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ABSTRACT

In regression analysis with many regressors, it is expected that some may

not significantly contribute to predicting the response variable. This is called uncertain

prior information (UPI) and may be obtained by variable selection. The use of UPI to

produce a submodel or restricted model has received increasing attention in statistical

models. In practice, the full, or unrestricted, model may be overfitted, with too many

predictors included, when prior information uncertainty proves correct. A submodel

including only important regressors may be more practical and feasible, but concerns

remain that the submodel may be inappropriate when UPI is incorrect.

The objective of this study was to propose novel estimators that are more

efficient in estimation than the classical estimator. In addition, the study also attempted

to optimally incorporate the full model and submodel for parameter estimation using

preliminary test and shrinkage strategies. This idea will improve regression parameter

estimation efficiency, even with uncertain prior information accuracy. Proposed esti-

mators were applied with the Cobb-Douglas, exponential, and monomolecular multiple

nonlinear regression models and the Cox proportional hazards regression model (special
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chapter) under UPI in low-dimensional and high-dimensional data regimes.

The proposed estimator’s performance was compared theoretically by de-

riving asymptotic distributional quadratic bias and risk under the sequence of local al-

ternatives. In addition, Monte Carlo simulations were conducted to evaluate the nu-

merical proposed estimator performance. Numerical comparisons were also made with

penalty estimation strategies: least absolute shrinkage and selection operator (LASSO)

and adaptive LASSO. Finally, the proposed estimators were applied to real data exam-

ples to verify their usefulness. Regardless of prior information correctness, the proposed

estimators were shown to perform significantly better than classical estimators which are

severely affected by information uncertainty.

Keywords: asymptotic properties, linear shrinkage, positive-part shrinkage, semipara-

metric hazards regression model, shrinkage preliminary test

Ref. code: 25645909320011YZA



(3)

ACKNOWLEDGEMENTS

I wish to express my grateful and profound thanks to the following who

have assisted me during my Ph.D. advanced degree program and the writing of this

dissertation:

• My advisor, Associate Professor Supranee Lisawadi, for her insightful advice,

encouragement, and invaluable support throughout this research.

• Professor Syed Ejaz Ahmed, Dean of the Faculty of Mathematics and Science at

Brock University, Canada. His guidance, immense knowledge, and patience have

played a pivotal role in the completion of my Ph.D. program.

• Committee chairperson Professor Saowanit Sukparungsee, King Mongkut’s Uni-

versity of Technology North Bangkok, and committee members Assistant Profes-

sors Patchanok Srisuradetchai and Teerawat Simmachan for their effective advice

and valued suggestions which improved my dissertation and enabled me to com-

plete it.

I gratefully acknowledge the financial support provided by the Human Re-

source Development in Science Project (Science Achievement Scholarship of Thailand,

SAST) and Canada-ASEAN Scholarships and Educational Exchanges for Development

(SEED). I am deeply grateful to the Royal Irrigation Department of Thailand for real

dataset support on the socio-economic situation monitoring and evaluation, Kwae Noy

Dam under His Majesty the King’s initiation, budget year 2015.

My sincere thanks go to Professor JohnWinward, who assisted me in proof-

readingmy proposal and research papers, andAssistant Professor Saengla Chaimongkol,

who provided steadfast support. I am very thankful to all those who gave me their assis-

tance and encouragement, including the faculty and staff members of the Department of

Mathematics and Statistics, Thammasat University. In addition, I would like to thank

all my seniors, juniors, and fellow Ph.D. students at the Department of Mathematics and

Statistics, Thammasat University, for their companionship during my Ph.D. studies.

Ref. code: 25645909320011YZA



(4)

Finally, without the unwavering understanding and encouragement of my

parents and relatives during the past many years, it would have been impossible for me

to complete my studies. I am indebted to them all.

Janjira Piladaeng

Ref. code: 25645909320011YZA



(5)

TABLE OF CONTENTS

Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (3)

LIST OF TABLES (10)

LIST OF FIGURES (13)

LIST OF ABBREVIATIONS (16)

LIST OF SYMBOLS (17)

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Importance of the Study 1

1.2 Research Objectives 4

1.3 Scope of the Study 4

1.4 Benefits of the Study 5

CHAPTER 2 THEORIES AND RESEARCH OF RELEVANT 7

2.1 Theoretical Background 7

2.1.1 Nonlinear Regression Models 7

2.1.1.1 Linearization and the Gauss-Newton Method 8

2.1.2 Nonlinear Models of Interest 11

2.1.2.1 Cobb-Douglas Model 11

2.1.2.2 Exponential Model 12

2.1.2.3 Monomolecular Model 12

2.2 Literature Review 13

2.2.1 Development of Estimation Strategies 13

Ref. code: 25645909320011YZA



(6)

2.2.2 Relevant Literature 14

CHAPTER 3 RESEARCH METHODOLOGY 21

3.1 Nonlinear Regression Model and Least Squares Estimation Strategies 21

3.1.1 Unrestricted Estimator 22

3.1.2 Restricted Estimator 24

3.2 Suggested Estimation Strategies 25

3.2.1 Linear Shrinkage Estimator 25

3.2.2 Preliminary Test Estimator 26

3.2.3 Shrinkage Preliminary Test Estimator 26

3.2.4 Shrinkage Estimator 26

3.2.5 Positive-Part Shrinkage Estimator 27

3.3 Penalty Estimation Strategies 27

3.3.1 Least Absolute Shrinkage and Selection Operator Estimator 27

3.3.2 Adaptive Least Absolute Shrinkage and Selection Operator

Estimator 28

3.4 Large Sample Test 28

3.5 Asymptotic Properties 29

3.5.1 Asymptotic Distributional Quadratic Bias 29

3.5.2 Asymptotic Distributional Quadratic Risk 30

3.6 Related Theorems 30

3.7 Dimensionality of Data 31

3.7.1 Low-Dimensional Data Setting 31

3.7.2 High-Dimensional Data Setting 32

3.8 Measures of Estimator Performance 34

3.8.1 Monte Carlo Simulations 34

3.8.2 Real Data Example 35

CHAPTER 4 RESEARCH RESULTS 37

4.1 Asymptotic Results 37

4.1.1 Asymptotic Distributional Quadratic Bias 42

Ref. code: 25645909320011YZA



(7)

4.1.2 Asymptotic Distributional Quadratic Risk 49

4.1.2.1 Comparing β̂UE1 and β̂RE1 69

4.1.2.2 Comparing β̂UE1 and β̂LS1 70

4.1.2.3 Comparing β̂UE1 , β̂PT1 , and β̂SP1 71

4.1.2.4 Comparing β̂UE1 , β̂S1 , and β̂
S+
1 73

4.1.2.5 Comparing β̂RE1 and β̂LS1 75

4.1.2.6 Comparing β̂RE1 , β̂PT1 , and β̂SP1 75

4.1.2.7 Comparing β̂RE1 , β̂S1 and β̂
S+
1 77

4.1.2.8 Comparing β̂LS1 , β̂PT1 , and β̂SP1 80

4.1.2.9 Comparing β̂PT1 and β̂SP1 82

4.1.2.10 Comparing β̂SP1 and β̂S1 83

4.2 Simulation Results 87

4.2.1 Low-Dimensional Data Setting 87

4.2.1.1 Cobb-Douglas Model 88

(1) Correct Subspace Information (Δsim = 0) 88

(2) Uncertain Subspace Information (Δsim ≥ 0) 90

4.2.1.2 Exponential Model 102

(1) Correct Subspace Information (Δsim = 0) 102

(2) Uncertain Subspace Information (Δsim ≥ 0) 102

4.2.1.3 Monomolecular Model 115

(1) Correct Subspace Information (Δsim = 0) 115

(2) Uncertain Subspace Information (Δsim ≥ 0) 116

4.2.2 High-Dimensional Data Setting 126

4.2.2.1 Cobb-Douglas Model 126

4.2.2.2 Exponential Model 130

4.2.2.3 Monomolecular Model 133

4.3 Application to Real Data 135

4.3.1 Low-dimensional Data Setting 136

4.3.1.1 Manufacturing Industry Data 136

4.3.1.2 Cost of Living and Property Prices Indices Data 137

4.3.1.3 Cereal Yield Data 139

Ref. code: 25645909320011YZA



(8)

4.3.2 High-dimensional Data Setting 140

4.3.2.1 Economic Data 140

4.3.2.2 Communities and Crime Data 142

4.3.2.3 Rice Yield Data 144

CHAPTER 5 PARAMETER ESTIMATION IN THE COX PROPORTIONAL

HAZARD REGRESSIONMODEL UNDER UNCERTAINTYOF

PRIOR INFORMATION 147

5.1 Introduction 147

5.2 Cox Proportional Hazards Model and Maximum Partial Likelihood

Estimation 149

5.2.1 Partial Likelihoods 151

5.2.2 Maximum Partial Likelihood Estimation Strategy 153

5.2.2.1 Unrestricted Estimator 153

5.2.2.2 Restricted Estimator 154

5.2.2.3 Large Sample Test Statistic 155

5.3 Various Estimation Strategies 155

5.3.1 Strategy 1: Linear Shrinkage Estimator 155

5.3.2 Strategy 2: Preliminary Test Estimator 156

5.3.3 Strategy 3: Shrinkage Preliminary Test Estimator 156

5.3.4 Strategy 4: Stein-Type Shrinkage Estimator 156

5.3.5 Strategy 5: Positive-Part Stein-Type Shrinkage Estimator 156

5.3.6 Strategy 6: Least Absolute Shrinkage and Selection Operator

Estimator 157

5.3.7 Strategy 7: Adaptive Least Absolute Shrinkage and Selection

Operator Estimator 157

5.4 Asymptotic Properties and Results 157

5.4.1 Asymptotic Distributional Bias 159

5.4.2 Asymptotic Distributional Risk 162

Ref. code: 25645909320011YZA



(9)

5.5 Simulation Results 172

5.5.1 Low-Dimensional Data 175

5.5.1.1 Correct Subspace Information (Δsim = 0) 176

5.5.1.2 Uncertain Subspace Information (Δsim ≥ 0) 178

5.5.2 High-Dimensional Data 198

5.5.2.1 Dimensional Reduction Step 198

5.5.2.2 Post-Selection Parameter Estimation Step 204

5.6 Application to Real Data 206

5.6.1 Breast Cancer Data 207

5.6.2 Diffuse Large-B-Cell Lymphoma Data 208

5.7 Concluding Remarks 210

CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH WORK 211

6.1 Conclusions 211

6.2 Future Research Work 213

REFERENCES 214

BIOGRAPHY 222

Ref. code: 25645909320011YZA



(10)

LIST OF TABLES

Tables Page

4.1 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for Cobb-Douglas model with 𝑝1 = 3 at Δsim = 0 89

4.2 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝜋 = 0.25 at Δsim ≥ 0 91

4.3 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝜋 = 0.50 at Δsim ≥ 0 93

4.4 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝜋 = 0.75 at Δsim ≥ 0 95

4.5 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for exponential model with 𝑝1 = 4 at Δsim = 0 103

4.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for ex-

ponential model with 𝑝1 = 3 and 𝜋 = 0.25 at Δsim ≥ 0 104

4.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for ex-

ponential model with 𝑝1 = 3 and 𝜋 = 0.50 at Δsim ≥ 0 106

4.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for ex-

ponential model with 𝑝1 = 3 and 𝜋 = 0.75 at Δsim ≥ 0 108

4.9 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for monomolecular model with 𝑝1 = 4 at Δsim = 0 115

4.10 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝜋 = 0.25 at Δsim ≥ 0 116

4.11 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝜋 = 0.50 at Δsim ≥ 0 118

4.12 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝜋 = 0.75 at Δsim ≥ 0 119

4.13 Selection percentages of predictors using LASSO and aLASSO strategies

in Cobb-Douglasmodel with strong, weak, and no signals for (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛)

= (150, 4, 25, 170) 127

Ref. code: 25645909320011YZA



(11)

4.14 RMSEs of estimators with respect to the UE in Cobb-Douglas model for

a high-dimensional setting where 𝛼 = 0.05 and 𝜋 = 0.5 129

4.15 Selection percentages of predictors using LASSO and aLASSO methods

in exponential model with strong, weak, and no signals for (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛)

