QGW

42

Momentum_Rate)

155 print(weight_f) # for debugging purpose

156

157 # create a report file name based on settings of an experiments

158 train_report_f = ’train_CNN_saleability_expt_BATCH_%d_EP_%d_LR_%f_DECAY_%f_MOMENT_%

f.csv’%(BATCH_SIZE,

159

ep,

160

Learning_Rate,

161

Decay_Rate,

162

Momentum_Rate)

163 print(train_report_f) # for debugging purpose

164

165 test_report_f = ’test_CNN_saleability_expt_BATCH_%d_EP_%d_LR_%f_DECAY_%f_MOMENT_%f.

csv’%(BATCH_SIZE,

166

ep,

167

Learning_Rate,

168

Decay_Rate,

169

Momentum_Rate)

170 print(test_report_f) # for debugging purpose

171

172 val_report_f = ’val_CNN_saleability_expt_BATCH_%d_EP_%d_LR_%f_DECAY_%f_MOMENT_%f.

csv’%(BATCH_SIZE,

173

ep,

174

Learning_Rate,

175

Decay_Rate,

176

Momentum_Rate)

177 print(val_report_f) # for debugging purpose

178

179 #Image File Directories

Ref. code: 25646422040227QGW

43

180

181 # This is the location of the entire dataset

182 image_path_train = ’/content/drive/MyDrive/CNN_saleability/v3’

183

184 #Weight Save Directory

185 Weight_Save_Path = ’/content/drive/MyDrive/CNN_saleability/v3_weights/Round2’ +

weight_f

186

187 #Report Directory

188 train_report_path = ’/content/drive/MyDrive/CNN_saleability/v3_reports/Round2’ +

train_report_f

189 test_report_path = ’/content/drive/MyDrive/CNN_saleability/v3_reports/Round2’ +

test_report_f

190 val_report_path = ’/content/drive/MyDrive/CNN_saleability/v3_reports/Round2’ +

val_report_f

191

192 """## 3. Model training"""

193

194 #Model Training Section

--

195

196 imagePaths = list(paths.list_images(image_path_train))

197

198 # initialize the image preprocessors

199 sp = AspectAwarePreprocessor(128,128)

200 iap = ImageToArrayPreprocessor()

201

202 # load the dataset from disk then scale the raw pixel intensities

203 # to the range [0, 1]

204 sdl = SimpleDatasetLoader(preprocessors=[sp, iap])

205 (data, labels) = sdl.load(imagePaths, verbose=500)

206 data = data.astype("float") / 255.0

207

208 # set aside 10% of train and test data for evaluation

209 X_train, testX, Y_train, testY = train_test_split(data, labels,

210 test_size=0.1, random_state = 32)

211

212 # Use the same function above for the validation set

213 trainX, valX, trainY, valY = train_test_split(X_train, Y_train,

214 test_size=1/9, random_state= 32) # 1/9 x 0.9 = 0.1

Ref. code: 25646422040227QGW

44

215

216 # convert the labels from integers to vectors

217 trainY = LabelBinarizer().fit_transform(trainY)

218 valY = LabelBinarizer().fit_transform(valY)

219 testY = LabelBinarizer().fit_transform(testY)

220

221 # construct the image generator for data augmentation

222 aug = ImageDataGenerator(rotation_range=30, width_shift_range=0.1,

223 height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,

224 horizontal_flip=True, fill_mode="nearest")

225

226

227 classes = 3

228 batch = BATCH_SIZE

229 chanDim = 1

230

231 # define model

232 model = Sequential()

233 model.add(Conv2D(64,(3,3),padding="same", input_shape=(128,128, 3)))

234 model.add(Activation(’relu’))

235 model.add(Conv2D(64, (3, 3), padding="same"))

236 model.add(Activation("relu"))

237 model.add(MaxPooling2D(pool_size=(2, 2)))

238

239 model.add(Conv2D(128,(3,3),padding="same"))

240 model.add(Activation(’relu’))

241 model.add(Conv2D(128, (3, 3), padding="same"))

242 model.add(Activation("relu"))

243 model.add(MaxPooling2D(pool_size=(2, 2)))

244

245 model.add(Conv2D(256,(3,3),padding="same"))

246 model.add(Activation(’relu’))

247 model.add(Conv2D(256, (3, 3), padding="same"))

248 model.add(Activation("relu"))

249 #model.add(Conv2D(256,(3,3),padding="same"))

250 #model.add(Activation(’relu’))

251 #model.add(Conv2D(256, (3, 3), padding="same"))

252 #model.add(Activation("relu"))

253 model.add(MaxPooling2D(pool_size=(2, 2)))

254

255 #model.add(Conv2D(512,(3,3),padding="same"))

Ref. code: 25646422040227QGW

45

256 #model.add(Activation("relu"))