= (150, 4, 25, 170) 130

4.16 RMSEs of estimators with respect to the UE in exponential model for a

high-dimensional setting where 𝛼 = 0.05 and 𝜋 = 0.5 132

4.17 Selection percentages of predictors using LASSO and aLASSO methods

inmonomolecularmodel with strong, weak, and no signals for (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛)

= (150, 3, 25, 170) 133

4.18 RMSEs of estimators with respect to the UE in monomolecular model

for a high-dimensional setting where 𝛼 = 0.05 and 𝜋 = 0.5 135

4.19 List of variables for manufacturing industry data 136

4.20 Variable selection results for manufacturing industry data 137

4.21 RMSPEs of estimators with respect to UE for manufacturing industry

data 137

4.22 List of variables for cost of living and property price indices data 138

4.23 Variable selection results for cost of living and property price indices data 138

4.24 RMSPEs of estimators with respect to UE for cost of living and property

price indices data 139

4.25 List of variables for cereal yield data 140

4.26 Variable selection results for cereal yield data 140

4.27 RMSPEs of estimators with respect to UE for cereal yield data 140

4.28 List of variables for economic data 141

4.29 Variable selection results for economic data 141

4.30 RMSPEs of estimators with respect to UE from post-selection for eco-

nomic data 142

4.31 List of variables for communities and crime data 143

4.32 Variable selection results for communities and crime data 143

4.33 RMSPEs of estimators with respect to UE from post-selection for com-

munities and crime data 143

4.34 List of variables for rice yield data 144

Ref. code: 25645909320011YZA



(12)

4.35 Variable selection results for rice yield data 145

4.36 RMSPEs of estimators with respect to UE from post-selection for rice

yield data 145

5.1 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for Cox PH model with 𝑝𝑐 = 20% and 𝑝1 = 5 at Δsim = 0 176

5.2 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for Cox PH model with 𝑝𝑐 = 30% and 𝑝1 = 5 at Δsim = 0 177

5.3 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝜋 = 0.25 at Δsim ≥ 0 178

5.4 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝜋 = 0.50 at Δsim ≥ 0 180

5.5 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝜋 = 0.75 at Δsim ≥ 0 181

5.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝜋 = 0.25 at Δsim ≥ 0 188

5.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝜋 = 0.50 at Δsim ≥ 0 189

5.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝜋 = 0.75 at Δsim ≥ 0 190

5.9 Selection percentage of predictors using LASSO and aLASSOmethods in

Cox PH regression model with strong, weak, and no signals 199

5.10 RMSEs of estimators with respect to the UE in Cox PHmodel for a high-

dimensional setting where 𝛼 = 0.05 and 𝜋 = 0.5 205

5.11 List of variables for breast cancer data 207

5.12 Variable selection results for breast cancer data 207

5.13 RMSERs of estimators with respect to UE for breast cancer data 208

5.14 List of variables for diffuse large-B-cell lymphoma data 209

5.15 Variable selection results for diffuse large-B-cell lymphoma data 209

5.16 RMSERs of estimators with respect to UE from post-selection for diffuse

large-B-cell lymphoma data 210

Ref. code: 25645909320011YZA



(13)

LIST OF FIGURES

Figures Page

4.1 ADQB curves of the suggested estimators for nonlinear regression model

with 𝑝1 = 3 and 𝑝2 = 3 50

4.2 ADQB curves of the suggested estimators for nonlinear regression model

with 𝑝1 = 3 and 𝑝2 = 7 51

4.3 ADQR curves of the suggested estimators for nonlinear regression model

with 𝑝1 = 3 and 𝑝2 = 7 85

4.4 ADQR curves of the suggested estimators for nonlinear regression model

with 𝑝1 = 3 and 𝑝2 = 11 86

4.5 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 2 at Δsim ≥ 0 97

4.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 4 at Δsim ≥ 0 98

4.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 6 at Δsim ≥ 0 99

4.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 10 at Δsim ≥ 0 100

4.9 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 14 at Δsim ≥ 0 101

4.10 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

exponential model with 𝑝1 = 3 and 𝑝2 − 1 = 2 at Δsim ≥ 0 110

4.11 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

exponential model with 𝑝1 = 3 and 𝑝2 − 1 = 4 at Δsim ≥ 0 111

4.12 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

exponential model with 𝑝1 = 3 and 𝑝2 − 1 = 6 at Δsim ≥ 0 112

4.13 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

exponential model with 𝑝1 = 3 and 𝑝2 − 1 = 10 at Δsim ≥ 0 113

4.14 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

exponential model with 𝑝1 = 3 and 𝑝2 − 1 = 14 at Δsim ≥ 0 114

Ref. code: 25645909320011YZA



(14)

4.15 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 2 at Δsim ≥ 0 121

4.16 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 4 at Δsim ≥ 0 122

4.17 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 6 at Δsim ≥ 0 123

4.18 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 10 at Δsim ≥ 0 124

4.19 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 14 at Δsim ≥ 0 125

4.20 Comparison of percentage of each predictor selected using LASSO and

aLASSO strategies in Cobb-Douglas model for each 𝜅 and (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛)

= (150, 4, 25, 170) 128

4.21 Comparison of percentage of each predictor selected using LASSO and

aLASSO strategies in exponential model for each 𝜅 and (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛) =

(150, 4, 25, 170) 131

4.22 Comparison of percentage of each predictor selected using LASSO and

aLASSO strategies inmonomolecularmodel for each 𝜅 and (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛)

= (150, 3, 25, 170) 134

5.1 ADQB curves of the suggested estimators for Cox PH regression model

with 𝑝1 = 3 and 𝑝2 = 3 163

5.2 ADQB curves of the suggested estimators for Cox PH regression model

with 𝑝1 = 3 and 𝑝2 = 7 164

5.3 ADQR curves of the suggested estimators for Cox PH regression model

with 𝑝1 = 3 and 𝑝2 = 5 173

5.4 ADQR curves of the suggested estimators for Cox PH regression model

with 𝑝1 = 3 and 𝑝2 = 11 174

5.5 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 2 at Δsim ≥ 0 183

5.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 4 at Δsim ≥ 0 184

Ref. code: 25645909320011YZA



(15)

5.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 6 at Δsim ≥ 0 185

5.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 10 at Δsim ≥ 0 186

5.9 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 14 at Δsim ≥ 0 187

5.10 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 2 at Δsim ≥ 0 192

5.11 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 4 at Δsim ≥ 0 193

5.12 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 6 at Δsim ≥ 0 194

5.13 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 10 at Δsim ≥ 0 195

5.14 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 14 at Δsim ≥ 0 196

5.15 Selection percentage of predictors using LASSO and aLASSO methods

in Cox PH model with 𝑝𝑐 = 20% for strong, weak, and no signals and

(𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) = (250, 5, 25, 270) 200

5.16 Selection percentage of predictors using LASSO and aLASSO methods

in Cox PH model with 𝑝𝑐 = 30% for strong, weak, and no signals and

(𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) = (250, 5, 25, 270) 201

5.17 Selection percentage of predictors using LASSO and aLASSO methods

in Cox PH model with 𝑝𝑐 = 20% for strong, weak, and no signals and

(𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) = (250, 5, 45, 300) 202

5.18 Selection percentage of predictors using LASSO and aLASSO methods

in Cox PH model with 𝑝𝑐 = 30% for strong, weak, and no signals and

(𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) = (250, 5, 45, 300) 203

Ref. code: 25645909320011YZA



(16)

LIST OF ABBREVIATIONS

Abbreviations Terms

ADB Asymptotic distributional bias

ADMSE Asymptotic distributional mean squared error

ADQB Asymptotic distributional quadratic bias

ADQR Asymptotic distributional quadratic risk

ADR Asymptotic distributional risk

AIC Akaike information criterion

aLASSO Adaptive least absolute shrinkage and selection operator

BIC Bayesian information criterion

CDF Cumulative distribution function

LASSO Least absolute shrinkage and selection operator

LS Linear shrinkage

MSE Mean squared error

NSI Non-sample information

PH Proportional hazards

PT Preliminary test

RE Restricted estimator

RMSE Relative mean squared error

RMSPE Relative mean squared prediction error

S Shrinkage

S+ Positive-part shrinkage

SI Sample information

SP Shrinkage preliminary test

UE Unrestricted estimator

UPI Uncertain Prior information

Ref. code: 25645909320011YZA



(17)

LIST OF SYMBOLS

Symbols Terms

⊤ Transpose of vector/matrix

∈ Belong to
𝐷−→ Converges in distribution to
𝑃−→ Converges in probability to

𝐻𝜈 (·;Δ) Cumulative distribution function of non-central chi-square

with 𝜈 degrees of freedom and non-centrality parameter Δ

P Probability

E Expectation of a random variable

V Variance of a random variable

𝐶𝑜𝑣 Covariance of two random variables

R𝑝2 𝑝2-dimensional real vector space

𝑚 Bootstrap sample size

𝑛 Sample size

𝑝 Number of all parameters

𝑝1 Number of active parameters

𝑝2 Number of inactive parameters

𝑝𝑠 Number of parameters with strong signal

𝑝𝑤 Number of parameters with weak-to-moderate signal

𝑝𝑛 Number of parameters with no signal

𝑘 Number of all predictors

𝑘1 Number of active predictors

𝑘2 Number of inactive predictors

𝑘𝑠 Number of predictors with strong signal

𝑘𝑤 Number of predictors with weak-to-moderate signal

𝑘𝑛 Number of predictors with no signal

Ref. code: 25645909320011YZA



(18)

β Vector of unknown regression coefficients associated with all

𝑝 parameters

β1 Vector of unknown regression coefficients associated with 𝑝1
active parameters

β2 Vector of unknown regression coefficients associated with 𝑝2
inactive parameters

β𝑠 Vector of unknown regression coefficients associated with 𝑝𝑠
parameters with strong signal

β𝑤 Vector of unknown regression coefficients associated with 𝑝𝑤
parameters with weak-to-moderate signal

β𝑛 Vector of unknown regression coefficients associated with 𝑝𝑛
parameters with no signal

H0 Null hypothesis

H1 Alternative hypothesis

{𝐾𝑛} Sequence of local alternatives

I Information matrix

I Identity matrix

W Positive semi-definite weighting matrix

tr Trace

β̂UE1 Unrestricted estimator of β1

β̂RE1 Restricted estimator of β1

β̂LS1 Linear shrinkage estimator of β1

β̂PT1 Preliminary test estimator of β1

β̂SP1 Shrinkage preliminary test estimator of β1

β̂S1 Shrinkage estimator of β1

β̂S
+

1 Positive-part shrinkage estimator of β1

β̂LASSO1 Least absolute shrinkage and selection operator estimator of

β1

β̂aLASSO1 Adaptive least absolute shrinkage and selection operator esti-

mator of β1

𝛼 Significance level

Ref. code: 25645909320011YZA



(19)

𝜋 Shrinkage intensity

Λ𝑛 Wald statistic

ℒ𝑛 Likelihood ratio test statistic

𝜆𝛼 𝛼-level critical value of the chi-square distribution

𝐼 (·) Indicator function

𝑐ℎmin(·) Smallest eigenvalues of matrix

𝑐ℎmax(·) Largest eigenvalues of matrix

Ref. code: 25645909320011YZA



CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Importance of the Study

In statistical inferences, the use of prior information on some or all of the

parameters in the model often improves inference procedures. Regression analysis is a

statistical technique used to model and analyze the relationships between variables. In

many cases, however, the investigator begins the statistical analysis with both sample

information (SI) and non-sample information (NSI).

Non-sample information (or prior information on the parameters) may be

derived from theoretical arguments or from past experience, or else a variable selection

method may be used. The prior information may be certain or uncertain. When known

prior information is incorporated into the model in the form of a constraint, this gives

rise to a restricted model (submodel) that can be used to increase the precision of esti-

mates and to reduce computational load. A restricted model therefore gives a superior

statistical analysis when compared to an unrestricted model (full model).

In an unrestricted model, if uncertain prior information (UPI) is used as a

constraint on the parameters, we may consider the uncertain constraints as nuisances

or inactive parameters in the statistical analysis. For this reason, an unrestricted model

that considers all parameters leads to overfitting, as too many nuisance parameters are

included. If it is a priori known or suspected that some regressors do not significantly

contribute to predicting the response variable, a restricted model excluding these regres-

sion coefficients and containing only active parameters may be adequate. It is often true

that a restricted estimator provides a considerable improvement over an unrestricted es-

timator, and can address overfitting. However, if the UPI is incorrect, we may encounter

underfitting. This means that the estimators based on a restricted model may be biased

and inefficient, and the model may not truly representative of the data.

In addition, we are surrounded by a world of information, especially big

data. For years, big data analytics has been a hot topic in computer science and statistics,

and a focus for many researchers. Compared to ordinary datasets, or low-dimensional

(LD) datasets, big data represents large and diverse sets of information, otherwise known
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as high-dimensional (HD) data, which may be structured, semi-structured or unstruc-

tured. High-dimensional statistics focus on datasets where the number of features or

independent variables (𝑘) is larger than the number of observations (𝑛). Since classical

theory and methodology become unreliable or impossible to compute if 𝑘 exceeds 𝑛,

big data analysis requires methods outside of traditional frameworks.

For example, many methods have been developed to estimate regression

coefficients in the high-dimensional linear regression model, such as the least absolute

shrinkage and selection operator (LASSO) and adaptive LASSO (aLASSO), as well as

other penaltymethods. However, results from using different variable selectionmethods

may have different subsets of predictors, leading to the consideration of two models.

Using the LASSO method, a model can include predictors that produce strong signals

and possibly some predictors with weak-to-moderate signals, which is the main cause

of overfitting problems. Conversely, the aLASSO method establishes another model

that includes predictors with strong signals while leaving out predictors with weak-to-

moderate signals, resulting in underfitting problems. Therefore, the uncertainty in the

correctness of variable selection results makes the estimation based on both competitive

models inefficient, as with LD data.

To eliminate the uncertainty of the prior information, a preliminary test (PT)

procedure is used that removes the inactive parameters. The choice of an unrestricted or

restricted model is based on the validity of the UPI. The result is a compromise between

the two extremes. The choice between unrestricted or restrictedmodels can also bemade

using linear shrinkage (LS), shrinkage preliminary test (SP), shrinkage (S), or positive-

part shrinkage (S ) estimations. These are extensions of preliminary test estimation.

Under UPI, the full parameter vector β can be divided into β = (β⊤
1 ,β

⊤
2 )

⊤. We are

interested in the estimation of the active parameter sub-vectors β1 when information

about β2 is available, that is β2 = 0.

Moreover, there have been many studies of UPI in linear and generalized

linear regressions. However, in many situations, a linear regression model cannot ad-

equately represent the relationships between variables. In these cases, a more suitable

approach is a nonlinear regression model, and the parameters appear in the form of an

exponential or are multiplied or divided by other parameters. Such models are an im-

portant tool in several research areas, including agriculture, forestry, econometrics, and
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biology.

In the same way, data that measure lifetime or the length of time until the

occurrence of an event are also attractive to studying the UPI. This data is called lifetime,

failure time, or survival data, and it is an essential topic in many areas, including the

biomedical, engineering, and social sciences. A statistical technique for analyzing the

likely duration until the occurrence of an event of interest is called survival analysis.

One of the widely used functions in survival analysis is the hazards function, which is a

measure of risk at time 𝑡. Unfortunately, this analysis is usually a difficult process due to

censoring. This problem causes a lack of information; therefore, the ordinary regression

models cannot be used for survival data. As a result, the Cox proportional hazards (PH)

regression model is the most commonly applied hazard model in survival data.

In this dissertation, we will estimate parameters in nonlinear regression

and Cox PH regression (special chapter) models under UPI using the above estimation

strategies in the context of low-dimensional and high-dimensional regimes. The unre-

stricted (overfitted) model contains all independent variables, and the restricted (under-

fitted) model is from a variable selection using the Akaike information criterion (AIC)

and Bayesian information criterion (BIC) for low-dimensional data. We also applied

LASSO and aLASSO to build the overfitted and underfitted models, respectively, for

high-dimensional data.

The organization of this dissertation is as follows:

Chapter 1 presents the problem statement and importance of the study, re-

search objectives, and the scope and benefits of the study.

Chapter 2 reviews the theoretical background of nonlinear regression mod-

els, the development of estimation strategies, and relevant literature on both low- and

high-dimensional data.

Chapter 3 introduces the nonlinear least squares estimator as well as vari-

ous suggested estimators along with penalized estimators, and presents the concepts of

asymptotic distributional bias (ADB), asymptotic distributional quadratic bias (ADQB),

asymptoticmean squared errormatrix (AMSEM), and asymptotic distributional quadratic

risk (ADQR). The theorems to explain the theoretical aspects, the dimensionality of data,

and the measures of estimator performance are also described here.

Chapter 4 demonstrates the derived asymptotic properties of the suggested
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estimators, and their performance is compared. Numerical analyses are conducted through

Monte Carlo simulations, and study results are discussed. Finally, real data examples

are analyzed to display the practicality of the suggested and penalized estimators.

Chapter 5 discusses the special topic of parameter estimations in the Cox

proportional hazards regression model under the uncertainty of prior information in both

low- and high-dimensional settings. The asymptotic properties, Monte Carlo simula-

tions, and real data examples for the Cox model are also represented here.

Finally, Chapter 6 presents conclusions and recommendations for future re-

search work.

1.2 Research Objectives

The objectives of this dissertation are:

1.2.1 To propose preliminary test and shrinkage estimation strategies for

the Cobb-Douglas, exponential, and monomolecular nonlinear models, allowing param-

eter estimation of β under UPI.

1.2.2 To derive and assess the asymptotic properties of the proposed es-

timators from their asymptotic distributional quadratic bias (ADQB) and asymptotic

distributional quadratic risk (ADQR).

1.2.3 To compare the performance of the proposed estimators usingMonte

Carlo simulations and application to real data in low-dimensional and high-dimensional

statistical models.

1.3 Scope of the Study

The aim of this research is to propose estimators for nonlinear models under

uncertain prior information.

1.3.1 The evaluation of performance is divided into two parts:

1.3.1.1 A theoretical part, in which the performance of the proposed

estimators will be evaluated by comparing the ADQB and ADQR under local alterna-

tives.

1.3.1.2 A computational part, using Monte-Carlo simulations and
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application to real data in both low- and high-dimensional contexts. Performance will

be evaluated by the relative mean squares error (RMSE) in the Monte Carlo simulations

and by the relative mean squares prediction error (RMSPE) in the real data example.

1.3.2 The R program will be used in the computational part of this study.

1.4 Benefits of the Study

The benefits of this research are:

1.4.1 The introduction of a robust process for overcoming overfitting or

underfitting in parameter estimation under UPI.

1.4.2 The provision of guidelines for applying the proposed estimators to

other nonlinear and proportional hazards regression models in which uncertain subspace

information is available.
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CHAPTER 2

THEORIES AND RESEARCH OF RELEVANT

In this chapter, we review theoretical and research studies related to prelim-

inary test and shrinkage strategies for nonlinear regression models.

2.1 Theoretical Background

Two theories underpin this research. The first concerns general nonlinear

regression models and the second the specific nonlinear models considered in the dis-

sertation.

2.1.1 Nonlinear Regression Models

Nonlinear regression is a form of regression analysis. The response

variable is modeled using a nonlinear function, and depends on one or more predic-

tors. Any model that is nonlinear in the unknown parameters will be called a nonlinear

regression model.

Let 𝑦1, 𝑦2, ..., 𝑦𝑛 be independent variables, andx𝑖 = (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑘 )⊤

be a 𝑘 × 1 vector of predictors for the 𝑖th subject, where 𝑖 = 1, 2, ..., 𝑛. The general form

of the nonlinear regression model is

𝑦𝑖 = 𝑓 (x𝑖,β) + 𝜀𝑖, 𝑖 = 1, 2, ..., 𝑛, (2.1)

where β = (𝛽1, 𝛽2, ..., 𝛽 𝑗 )⊤ is a 𝑝 × 1 vector of regression coefficients and ε represents

independent and identically distributed random errors. The distributional assumption is

that ε = (𝜀1, 𝜀2, ..., 𝜀𝑛)⊤ has a cumulative distribution function 𝐹 (ε) with mean zero
and variance 𝜎2I , where 𝜎2 is finite and I is an 𝑛 × 𝑛 identity matrix. The estimators
of 𝛽 𝑗 are calculated by minimizing the sum of squares error function:

𝑆(β) =
𝑛∑
𝑖=1

[𝑦𝑖 − 𝑓 (x𝑖,β)]2

= [y − 𝑓 (x,β)]⊤ [y − 𝑓 (x,β)] . (2.2)
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To find the nonlinear least squares estimators, the derivative of 𝑆(β) with respect to β
is obtained by solving the normal equation:

𝜕𝑆(β)
𝜕β

=
𝑛∑
𝑖=1

[𝑦𝑖 − 𝑓 (x𝑖,β)]
[
𝜕 𝑓 (x𝑖,β)
𝜕𝛽 𝑗

]
= 0, 𝑗 = 1, 2, ..., 𝑝. (2.3)

It is impossible to attain a closed form solution to the least squares estimate of the pa-

rameters by solving the 𝑝 normal equations. An iterative method must be applied to

minimize the sum of squares. In this dissertation, the iterative Gauss-Newton method

is used.

2.1.1.1 Linearization and the Gauss-Newton Method

Some nonlinear regression problems can be linearized by an

appropriate transformation of the model formulation. However, the use of a nonlinear

transformation requires caution. When the data are transformed, the data units and the

influence of the data values will be changed, as will the error structure of the model and

the interpretation of any inferential results, as the regression coefficients will need to

be interpreted with respect to the transformed scale. There is no straightforward way of

back-transforming them to values that can be interpreted according to the original scale.

It should also be noted that the parameters of a linearizedmodel

are often not as interesting or important as the original parameters. In physical and

chemical models, the original parameters usually have a physical meaning, e.g., rate

constants, so that estimates for these parameters are still required. Therefore, given the

availability of efficient nonlinear algorithms, the usefulness of linearization is somewhat

diminished (Seber & Wild, 2003, p. 17). However, the linearization transformations

can be of use in providing good initial estimates for the iterative techniques used with

nonlinear regression (Dotson, 1966).

As in linear regression, nonlinear regression is based on de-

termining the values of the model parameters that minimize the sum of the squares of

residuals. However, in this case, iterative methods are required. Here we apply a Gauss-

Newton iteration method that uses Taylor series expansion to express the original non-

linear equation in approximately linear form. This is not the same as linearization trans-

formation since the original equation and the associated data are not transformed. Least

squares theory can be used for new parameter estimation by minimizing the residual.
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This method will establish an iterative technique, but we need

to make an initial guess for the parameters. The initial parameters are used as a center

of expansion, then new parameters are estimated and used as centers of expansion in

subsequent stages. If we carry out a Taylor series expansion of 𝑓 (x,β) about the point
β̂(0) , where β̂(0) = (𝛽1(0) , 𝛽2(0) , ..., 𝛽𝑝(0)) is usually an initial estimate or a set of starting
values for the model parametersβ, and stop after the first derivatives, we have the linear

Taylor series expansion

𝑓 (x𝑖,β) = 𝑓 (x𝑖, β̂(0)) +
𝑝∑
𝑗=1

[
𝜕 𝑓 (x𝑖,β)
𝜕𝛽 𝑗

]
β=β̂(0)

(𝛽 𝑗 − 𝛽 𝑗 (0)). (2.4)

Substituting Equation (2.4) in Equation (2.1), we get

𝑦𝑖 = 𝑓 (x𝑖, β̂(0)) +
𝑝∑
𝑗=1

[
𝜕 𝑓 (x𝑖,β)
𝜕𝛽 𝑗

]
β=β̂(0)

(𝛽 𝑗 − 𝛽 𝑗 (0)) + 𝜀𝑖 . (2.5)

If we set 𝑓 (0)𝑖 = 𝑓 (x𝑖, β̂(0)), 𝑧(0)𝑖 = 𝑦𝑖 − 𝑓 (0)𝑖 , 𝐷 (0)
𝑖 𝑗 =

[
𝜕 𝑓 (x𝑖 ,β)
𝜕𝛽 𝑗

]
β=β̂(0)

, and 𝜃 (0)𝑗 =

(𝛽 𝑗 − 𝛽 𝑗 (0)), we can rewrite Equation (2.5) as

𝑦𝑖 = 𝑓 (0)𝑖 +
𝑝∑
𝑗=1

𝐷 (0)
𝑖 𝑗 𝜃

(0)
𝑗 + 𝜀𝑖

𝑦𝑖 − 𝑓 (0)𝑖 =
𝑝∑
𝑗=1

𝐷 (0)
𝑖 𝑗 𝜃

(0)
𝑗 + 𝜀𝑖

𝑧(0)𝑖 =
𝑝∑
𝑗=1

𝐷 (0)
𝑖 𝑗 𝜃

(0)
𝑗 + 𝜀𝑖 (2.6)

In matrix notation, Equation (2.6) is

z(0) =D(0)θ(0) + ϵ(0) , (2.7)

where z(0) , θ(0) ,D(0) , and ϵ(0) are 𝑛 × 1, 𝑛 × 𝑝, 𝑝 × 1, and 𝑛 × 1 matrices, respectively.