257 #model.add(Conv2D(512, (3, 3), padding="same"))

258 #model.add(Activation("relu"))

259 #model.add(Conv2D(512,(3,3),padding="same"))

260 #model.add(Activation(’relu’))

261 #model.add(Conv2D(512, (3, 3), padding="same"))

262 #model.add(Activation("relu"))

263 #model.add(MaxPooling2D(pool_size=(2, 2)))

264

265 model.add(Flatten())

266 #model.add(Dense(4096))

267 #model.add(Activation("relu"))

268 model.add(Dense(512))

269 model.add(Activation("relu"))

270 model.add(Dense(128))

271 model.add(Activation("relu"))

272

273 model.add(Dense(classes))

274 model.add(Activation("softmax"))

275

276 print(model.summary())

277

278 # train the model using SGD

279 print("[INFO] training network...")

280 sgd = keras.optimizers.SGD(lr=Learning_Rate, decay=Decay_Rate, momentum=

Momentum_Rate)

281 model.compile(loss="categorical_crossentropy", optimizer=sgd,

282 metrics=["accuracy"])

283

284 #Model check point

285 checkpoint = ModelCheckpoint(Weight_Save_Path, monitor="val_loss",

286 save_best_only=True, verbose=1)

287 callbacks = [checkpoint]

288

289 H = model.fit(aug.flow(trainX, trainY, batch_size=batch), validation_data = (valX,

valY), callbacks=callbacks,

290 epochs=ep, verbose=1)

291

292

293 # plot the training loss and accuracy

294 plt.style.use("ggplot")

Ref. code: 25646422040227QGW

46

295 plt.figure()

296 plt.plot(np.arange(0, ep), H.history["loss"], label="train_loss")

297 plt.plot(np.arange(0, ep), H.history["val_loss"], label="val_loss")

298 plt.plot(np.arange(0, ep), H.history["accuracy"], label="train_acc")

299 plt.plot(np.arange(0, ep), H.history["val_accuracy"], label="val_acc")

300 plt.title("Training Loss and Accuracy")

301 plt.xlabel("Epoch #")

302 plt.ylabel("Loss/Accuracy")

303 plt.legend()

304 plt.show()

305

306 """## 4. Model testing"""

307

308 #Model Testing Section

--

309 import pandas as pd

310

311 model = load_model(Weight_Save_Path)

312 batch=BATCH_SIZE

313

314 # define label for each class

315 labelNames = ["Sold","Maybe", "Notbuy"]

316

317 print("[INFO] evaluation testing for training data ...")

318 # run prediction for training data

319 predictions = model.predict(trainX, batch_size=batch)

320 # print(predictions) # for debugging purpose

321 # print(trainY) # for debugging purpose

322 # dsiplay the performance

323 print(classification_report(trainY.argmax(axis=1),

324 predictions.argmax(axis=1),target_names=labelNames))

325

326 # generate report as a dataframe

327 clsf_report = pd.DataFrame(classification_report(trainY.argmax(axis=1),

328 predictions.argmax(axis=1),

329 target_names=labelNames,

330 output_dict=True)).transpose()

331

332 # write the report to csv file

333 clsf_report.to_csv(train_report_path, index= True)

334

Ref. code: 25646422040227QGW

47

335 print("[INFO] evaluation testing for test data ...")

336 # run prediction for testing data

337 predictions = model.predict(testX, batch_size=batch)

338 # dsiplay the performance

339 print(classification_report(testY.argmax(axis=1),

340 predictions.argmax(axis=1),target_names=labelNames))

341

342 # generate report as a dataframe

343 clsf_report = pd.DataFrame(classification_report(testY.argmax(axis=1),

344 predictions.argmax(axis=1),

345 target_names=labelNames,

346 output_dict=True)).transpose()

347

348 # write the report to csv file

349 clsf_report.to_csv(test_report_path, index= True)

350

351 print("[INFO] evaluation testing for validating data ...")

352 # run prediction for training data

353 predictions = model.predict(valX, batch_size=batch)

354 # dsiplay the performance

355 print(classification_report(valY.argmax(axis=1),

356 predictions.argmax(axis=1),target_names=labelNames))

357

358 # generate report as a dataframe

359 clsf_report = pd.DataFrame(classification_report(valY.argmax(axis=1),

360 predictions.argmax(axis=1),

361 target_names=labelNames,

362 output_dict=True)).transpose()

363

364 # write the report to csv file

365 clsf_report.to_csv(val_report_path, index= True)

Ref. code: 25646422040227QGW

48

BIOGRAPHY

Name Niracha Chaiwong

Education 2020: Bachelor of Engineering

(Electronics and Communication Engineering)

Sirindhorn International Institute of Technology

Thammasat University

Ref. code: 25646422040227QGW