This is a linear regression model with unknown parameters θ(0) . The sum of squares

error function is then

𝑆𝑆(β) = (z(0) −D(0)θ(0))⊤(z(0) −D(0)θ(0)), (2.8)

where z(0) = y − f(0) . Note the difference between the sum of squares 𝑆(β) in Equa-
tion (2.2), where the appropriate nonlinear model is used, and the sum of squares 𝑆𝑆(β)
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in Equation (2.8), where the approximating linear expansion of the model is employed

(Draper and Smith, 1998, p. 509). To find the least squares estimates, we must differ-

entiate Equation (2.8) with respect to θ0 and the normal equation, as shown below

𝜕𝑆𝑆(β)
𝜕θ(0)

=
𝜕

𝜕θ(0)

[
(z(0) −D(0)θ(0))⊤(z(0) −D(0)θ(0))

]
= 0. (2.9)

Therefore,

D⊤
(0)D(0)θ(0) =D

⊤
(0)z(0) .

(D⊤
(0)D(0))−1D⊤

(0)D(0)︸                         ︷︷                         ︸
I𝑝

θ(0) = (D⊤
(0)D(0))−1D⊤

(0)z(0)

∴ θ̂(0) = (D⊤
(0)D(0))−1D⊤

(0) (y − f(0)), (2.10)

where θ̂(0) is the least squares estimator of θ(0) . Because θ(0) = β − β̂(0) , then θ̂(0) =

β̂(1) − β̂(0) and we can use β̂(1) = β̂0 + θ̂(0) as a revised best estimate of the unknown
parameters β. We call θ̂(0) the vector of increments.

We can now place the revised parameter estimates β̂(1) in (2.5)

in the same role originally played by the starting values β̂(0) , then apply the procedure

described above, but replacing all zero subscripts with one. This will yield a second set

of revised estimates, β̂(2) , and so on. In general, at the 𝑞th of these iterations we have

β̂(𝑞+1) = β̂(𝑞) + θ̂(𝑞)

= β̂(𝑞) + (D⊤
(𝑞)D(𝑞))−1D⊤

(𝑞)z(𝑞)

=
(
D⊤

(𝑞)D(𝑞)
)−1
D⊤

(𝑞)F(𝑞) . (2.11)

where F(𝑞) =D(𝑞)β̂(𝑞) +z(𝑞) . The iterative procedure continues until convergence, that
is until there is little meaningful change in the estimates of the parameters. Commonly,

the convergence criteria are based on����� 𝛽 𝑗 (𝑞+1) − 𝛽 𝑗 (𝑞)𝛽 𝑗 (𝑞)

����� < 𝜉, (2.12)

where 𝜉 is some small number, e.g., 10−6. At each stage of the iteration, the residual

sum of squares is measured to ensure that its value has actually reduced.
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The error variance (𝜎2) is estimated from the residual mean

square (�̂�2) when the estimation process converges to a final vector of parameter esti-
mate β̂. The residual mean square (MSres) is

�̂�2 =

[
y − 𝑓 (x, β̂)

]⊤ [
y − 𝑓 (x, β̂)

]
𝑛 − 𝑝 (2.13)

where 𝑝 is the number of all parameters. The asymptotic (large-sample) covariance

matrix of the parameter vector β̂ can be estimated by

Var(β̂) = V(β̂) = �̂�2(D⊤D)−1, (2.14)

where,D is the matrix of partial derivatives evaluated at the final-iteration least squares

parameter estimates β̂. More detailed information about the nonlinear regression model

can be found in Bates and Watts (1988), Draper and Smith (1998), Seber and Wild

(2003), and Myers et al. (2010), among others.

2.1.2 Nonlinear Models of Interest

From the multiple nonlinear models available, we chose the Cobb-

Douglas, exponential, and monomolecular models, as these are used in many research

areas. We discuss these models below.

2.1.2.1 Cobb-Douglas Model

The Cobb-Douglas function is perhaps the most widely-used

model in economics. It has been applied to econometric analysis of utility and produc-

tion functions in growth, development, macroeconomics, public finance, labour, and

many other areas of application. In unrestricted form, the Cobb-Douglas function can

be written as

𝑓 (x) = 𝐴
𝑝−1∏
𝑗=1

𝑥
𝑎 𝑗

𝑗 , (2.15)

where 𝐴 is an efficiency parameter, 𝑎 𝑗 is the elasticity of 𝑓 (x) with respect to 𝑥 𝑗 , and
x is confined toℜ+. Here, 𝑥 𝑗 may refer to goods consumed, goods produced, etc. More

detailed information can be found in Durlauf and Blume (2008, pp. 862–863). Many

studies have applied the Cobb-Douglas model, including Hossain and Al-Amri (2010),
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Yasar et al. (2012), Hossain et al. (2012), Cheng and Han (2013), etc.

2.1.2.2 Exponential Model

The simplest model considered here is generally called the ex-

ponential model, and is one of the most widely-used nonlinear models. The exponential

model is often used in growth curve analysis and applied to exponential growth and

decay. Examples include investment growth, radioactive decay, and bacterial growth.

Studies using this model include Annamalai (2010), Abichou et al. (2012), Archontoulis

andMiguez (2015), Wang et al. (2017), etc. This growth model is represented by a basic

differential equation:
𝑑𝑦

𝑑𝑡
= 𝑟𝑦, (2.16)

in which 𝑟 is a rate parameter. The integrated form of Equation (2.16) is written as

𝑦 = 𝑦0𝑒
𝑟𝑡 , (2.17)

where 𝑦0 is a constant of integration. More information about the exponential model

can be found in Madden and Campbell (1990, pp. 190–191) and Pal (2016, p. 112).

2.1.2.3 Monomolecular Model

The monomolecular model is an alternative to the exponential

model. The monomolecular model is one of the basic growth models and was originally

derived in physical chemistry, where it represents monomolecular chemical reactions

of the first order. It has been used to elucidate several other phenomena including cell

expansion, the response of crops to nutrients, and animal growth. For plant growth and

nutrient supply, this model is called the Mitscherlich or Mitscherlich-Bray model. The

rate equation is written as
𝑑𝑦

𝑑𝑡
= 𝑟 (𝐾 − 𝑦), (2.18)

where 𝐾 is a parameter representing a maximum, or 𝐾 = 𝑦𝑚𝑎𝑥 . The integrated form of

Equation (2.18) is

𝑦 = 𝐾 (1 − 𝐵𝑒−𝑟𝑡), (2.19)

in which 𝐵 is a constant of integration. More information about this model can be found

inMadden and Campbell (1990, pp. 191–193) and Gowariker et al. (2009, p. 104). Stud-
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ies that have applied this model include Ware et al. (1982), Rajarshi (1995), Fekedulegn

et al. (1999), Khamis et al. (2005), etc.

2.2 Literature Review

In this section, we discuss the development of estimation strategies and re-

view the relevant literature.

2.2.1 Development of Estimation Strategies

One estimation strategy is the preliminary test (PT) or pretest, which

was introduced by Bancroft (1944). This test statistic is used to decide the estimator,

based on either the unrestricted or restrictedmodel. Bancroft applied the preliminary test

strategy to two seemingly unrelated problems: a data pooling problem and simultaneous

model selection and pretest estimation in a regression model.

The shrinkage (S) strategy or James-Stein type shrinkage strategy

was presented in Stein (1956) and James and Stein (1961), and addressed the admissi-

bility of the sample mean vector in a multivariate normal distribution. They concluded

that the estimator has a smaller risk than the ordinary least squares (OLS) estimator for

𝑝 ≥ 3 when the quadratic loss function is considered. This technique may be regarded

as a smoothed version of the preliminary test estimation strategy.

An alternative strategy was that of Thompson (1968). He considered

the advisability of shrinking a usual estimator for 𝜃, say �̂�, towards the approximation 𝜃0
by multiplying it by a shrinking factor (𝑐). The estimator was constructed as linear com-
bination of other estimators along with a shrinkage coefficient, and can be interpreted

as a linear shrinkage (LS) estimator.

The shrinkage preliminary test (SP) strategywas introduced byAhmed

(1992). He concluded that the shrinkage pretest estimator is an improved version of the

preliminary test estimator with respect to the size of alpha for estimating the mean vector

of a multivariate normal distribution.

As a penalty strategy, Tibshirani (1996) proposed the least absolute

shrinkage and selection operator (LASSO), which uses an 𝐿1-norm in linear regression.

This strategy forces some coefficients to shrink to exactly zero, providing simultane-
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ous parameter selection and estimation. Yang et al. (2015) studied sparse nonlinear

regression models. They proposed an efficient algorithm for estimating the parameter

by solving the 𝐿1-regularized nonlinear least-squares problem.

Another penalty strategy is adaptive LASSO (aLASSO) which was

proposed by Zou (2006). This is a new version of LASSO where adaptive weights were

used to penalize different coefficients in the 𝐿1 penalty. Zou (2006) also showed that

adaptive LASSO enjoys the oracle properties; namely, it performs as well as if the true

underlying model were given in advance. Furthermore, the aLASSO can be solved by

the same efficient algorithm for solving the LASSO.

2.2.2 Relevant Literature

In the past few decades, many studies have examined the use of pre-

liminary test and shrinkage estimation strategies under uncertain prior information in lin-

ear regression, partial linear regression, nonlinear regression (i.e., demand-for-money),

and generalized linear regression (i.e., Poisson, logistic, multinomial logistic, negative

binomial) models. Moreover, there are also numerous studies on regression models

(i.e., exponential, Cox PH, Weibull, lognormal, exponentiated Weibull) with censored

or time-to-event data.

Ahmed (1997) introduced estimation into preliminary test and shrink-

age strategies. For a linear regression model, the selected estimators were shrinkage

restricted, standard preliminary test, shrinkage preliminary test, standard shrinkage, im-

proved preliminary test, and positive-part shrinkage. The proposed estimators were ap-

plied to regression coefficient estimation when prior information was regarded as uncer-

tain. Ahmed alsomade a comprehensive study of the asymptotic distributional quadratic

bias and risk, and compared the performance of the estimators. He concluded that the

positive-part shrinkage estimator was more efficient than the usual shrinkage estimator,

and that pretest estimators had good control over the magnitude of the risk.

Ahmed and Saleh (1999) and Khan (2002) considered parameter es-

timations in an exponential model with censoring under non-sample information (NSI).

The James-Stein (JS) type and positive-part JS-type estimators were proposed in Ahmed

and Saleh (1999) and a preliminary test estimator was proposed in Khan (2002). The

performance of these estimators was compared with that of the maximum likelihood es-
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timators using quadratic distribution risk under local alternatives. The performance of

these estimators heavily depends on the quality of the UPI. The positive-part JS-type es-

timator dominated the usual JS-type, and both performedwell relative to the unrestricted

estimator of the parameter vector in the entire parameter space.

Sapra (2003) studied preliminary test maximum likelihood estima-

tion in a Poisson regression model. He also compared the performance of the pretest

estimator with the unrestricted and restricted estimators, usingMonte Carlo simulations.

The results showed that the pretest estimator dominated the unrestricted estimator. The

restricted estimator was outperformed by both the pretest and unrestricted estimators

when the values of the regression coefficients were close to the restrictions. In con-

trast, the pretest and unrestricted estimators eventually converged and dominated the

restricted estimator when the regression coefficients were far from the restrictions.

Raheem andAhmed (2011) examined the preliminary test and shrink-

age strategies in a multiple regression model through a Monte Carlo study and applica-

tion to real datasets. The study confirmed the asymptotic properties of the estimators.

Ahmed and Raheem (2012) also compared the performance of shrinkage estimators

with the absolute penalty estimators LASSO, adaptive LASSO, and smoothly clipped

absolute deviation (SCAD), in multiple linear regression. The Monte Carlo simulation

reconfirmed the dominance of S+ over LASSO for moderate to large values of inactive

parameters. However, SCAD and adaptive LASSO outperformed S+ when the number

of inactive parameters was large relative to the sample size.

Ahmed and Nicol (2012) applied the preliminary test, JS type, and

positive-part JS type estimators to large sample sizes in a nonlinear regression. They

used a demand-for-money model for when it is a priori suspected that the coefficients

may be restricted to a subspace. In simulations, the positive-part James-Stein shrinkage

estimator was superior to the other estimators. They also compared the performance in

terms of asymptotic distributional quadratic bias and risk. The results showed that the

preliminary test strategy dominated the JS type and positive-part JS type and also out-

performed the unrestricted estimator when the uncertain prior information was correct.

Raheem et al. (2012) proposed shrinkage semiparametric estimation

based on the Stein rule in the context of a partially linear regression model with a non-

parametric component based on the B-spline basis function. InMonte Carlo simulations,

Ref. code: 25645909320011YZA



16

the proposed estimators were compared with an absolute penalty estimator. LASSO and

aLASSOwere implemented for simultaneousmodel selection and parameter estimation.

They reported that the performance of shrinkage and absolute penalty estimators may

vary depending on the number of active parameters.

Ahmed et al. (2012), Hossain and Howlader (2017), and Hossain and

Khan (2020) addressed the problem of estimating parameters in Weibull regression,

lognormal regression, and exponentiated Weibull regression models, respectively, for

time-to-event data (censored data) involving many predictors, some of which may not

have any influence on the response of interest. The shrinkage and positive-part shrink-

age estimation methods were introduced in their study. The properties of these estima-

tors used the notion of asymptotic distributional bias and risk. Moreover, the LASSO

estimation strategy was suggested in Ahmed et al. (2012), and both LASSO and adap-

tive LASSO estimation methods were recommended in Hossain and Howlader (2017).

Furthermore, the relative performance of both shrinkage estimators was compared with

that of the classical maximum likelihood estimators and penalty estimators. Their stud-

ies suggested that the shrinkage estimators performwell in terms of statistical efficiency.

Finally, real-life data examples were used to illustrate the performance of their suggested

estimators.

Hossain et al. (2014) studied the shrinkage, positive-part shrinkage,

and LASSO strategies for simultaneous model selection and parameter estimation in a

multinomial regression model when some of the predictors may or may not be active

for the response of interest. The asymptotic distributional bias and risk were used to

compare the performance of the shrinkage and positive-part shrinkage estimators. In the

Monte Carlo simulations and real data example they compared the performance of all

three estimators. The results showed that, when there weremany inactive parameters, all

proposed estimators were superior to the unrestricted estimator, and that both shrinkage

estimators dominated LASSO.

Hossain and Ahmed (2014) studied the shrinkage and positive-part

shrinkage estimation strategies in the Cox proportional hazards regression model for

when it is suspected that some of the parameters may be restricted to a subspace. They

developed the statistical properties of the shrinkage estimators including asymptotic dis-

tributional biases and risks. A Monte Carlo simulation and two real datasets were used
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to evaluate the performance of two shrinkage estimators, and two penalty estimators

were also considered. Their result showed that the performance of the shrinkage esti-

mators was superior to that of the classical estimators and was comparable to that of the

penalty estimators when the number of irrelevant predictors in the model was relatively

large.

Lisawadi et al. (2016) studied parameter estimation in the logistic

regression model under subspace information, using the linear shrinkage, preliminary

test, and shrinkage preliminary test strategies. They compared the performance of the

proposed estimators by the asymptotic distributional bias and risk. The proposed esti-

mators dominated the traditional maximum likelihood estimator. Simulations were run

to evaluate the performance of the proposed estimators in terms of relative efficiency.

The results were in strong agreement with the asymptotic results.

Reangsephet et al. (2018) proposed estimators based on the prelim-

inary test and Stein-type strategies for parameter estimation in a logistic regression

model. The LASSO and ridge regression were also considered. They recommended

the positive-part Stein-type shrinkage estimator because its performance was robust re-

gardless of the reliability of the subspace information. Reangsephet et al. (2019) intro-

duced a pretest estimator in a negative binomial model for parameter estimation when

subspace information is unknown. Monte Carlo simulations evaluated the performance

of the proposed estimator and demonstrated that estimation based on a preliminary test

strategy is appropriate.

Moreover, Phukongtong et al. (2020) also addressed the problem of

estimating regression coefficients for partially linear models, where the nonparametric

component is approximated using smoothing splines. The pretest and shrinkage es-

timation strategies were proposed. The results found that the positive-part shrinkage

estimator was shown to be more efficient than the other estimators, and also superior to

penalty estimators such that LASSO, aLASSO, and elastic net (Enet).

In a high-dimensional situation, Ahmed and Yüzbaşı (2016) sug-

gested penalty and shrinkage estimation procedures for sparse multiple linear models

when some of the predictors may have a very weak influence on the response of in-

terest. They applied penalty methods, i.e., LASSO, aLASSO, and SCAD, to provide

two submodels selected by such methods, which are the overfitted and underfitted mod-
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els. The two models were combined to improve estimation and prediction performance,

that is the positive part of the shrinkage estimation. Monte Carlo simulation studies

appraised the performance of the penalty and positive-part shrinkage estimators. The

shrinkage estimation strategy in the positive part provided better results whether or not

the resulting submodel was appropriate.

Further, Yüzbaşı et al. (2017) also applied shrinkage strategies in

the form of a family of double shrunken estimators (FS) to estimate regression co-

efficients efficiently for the high-dimensional sparse multiple regression model. The

working models provided by LASSO and aLASSO variable selection methods were

called overfitted and underfitted models. Monte Carlo simulation studies and real ex-

amples confirmed the superior performance of the double shrunken estimators in the

high-dimensional regression model after the screening of variables.

Gao et al. (2017) studied the post-selection shrinkage strategy to im-

prove the prediction performance of a selected subsetmodel. Their post-selection shrink-

age estimator combined a post-selection weighted ridge estimator with a post-selection

least squares estimator. Under an asymptotic distributional quadratic risk criterion,

the prediction performance was explored analytically, and they reported that the post-

selection shrinkage estimator outperformed the post-selection weighted ridge estimator.

More recently, Reangsephet et al. (2020), Lisawadi et al. (2021), and

Reangsephet et al. (2021) have applied linear shrinkage, preliminary test, shrinkage pre-

liminary test, Jame-Stein shrinkage, and PMLE strategies to parameter estimation when

subspace information on the parameters is available to logistic regression, negative bi-

nomial regression, and Poisson regression models. The results were similarly consistent

with those of previous studies, suggesting the use of estimators based on the Jame-Stein

shrinkage procedure. Moreover, they also show that the shrinkage pretest strategy was

suitable for post-selection parameter estimation if the condition of Jame-Stein shrinkage

procedure was not satisfied.

The literature evaluating preliminary test and shrinkage strategies

has been extended to nonlinear regression and Cox PH regression models in the low-

dimensional setting. However, there are no complete reviews, especially of the linear

shrinkage and preliminary test estimation strategies. Still, previous estimators have not

been applied in the context of nonlinear regression and Cox PH regression models for
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the high-dimensional setting. Further, the LASSO and aLASSO estimators have been

proposed for linear, generalized linear, and partially linear models but have not been

extended to nonlinear and Cox PH models. In this dissertation, we propose param-

eter estimation based on linear shrinkage, preliminary test, shrinkage preliminary test,

shrinkage, positive-part shrinkage, LASSO, and aLASSO in the context of nonlinear re-

gression models of the Cobb-Douglas, exponential, and monomolecular types and Cox

PH regression model (special chapter) in the low-dimensional regime and also extend

the work to high-dimensional problems.
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CHAPTER 3

RESEARCHMETHODOLOGY

Our research includes analysis ofmodel and estimation strategies and asymp-

totic properties. Monte-Carlo simulations were also employed.

3.1 Nonlinear Regression Model and Least Squares Estimation Strategies

The nonlinear models that we consider are of the Cobb-Douglas, exponen-

tial, and monomolecular types. These are as follows:

(a) Cobb-Douglas model: 𝑦𝑖 = 𝛽1(𝑥𝛽2𝑖1 )(𝑥
𝛽3
𝑖2 ) · · · (𝑥

𝛽𝑝
𝑖,𝑝−1) + 𝜀𝑖 . (3.1)

(b) Exponential model: 𝑦𝑖 = 𝛽1𝑒
𝛽2𝑥𝑖1+𝛽3𝑥𝑖2+···+𝛽𝑝𝑥𝑖, 𝑝−1 + 𝜀𝑖 . (3.2)

(c) Monomolecular model: 𝑦𝑖 = 𝛽1(1 − 𝛽2𝑒−𝛽3𝑥𝑖1−𝛽4𝑥𝑖2−···−𝛽𝑝𝑥𝑖, 𝑝−2) + 𝜀𝑖 . (3.3)

Suppose that we partition β into β = (β⊤
1 ,β

⊤
2 )

⊤, where the sub-vectors β1

and β2 are assumed to have dimensions 𝑝1×1 and 𝑝2×1 respectively, and 𝑝 = 𝑝1 + 𝑝2.
We also let the partitioned matrix beD = [D1,D2], which has dimensions 𝑛 × 𝑝. The
product matrix is

D⊤D =


D⊤

1D1 D⊤
1D2

D⊤
2D1 D⊤

2D2

 . (3.4)

Therefore, by using the Gauss-Newton method, we can write

z =D1θ1 +D2θ2 + ϵ. (3.5)

Here,D1 =
[
𝜕 𝑓 (x,β)
𝜕𝛽1

]
β=β̂1

andD2 =
[
𝜕 𝑓 (x,β)
𝜕𝛽2

]
β=β̂2

are 𝑛 × 𝑝1 and 𝑛 × 𝑝2 matrices of
derivatives of 𝑓 (x,β) with respect to β1 and β2, respectively.

As C = D⊤D is a 𝑝 × 𝑝 matrix, we represent the product matrix decom-
position in Equation (3.4) as follows:

C =


C11 C12

C21 C22

 =


D⊤

1D1 D⊤
1D2

D⊤
2D1 D⊤

2D2

 =D⊤D. (3.6)
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We assume that Q = lim
𝑛→∞

1
𝑛C as 𝑛 → ∞, where Q is a 𝑝 × 𝑝 positive definite matrix

decomposed as

Q =


Q11 Q12

Q21 Q22

 , (3.7)

whereQ𝑖 𝑗 = lim
𝑛→∞

1
𝑛C𝑖 𝑗 and 𝑖, 𝑗 = 1, 2.

3.1.1 Unrestricted Estimator

The unrestricted estimator (UE) or full model estimator ofβ, denoted

as β̂UE, is the final-iteration nonlinear least squares estimator, which is obtained by

solving the Gauss-Newton iterative equation.

Theorem 3.1.1. Given ε ∼ N(0, 𝜎2I𝑛) and assuming appropriate regularity con-

ditions of nonlinear least squares. Therefore, for a large 𝑛, we have approximately

β̂UE 𝐷−→ N𝑝

(
β, 𝜎

2

𝑛 Q
−1

)
, where Q = lim

𝑛→∞
1
𝑛 (D⊤D) and 𝐷−→ indicates convergence in

distribution.

Proof. See Seber and Wild (2003, p. 25) for detailed proof. □

In the final iteration, the UE of β can be evaluated as

β̂UE =
(
D⊤D

)−1
D⊤F , (3.8)

which can be rewritten as

D⊤Dβ̂UE =D⊤F , (3.9)

where F =Dβ̂ + z. Here,D is the matrix of derivatives of 𝑓 (x,β) with respect to β,
β̂ is the estimation of β, and z = y − f . Also, β̂UE is a consistent estimator of β and

asymptotically normally distributed.

In later steps, the partition matrix of Equation (3.9) is
D⊤

1D1 D⊤
1D2

D⊤
2D1 D⊤

2D2



β̂UE1

β̂UE2

 =


D⊤

1 F

D⊤
2 F

 . (3.10)

We can write the equations without the surrounding matrix braces as

D⊤
1D1β̂

UE
1 +D⊤

1D2β̂
UE
2 =D⊤

1 F (3.11)
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and

D⊤
2D1β̂

UE
1 +D⊤

2D2β̂
UE
2 =D⊤

2 F . (3.12)

From Equation (3.11), we get

β̂UE1 =
(
D⊤

1D1
)−1
D⊤

1

(
F −D2β̂

UE
2

)
, (3.13)

and then substituting for β̂UE1 using Equation (3.13) into Equation (3.12). This obtains

D⊤
2D1

(
D⊤

1D1
)−1
D⊤

1

(
F −D2β̂

UE
2

)
+D⊤

2D2β̂
UE
2 =D⊤

2 F

D⊤
2D1

(
D⊤

1D1
)−1
D⊤

1 F −D⊤
2D1

(
D⊤

1D1
)−1
D⊤

1D2β̂
UE
2 +D⊤

2D2β̂
UE
2 =D⊤

2 F ,

which simplifies to

D⊤
2

[
I −D1

(
D⊤

1D1
)−1
D⊤

1

]
D2β̂

UE
2 =D⊤

2

[
I −D1

(
D⊤

1D1
)−1
D⊤

1

]
F

β̂UE2 =
(
D⊤

2M1D2
)−1 (

D⊤
2M1F

)
, (3.14)

whereM1 = I −D1
(
D⊤

1D1
)−1
D⊤

1 . This is the unrestricted estimator of β2. Using the

same method, the unrestricted estimator of β1 is

β̂UE1 =
(
D⊤

1M2D1
)−1 (

D⊤
1M2F

)
, (3.15)

whereM2 = I −D2
(
D⊤

2D2
)−1
D⊤

2 .

Theorem 3.1.2. If the usual regularity conditions and Theorem 3.1.1 hold, as 𝑛 → ∞,

themarginal distribution of β̂UE
1

𝐷−→ N𝑝1

(
β1,

𝜎2

𝑛 Q
−1
11.2

)
and of β̂UE

2

𝐷−→ N𝑝2

(
β2,

𝜎2

𝑛 Q
−1
22.1

)
.

Here,Q = lim
𝑛→∞

1
𝑛 (D⊤D), and

Q−1 =


Q11 Q12

Q21 Q22


−1

=


Q−1

11.2 −Q−1
11.2Q12Q

−1
22

−Q−1
22Q21Q

−1
11.2 Q−1

22.1

 (3.16)

whereQ−1
11.2 = (Q11 −Q12Q

−1
22Q21)−1,Q−1

22.1 = (Q22 −Q21Q
−1
11Q12)−1, and

𝐷−→ indi-

cates convergence in distribution.

Proof. See Ravishanker and Dey (2001, p. 155) for detailed proof. □
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3.1.2 Restricted Estimator

In this study, we first consider the subspace information in the form

of a general linear hypothesis, which is

H0 : Rβ = r versus H1 : Rβ ≠ r, (3.17)

where R is a known 𝑝2 × 𝑝 matrix such that 𝑝2 ≤ 𝑝, and r is 𝑝2 × 1 vector of known

constants. Applying the Lagrange multiplier, the restricted (submodel) estimator (RE)

of β or β̂RE is derived under the linear restrictionRβ − r = 0 as follows:

β̂RE = β̂UE −C−1R⊤(RC−1R⊤)−1(Rβ̂UE − r), (3.18)

which is a linear function of the UE and C =D⊤D.

Under uncertainty of the prior information, the regression parameter

vector β can be partitioned as β = (β⊤
1 ,β

⊤
2 )⊤, where β1 is a 𝑝1 × 1 subvector of active

parameters and β2 is a 𝑝2 × 1 subvector of inactive parameters, with 𝑝1 < 𝑝2 and

𝑝1 + 𝑝2 = 𝑝, and there is a possibility that β2 is near zero. Thus, we consider the

restrictionRβ = 0 withR = [0, I] and r = 0, where 0 is a 𝑝2 × 𝑝1 matrix of zeroes, I
is a 𝑝2 × 𝑝2 identity matrix, and r is a 𝑝2 × 1 vector of zero. The relevant hypothesis is

H0 : β2 = 0 versus H1 : β2 ≠ 0. (3.19)

Under a submodel in which β2 = 0 contains only active parameters. The RE of β is

β̂RE = (𝛽RE1 , 𝛽RE2 , ..., 𝛽RE𝑝1 , 0, 0, ..., 0︸    ︷︷    ︸
𝑝2

)

=
(
(β̂RE1 )⊤, 0⊤

)
. (3.20)

The restricted estimator in Equation (3.18) can be rewritten in partitioned form as fol-

lows: 
β̂RE1

β̂RE2

 =


β̂UE1

β̂UE2

 −

C−1

11 +C−1
11C12C

−1
22.1C21C

−1
11 −C−1

11C12C
−1
22.1

−C−1
22.1C21C

−1
11 C−1

22.1



0

I

©«
[
0 I

] 
C−1

11 +C−1
11C12C

−1
22.1C21C

−1
11 −C−1

11C12C
−1
22.1

−C−1
22.1C21C

−1
11 C−1

22.1



0

I

ª®¬
−1

©«
[
0 I

] 
β̂UE1

β̂UE2

 −

0

0

ª®¬
Ref. code: 25645909320011YZA



25


β̂RE1

β̂RE2

 =


β̂UE1

β̂UE2

 −

−C−1

11C12C
−1
22.1

C−1
22.1

 ©«
[
0 I

] 
−C−1

11C12C
−1
22.1

C−1
22.1

ª®¬
−1

β̂UE2

=


β̂UE1

β̂UE2

 −

−C−1

11C12C
−1
22.1

C−1
22.1

 (C−1
22.1)

−1
β̂UE2

=


β̂UE1

β̂UE2

 −

−C−1

11C12C
−1
22.1C22.1β̂

UE
2

β̂UE2


=


β̂UE1 +C−1

11C12C
−1
22.1C22.1β̂

UE
2

0

 .
For deriving mathematical results (Lawless & Singhal, 1978), the RE of β1, denoted as

β̂RE1 can be written as

β̂RE1 = β̂UE1 − (−C−1
11C12β̂

UE
2 )

= β̂UE1 − ω𝑛β̂UE2 , (3.21)

whereω𝑛 = −C−1
11C12. We further suppose thatω𝑛

𝑃−→ ω = −Q−1
11Q12 as 𝑛→ ∞, where

𝑃−→ indicates convergence in probability. In the simulation, β̂RE1 can also be obtained

using the Gauss-Newton iterative method, in which the condition β2 = 0 is defined as

a constraint.

3.2 Suggested Estimation Strategies

As the accuracy of prior information is unknown, then selecting either UE

or RE as the estimator of β1 may not be a good idea. To avoid this issue, we suggest the

linear shrinkage, preliminary test, shrinkage preliminary test, shrinkage, and positive-

part shrinkage estimators as in the following subsections.

3.2.1 Linear Shrinkage Estimator

The LS estimator of β1, denoted β̂LS1 , is a linear function of both UE

and RE, so that

β̂LS1 = 𝜋 β̂RE1 + (1 − 𝜋)β̂UE1 , (3.22)

or in alternative form

β̂LS1 = β̂UE1 − 𝜋(β̂UE1 − β̂RE1 ), (3.23)
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where 𝜋 is defined as the degree of confidence in the given UPI. The values of 𝜋 are

between 0 and 1, and may be set based on the researcher’s belief in the accuracy of

the subspace information (Lisawadi et al., 2016). If 𝜋 = 0, β̂LS1 = β̂UE1 and if 𝜋 = 1,

β̂LS1 = β̂RE1 .

3.2.2 Preliminary Test Estimator

The PT estimator of β1, denoted β̂PT1 , is a discontinuous function of

UE and RE and is defined as follows:

β̂PT1 = β̂UE1 − (β̂UE1 − β̂RE1 )𝐼 (Λ𝑛 ≤ 𝜆𝛼), (3.24)

where 𝐼 (·) is an indicator function, Λ𝑛 is a suitable test statistic for H0 : β2 = 0, and 𝜆𝛼
is the 𝛼-level critical value of the exact distribution of Λ𝑛. Clearly, β̂PT1 = β̂UE1 when

H0 is rejected, and β̂PT1 = β̂RE1 otherwise.

The PT estimator is limited by the size of 𝛼. This limitation is relaxed

by defining a shrinkage technique that is a smooth function of PT.

3.2.3 Shrinkage Preliminary Test Estimator

The SP estimator of β1, denoted β̂SP1 , is defined by replacing β̂RE1 by

β̂LS1 in (3.24). This combines the pretest and linear shrinkage strategies in an optimal

way. This yields

β̂SP1 = β̂UE1 − (β̂UE1 − β̂LS1 )𝐼 (Λ𝑛 ≤ 𝜆𝛼). (3.25)

β̂SP1 is a significant improvement on β̂PT1 in the size of the test and dominates β̂UE1 in a

large portion of the parameter space. When H0 is accepted, β̂SP1 = β̂LS1 and β̂SP1 = β̂UE1
when H0 is rejected. An alternative form of the SP estimator is given as:

β̂SP1 = β̂UE1 − 𝜋 (β̂UE1 − β̂RE1 )𝐼 (Λ𝑛 ≤ 𝜆𝛼). (3.26)

In the case of 𝜋 = 1, β̂SP1 = β̂PT1 .

3.2.4 Shrinkage Estimator

The shrinkage estimator of β1, denoted as β̂S1 , is a smooth version

of the pretest estimator which takes a mixed approach by shrinking the unrestricted
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model estimator to a plausible alternative estimator or restricted model estimator. This

estimator is derived as follows:

β̂S1 = β̂RE1 + {1 − 𝑐Λ−1
𝑛 }(β̂UE1 − β̂RE1 ), (3.27)

where 𝑐 = 𝑝2 − 2 for the asymptotic case and 𝑝2 ≥ 3. Here, 𝑐 is a shrinkage constant

chosen in an interval such that β̂S1 dominates β̂
UE
1 and Λ𝑛 is a test statistic. If 𝑐Λ−1

𝑛 is

larger than one, the shrinkage factor {1 − 𝑐Λ−1
𝑛 } will be negative, causing the sign of

some coefficients to reverse. This is an indication of over-shrinkage. To moderate this

effect, the positive-part shrinkage estimator, introduced below, has been suggested.

3.2.5 Positive-Part Shrinkage Estimator

The positive-part shrinkage estimator of β1, denoted as β̂S+1 , is an

improved shrinkage estimator, defined by

β̂S
+

1 = β̂RE1 + {1 − 𝑐Λ−1
𝑛 }+(β̂UE1 − β̂RE1 ), (3.28)

where 𝑐 = 𝑝2−2, 𝑝2 ≥ 3, and {1 − 𝑐Λ−1
𝑛 }+ = max(0, 1−𝑐Λ−1

𝑛 ). β̂S+1 can be also written

in alternative form as

β̂S
+

1 = β̂S1 − {1 − 𝑐Λ−1
𝑛 }(β̂UE1 − β̂RE1 )𝐼 (Λ𝑛 ≤ 𝑐), (3.29)

where 𝐼 (·) is an indicator function which is 1 if Λ𝑛 ≤ 𝑐, and zero otherwise.

3.3 Penalty Estimation Strategies

The two most widely used penalized estimations were applied to detect sig-

nificant predictors and reduce the dimensions to a low-dimensional setting.

3.3.1 Least Absolute Shrinkage and Selection Operator Estimator

In statistics, the 𝐿1-norm regularized least squares is known as the

least absolute shrinkage and selection operator or LASSO, which is a member of a wide

class in the absolute penalty estimation (APE) family. The LASSO estimator of β is

denoted as β̂LASSO, and is given by

β̂LASSO = argmin
β

{
𝑛∑
𝑖=1

[𝑦𝑖 − 𝑓 (x𝑖,β)]2 + 𝜏
𝑝∑
𝑗=1

|𝛽 𝑗 |
}
, (3.30)
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where 𝜏 > 0 and
𝑝∑
𝑗=1

|𝛽 𝑗 | = ∥β∥1 is the vector 𝐿1-norm. Here, 𝜏 is a tuning parameter.

If 𝜏 is very large, all coefficients are equal to zero. If 𝜏 is very small, then the LASSO

estimate is equal to the least squares estimate. For nonlinear regression, the algorithm

in Yang et al. (2015) is used for finding the LASSO solutions or solving the 𝐿1-norm

nonlinear least squares in Equation (3.30).

3.3.2 Adaptive Least Absolute Shrinkage and Selection Operator

Estimator

The adaptive least absolute shrinkage and selection operator (adap-

tive LASSO or aLASSO) is an improvement on LASSO. It provides small weights to

active predictors thereby shrinking their associated coefficients a little. On the other

hand, it provides large weights to inactive predictors and thus shrinks their related co-

efficients to exactly zero. The adaptive LASSO estimator of β is defined as

β̂aLASSO = argmin
β

{
𝑛∑
𝑖=1

[𝑦𝑖 − 𝑓 (x𝑖,β)]2 + 𝜏
𝑝∑
𝑗=1

𝑤 𝑗 |𝛽 𝑗 |
}
, (3.31)

where 𝜏 > 0 is a tuning parameter, 𝑤 𝑗 = |𝛽 𝑗 |−𝛾 is is the adaptive weight with 𝛾 > 0, and

𝛽 𝑗 is an initial estimator of 𝛽 𝑗 for 𝑗 = 1, 2, ..., 𝑝. The adaptive LASSO was introduced

by Zou (2006) for linear regression. For our study, we applied the algorithm in Yang

et al. (2015) by using adaptive weights for the 𝐿1 penalty on the regression coefficients

for solving the aLASSO solution in a nonlinear regression.

3.4 Large Sample Test

In this section, an appropriate large sample test statistic is desired for testing

the hypothesis H0 : β2 = 0 against H1 : β2 ≠ 0. The Wald statistic (Ahmed and Nicol,

2012; Harrell, 2015, p. 189) for the null hypothesis is asymptotically valid under non-

normality, which is

Λ𝑛 =
(
β̂UE2

)⊤ [
V

(
β̂2

)]−1
β̂UE2 , (3.32)

where V(β̂2) is the variance-covariance matrix of β̂2. Here, V(β̂2) = �̂�2C−1
22.1, �̂�

2 =

[y − 𝑓 (x, β̂)]⊤ [y − 𝑓 (x, β̂)]/(𝑛 − 𝑝), andC22.1 = C22−C21C
−1
11C12. Under the null
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hypothesis, as 𝑛 → ∞, the test statistic is asymptotically distributed as chi-square with

𝑝2 degrees of freedom, where 𝑝2 is the number of restrictions on β̂RE.

3.5 Asymptotic Properties

The goal here is to derive the asymptotic distributional bias (ADB), asymp-

totic distributional quadratic bias (ADQB), and asymptotic distributional quadratic risk

(ADQR) of the estimators. To achieve this, we define a sequence of local alternatives

{𝐾𝑛} as follows:

{𝐾𝑛} : β2 =
δ
√
𝑛
, (3.33)

where δ = (𝛿1, 𝛿2, ..., 𝛿𝑝2)⊤ ∈ R𝑝2 is a 𝑝2 × 1 fixed vector. Note that δ = 0 implies that

the null hypothesis in (3.19) is a special case of {𝐾𝑛}.
We measure the performance of each estimator under local alternatives. We

are mainly interested in estimating the unknown parameter vector β1 by means of an

estimator β̂∗
1. To begin the process of computing ADB, ADQB, and ADQR, we suppose

that the asymptotic cumulative distribution function (CDF) of
√
𝑛(β̂∗

1−β1) is a limiting
distribution under {𝐾𝑛}, and is defined as 𝐹 (y) = lim

𝑛→∞
P

[√
𝑛(β̂∗

1 − β1) ≤ y
]
. This is

known as the asymptotic distribution function (ADF) of β̂∗
1.

3.5.1 Asymptotic Distributional Quadratic Bias

First, we present the expressions for the asymptotic distributional bias

(ADB) of the proposed estimator. The ADB of an estimator β̂*1 is defined as

ADB(β̂*1) = lim
𝑛→∞
E

[√
𝑛(β̂∗

1 − β1)
]
, (3.34)

where the result is in vector form. Then, we convert these functions into the scalar

(quadratic) form, using the asymptotic distributional quadratic bias (ADQB). TheADQB

of estimator β̂∗
1 of parameter vector β1 is defined as

ADQB(β̂∗
1) =

[
ADB(β̂∗

1)
]⊤
ψ−1

11.2

[
ADB(β̂∗

1)
]
, (3.35)

where ψ11.2 = 𝜎2Q−1
11.2 = 𝜎2(Q11 − Q12Q

−1
22Q21)−1 is the asymptotic variance-

covariance matrix of
√
𝑛(β̂UE1 − β1).
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3.5.2 Asymptotic Distributional Quadratic Risk

A loss function L(β̂∗
1,β1) represents the loss incurred if a wrong

decision is made about β1 using the estimator β̂∗
1. We define the weighted quadratic

loss function in the form

L(β̂∗
1,β1;W ) =

√
𝑛(β̂∗

1 − β1)
⊤
W

√
𝑛(β̂∗

1 − β1), (3.36)

whereW is a positive semi-definite weighting matrix and β̂∗
1 can be any of β̂

UE
1 , β̂RE1 ,

β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 . Then, the asymptotic distributional quadratic risk (ADQR) of

β̂∗
1 is given by

ADQR(β̂∗
1) = lim

𝑛→∞
E[L(β̂∗

1,β1;W )]

= lim
𝑛→∞
E

[√
𝑛(β̂∗

1 − β1)W
√
𝑛(β̂∗

1 − β1)
⊤]

= tr[W𝚪∗(β̂∗
1)], (3.37)

where tr(·) is the trace of the matrix. Here, we let

𝚪∗(β̂∗
1) = lim

𝑛→∞
E

[√
𝑛(β̂∗

1 − β1)
√
𝑛(β̂∗

1 − β1)
⊤]
, (3.38)

be the asymptotic mean squared error matrix (AMSEM) of an estimator β̂∗
1.

The way to evaluate performance is to compare the ADQR of two es-

timators with a suitable matrixW . Normally, a preferable estimator will have a smaller

ADQR. The estimator β̂∗
1 will be termed inadmissible if there exists another estimator

β̂0
1 , such that ADQR(β̂0

1) ≤ ADQR(β̂∗
1). In these cases, we can say that the estimator

β̂0
1 dominates β̂

∗
1.

3.6 Related Theorems

Theorem 3.6.1. Under {𝐾𝑛} and the usual regularity conditions, as 𝑛 increases, the

test statistic Λ𝑛 converges to a non-central chi-squared distribution with 𝑝2 degrees of

freedom and the non-centrality parameter Δ = δ⊤ψ−1
22.1δ. Here, ψ22.1 = 𝜎2Q−1

22.1 is the

asymptotic variance-covariance matrix of
√
𝑛(β̂UE

2 − β2).

Proof. See Davidson and Lever (1970) for detailed proof. □
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Theorem 3.6.2. Let y be a 𝑝2-dimensional random vector that follows a multivariate

normal distribution with mean µy and variance Iy. Then, for any measurable function

𝜑, we have

E
[
y𝜑

(
y⊤y

) ]
= µyE

[
𝜑

(
𝜒2𝑝2+2(Δ)

)]
, (3.39)

E
[
yy⊤𝜑

(
y⊤y

) ]
= IyE

[
𝜑

(
𝜒2𝑝2+2(Δ)

)]
+ µyµ

⊤
yE

[
𝜑

(
𝜒2𝑝2+4(Δ)

)]
. (3.40)

Proof. See Judge and Bock (1978, p. 322) for detailed proof. □

Theorem 3.6.3. Let y ∼ N𝑝 (µ,𝚺). Suppose we partition y =
[ y1
y2

]
, where y1 is a

𝑝1 × 1 vector, y2 is a 𝑝2 × 1 vector, and assume that µ =
[ µ1
µ2

]
and 𝚺 =

[
𝚺11 𝚺12
𝚺21 𝚺22

]
. The

conditional distribution of y1 given that y2 = c2 is a multivariate normal with mean

vector

E[y1 |y2 = c2] = µy1 |y2=c2 = µ1 + 𝚺12𝚺
−1
22 (c2 − µ2) (3.41)

and variance-covariance matrix

V[y1 |y2 = c2] = 𝚺y1 |y2=c2 = 𝚺11 − 𝚺12𝚺
−1
22𝚺21. (3.42)

Proof. See Ravishanker and Dey (2001, pp. 156–157) for detailed proof. □

3.7 Dimensionality of Data

Dimensionality in statistics refers to howmany attributes a dataset has. This

dissertation classified two types of data: low-dimensional and high-dimensional data.

3.7.1 Low-Dimensional Data Setting

In ordinary or low-dimensional (LD) data, the sample size (𝑛) ex-
ceeds the number of predictors (𝑘), so 𝑘 < 𝑛. Under uncertainty of the prior informa-
tion, the predictors can be categorized into two groups:

Group 1: Active predictors, which we believed to be significantly associated with the

response variable.

Group 2: Inactive predictors, which are gently or not significant for predictive mod-

elling. They should be removed from the model.
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For this reason, the unrestricted model contains all 𝑘 predictors, both

𝑘1 active and 𝑘2 inactive, such that 𝑘 = 𝑘1+ 𝑘2, while the restricted model contains only
𝑘1 active predictors. Therefore, we partitioned the regression coefficients as

β = (β⊤
1 ,β

⊤
2 )

⊤ = (𝛽1, 𝛽2, ..., 𝛽𝑝1 , 𝛽𝑝1+1, 𝛽𝑝1+2, ..., 𝛽𝑝1+𝑝2)⊤,

where β1 and β2 are active and inactive parameters with dimensions 𝑝1 × 1 and 𝑝2 × 1,

respectively. As some parameters may be eliminated from the model, it is plausible that

β2 can be set to a zero vector as follows:

β = (β⊤
1 , 0

⊤
𝑝2)

⊤ = (𝛽1, 𝛽2, ..., 𝛽𝑝1︸           ︷︷           ︸
𝑝1

, 0, 0, ..., 0︸    ︷︷    ︸
𝑝2

)⊤, (3.43)

which is the coefficient vector under subspace information.

3.7.2 High-Dimensional Data Setting

Nowadays, many researchers are focused on the analysis and model-

ing of high-dimensional (HD) data analysis, where the sample size (𝑛) is smaller than the

number of predictors (𝑘). To obtain a meaningful statistical output, the classical param-

eter estimation methods, i.e. least squares and maximum likelihood, are based on the

assumption that 𝑘 < 𝑛, and become unreliable or impossible to directly compute when

𝑘 ≥ 𝑛. In this context, we construct possibly sparse models in high-dimensional settings
when 𝑘 is not fixed (often written as 𝑘 ≥ 𝑛). This sparsity means that some explanatory
variables do not affect the response variable, or else some regression coefficients in the

model are exactly zero.

FollowingAhmed andYüzbaşı (2016), Gao et al. (2017), andYüzbaşı

et al. (2017), the estimation problem of regression parameters is seen when there are

many predictors in the model. The predictors can be characterized into the following

three groups:

Group 1: Predictors with strong influence (strong signals) on the response variable and

|𝛽 𝑗 | > 𝑐
√
log (𝑝)/𝑛 for some 𝑐 > 0 and 1 ≤ 𝑗 ≤ 𝑘 .

Group 2: Predictors withweak-to-moderate influence (weak-to-moderate signals) which

may or may not contribute to explaining the response variable and 0 < |𝛽 𝑗 | <
𝑐
√
log (𝑝)/𝑛 for some 𝑐 > 0 and 1 ≤ 𝑗 ≤ 𝑘 .
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Group 3: Predictors with no influence (sparse or no signals) on the response variable

in which their related regression coefficients are exactly zero.

In this work, we consider the sparse regression models when there

are many predictors that have a weak influence on the response variable. We are still in-

terested in cases where predictors with strong signals are stored in the model, and some

or all predictors with weak-to-moderate signals are also included in the model, even

though they may not be useful for prediction purposes. This leads to the consideration

of two models. One is an overfitted (OF) model that includes predictors with strong

signals and possibly some predictors with weak-to-moderate signals which may be pro-

duced by using a variable selection strategy. Conversely, other methods may establish

an underfitted (UF) model that possibly includes predictors with strong signals while

leaving out predictors with weak-to-moderate signals.

Generally, the 𝑘 predictors can be featured as 𝑘𝑠 strong, 𝑘𝑤 weak-to-

moderate, and 𝑘𝑛 no signals, such that 𝑘𝑠 + 𝑘𝑤 + 𝑘𝑛 = 𝑘 . We partition x = (x𝑠,x𝑤,x𝑛)
and β = (β⊤

𝑠 ,β
⊤
𝑤 ,β

⊤
𝑛 )⊤. Further, x𝑠 is the 𝑛× 𝑘𝑠, x𝑤 is the 𝑛× 𝑘𝑤, and x𝑛 is the 𝑛× 𝑘𝑛

submatrix of the predictors, respectively. Here, β𝑠 is the 𝑝𝑠×1, β𝑤 is the 𝑝𝑤×1, and β𝑛
is the 𝑝𝑛 × 1 subvector of the parameters, respectively. The resulting models produced

by using LASSO and aLASSO strategies are rewritten as

y = 𝑓 (x𝑠,x𝑤,β𝑠,β𝑤) + ε,

where 𝑘𝑠 ≤ 𝑘𝑤 < 𝑛, and

y = 𝑓 (x𝑠,β𝑠, ) + ε,

where 𝑘𝑠 < 𝑛, respectively. The sparsity structure in the high dimensional setting was

assumed to be known and reordered the coefficients ofβ according to the signal strength

as follows:

β = (𝛽1, 𝛽2, ..., 𝛽𝑝𝑠︸           ︷︷           ︸
𝑝𝑠

, 𝜅, 𝜅, ..., 𝜅︸    ︷︷    ︸
𝑝𝑤

, 0, 0, ..., 0︸    ︷︷    ︸
𝑝𝑛

)⊤, (3.44)

having strong, weak-to-moderate, and no signals, respectively. For this study, we sep-

arated the procedure under a high-dimensional setting into two steps, namely:

1. A variable or dimensional reduction step to detect significant predictors and to

reduce the dimensions to a low-dimensional model.
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2. A post-selection parameter estimation step, using the resulting model attained

from step 1 above.

In the dimensional reduction step, we applied the LASSO method to

eliminate predictors with no signals and to keep predictors with both strong and weak-

to-moderate signals. Therefore, this may be considered to be an overfitted (OF) model.

The other model is from the aLASSO method, which retains the predictors with strong

signals and produces a lower-dimensional model as compared to the LASSO method.

Therefore, this model may be termed an underfitted (UF) model. In this step, we as-

sumed that the subset of predictors using the LASSO strategy contained 𝑘1+ 𝑘2 selected
variables, containing 𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖(𝑘1+𝑘2) . While the aLASSO strategy chose only 𝑘1
relevant variables, which was 𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑘1 , where 𝑘1 < 𝑘1 + 𝑘2 < 𝑘 .

For the post-selection parameter estimation step, the estimation strate-

gies that we suggested in Section 3.2 were applied after performing variable selec-

tion for estimating β = (β⊤
1 ,β

⊤
2 )⊤ when β2 may be a zero vector. From the parti-

tion of regression coefficient vector, β1 = (𝛽1, 𝛽2, ..., 𝛽𝑝1)⊤ is a 𝑝1 × 1 vector of pa-

rameters associated with 𝑘1 predictors selected by LASSO and aLASSO methods, and

β2 = (𝛽𝑝1+1, 𝛽𝑝1+2, ..., 𝛽𝑝1+𝑝2)⊤ is 𝑝2×1 vector of parameters related with 𝑘2 predictors
chosen by only LASSO. To allow post-selection parameter estimation, the UE and the

RE were the nonlinear least square estimators based on LASSO (OF) and aLASSO (UF)

models. For testing H0 : β2 = 0𝑝2 , the distribution of Λ𝑛 in Equation (3.32) converges

to a chi-square distribution with 𝑝2 degrees of freedom as 𝑛→ ∞.

3.8 Measures of Estimator Performance

The relative mean squares error evaluated the performance of the proposed

estimators in the Monte Carlo simulation. In contrast, the relative mean squares predic-

tion error assessed the performance of the suggested estimators in the real data example.

3.8.1 Monte Carlo Simulations

Monte Carlo simulations are used to assess the performance of pro-

posed estimators under different situations. The performance of the estimator β̂∗
1 will

be measured by its mean square error (MSE). The formula for computing the simulated
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MSE of an estimator is defined as

MSE(β̂∗
1) =

1

𝑛
(β1 − β̂∗

1)⊤(β1 − β̂∗
1)

=
1

𝑛

𝑝∑
𝑖=1

(β1 − β̂∗
1)2

where β̂∗
1 is one of β̂

UE
1 , β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂

S+
1 , or β̂LASSO1 . The simulated relative

mean square error (RMSE) was used to compare the performance of the estimator β̂∗
1

with benchmark β̂UE1 . The RMSE is the ratio of simulated MSE of two estimators and

is given as

RMSE(β̂UE1 , β̂∗
1) =

MSE(β̂UE1 )
MSE(β̂∗

1)
.

A value of RMSE larger than one indicates β̂∗
1 superiority over β̂

UE
1 .

3.8.2 Real Data Example

We compared the performance of the proposed estimators with re-

spect to the benchmark estimator β̂UE1 using the simulated relative mean squares predic-

tion error (RMSPE), defined as

RMSPE(β̂UE1 , β̂∗
1) =

MSPE(β̂UE1 )
MSPE(β̂∗

1)
. (3.45)

Note that an RMSPE larger than one means that β̂∗
1 outperforms β̂

UE
1 . The mean squared

prediction error (MSPE) was obtained by taking the squared deviation of the observed

and predicted values, divided by the number of bootstrap samples (𝑚), as follows:

MSPE(β̂∗
1) =

1

𝑚
(y − 𝑓 (x, β̂∗

1))
⊤(y − 𝑓 (x, β̂∗

1)),

where β̂∗
1 is one of β̂

UE
1 , β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂

S+
1 , β̂LASSO1 , or β̂aLASSO1 .

We used bootstrap methodology to assess the performance of the pro-

posed estimators. For every bootstrapped sample, we computed RMSPE for every esti-

mator by employing the formula (3.45) relative to the UE.
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CHAPTER 4

RESEARCH RESULTS

This chapter presents the theoretical and numerical analysis and describes

the results for each nonlinear regression model (i.e., Cobb-Douglas, exponential, and

monomolecular). The results of the data analysis are divided into three parts, including

asymptotic results, simulation results, and application to real data.

4.1 Asymptotic Results

We first display the asymptotic distribution of UE and RE and their joint

distributions. Next, the asymptotic properties of the suggested estimators are derived

in the context of ADQB and ADQR. We then summarize the asymptotic results for the

estimators to compare their performance. In this study, we do not examine the behavior

of the two penalty strategies since these do not make use of subspace information, and

their performance depends on the tuning parameter.

To achieve the asymptotic properties of the proposed estimators and of the

test statistic Λ𝑛, the following theorem facilitates computation of asymptotic properties

under local alternatives {𝐾𝑛}.

Theorem 4.1.1. Under local alternatives {𝐾𝑛} and the usual regularity conditions, as
𝑛→ ∞ we have the following:

T𝑛 =
√
𝑛(β̂UE

1 − β1)
𝐷−→ T ∼ N𝑝1 (0, 𝜎2Q−1

11.2),

U𝑛 =
√
𝑛(β̂UE

2 − β2)
𝐷−→ U ∼ N𝑝2 (0, 𝜎2Q−1

22.1),

W𝑛 =
√
𝑛(β̂RE

1 − β1)
𝐷−→W ∼ N𝑝1 (−ωδ, 𝜎2Q−1

11 ),

Z𝑛 =
√
𝑛(β̂UE

1 − β̂RE
1 ) 𝐷−→ Z ∼ N𝑝1 (ωδ, 𝜎2𝛀),[

T𝑛
Z𝑛

]
𝐷−→

[
T
Z

]
∼ N2𝑝1

( [
0
ωδ

]
, 𝜎2

[
Q−1

11.2 𝛀
𝛀 𝛀

] )
,[

W𝑛
Z𝑛

]
𝐷−→

[
W
Z

]
∼ N2𝑝1

( [ −ωδ
ωδ

]
, 𝜎2

[
Q−1

11 0
0 𝛀

] )
,

where ω = −Q−1
11Q12, 𝛀 = Q−1

11Q12Q
−1
22.1Q21Q

−1
11 .
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Proof. Under the sequence of local alternatives, {𝐾𝑛} : β2 = β0
2 + δ√

𝑛
, we obtained

δ𝑝2×1 =
√
𝑛(β2 − 0), where β0

2 = 0.

(1) The asymptotic distribution of T𝑛 and U𝑛 can be directly attained from Theorem

3.1.2 in Chapter 3.

(2) LetW𝑛 =
√
𝑛(β̂RE1 − β1) be a 𝑝1 × 1 matrix and we obtain

W𝑛 =
√
𝑛(β̂RE1 − β1)

=
√
𝑛(β̂UE1 − ω𝑛β̂UE2 − β1)

=
√
𝑛(β̂UE1 − β1) − ω𝑛

√
𝑛β̂UE2

= T𝑛 − ω𝑛
√
𝑛β̂UE2 ,

which is a linear function of T𝑛. By Slutsky’s theorem and 𝑛 → ∞, thenW𝑛
𝑑−→

W ∼ N𝑝1 (𝜇W , ΣW ), where

𝜇W = E(W ) = E
[
T − ω

√
𝑛β̂UE2

]
= E

[
T − ω

√
𝑛β̂UE2 − ω

√
𝑛β2 + ω

√
𝑛β2

]
= E

[
T − ω

√
𝑛(β̂UE2 − β2) − ω

√
𝑛
δ
√
𝑛

]
= E [T − ωU − ωδ]

= E(T ) − ωE(U ) − ωδ

= −ωδ

and

ΣW = V(W ) = V[T − ωU − ωδ]

= V(T ) − ωV(U )ω⊤

= 𝜎2Q−1
11.2 − ω𝜎2Q−1

22.1ω
⊤

= 𝜎2(Q−1
11 +Q−1

11Q12Q
−1
22.1Q21Q

−1
11 ) −Q−1

11Q12𝜎
2Q−1

22.1(Q−1
11Q12)

⊤

= 𝜎2
[
Q−1

11 +Q−1
11Q12Q

−1
22.1Q21Q

−1
11 −Q−1

11Q12Q
−1
22.1Q21(Q−1

11 )
⊤]

= 𝜎2 [Q−1
11 +Q−1

11Q12Q
−1
22.1Q21Q

−1
11 −Q−1

11Q12Q
−1
22.1Q21Q

−1
11 ]

= 𝜎2Q−1
11 .
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(3) Let Z𝑛 =
√
𝑛(β̂UE1 − β̂RE1 ) be a 𝑝1 × 1 matrix and we get

Z𝑛 =
√
𝑛(β̂UE1 − β̂RE1 )

=
√
𝑛(β̂UE1 − β̂RE1 − β1 + β1)

=
√
𝑛(β̂UE1 − β1) −

√
𝑛(β̂RE1 − β1)

= T𝑛 −W𝑛

= T𝑛 − (T𝑛 − ω𝑛
√
𝑛β̂UE2 )

which is also a linear function of T𝑛. Hence, by Slutsky’s theorem and ω𝑛
𝑃−→ ω,

we obtain Z𝑛
𝐷−→ Z ∼ N𝑝1 (𝜇Z , ΣZ) as 𝑛→ ∞, where

𝜇Z = E(Z) = E
[
T − (T − ω

√
𝑛β̂UE2 )

]
= E

[
ω
√
𝑛β̂UE2 − ω

√
𝑛β2 + ω

√
𝑛β2

]
= E

[
ω
√
𝑛(β̂UE2 − β2) + ω

√
𝑛
δ
√
𝑛

]
= E[ωU + ωδ]

= ωE(U ) + ωδ

= ωδ,

and

ΣZ = V(Z) = V[ωU + ωδ]

= ωV(U )ω⊤

= (−Q−1
11Q12)𝜎2Q−1

22.1(−Q−1
11Q12)

⊤

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11

= 𝜎2𝛀,

where 𝛀 = Q−1
11Q12Q

−1
22.1Q21Q

−1
11 .

(4) Now, we consider
T𝑛

Z𝑛

 =


T𝑛

T𝑛 − (T𝑛 − ω𝑛
√
𝑛β̂UE2 )

 =


T𝑛

ω𝑛
√
𝑛β̂UE2

 = T𝑛


I𝑝1

0𝑝1

 +


0𝑝1

ω𝑛
√
𝑛β̂UE2

 ,
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which is a linear function of T𝑛. Also, by Slutsky’s theorem, the joint distribution

of T𝑛 and Z𝑛, as 𝑛→ ∞ is
[
T𝑛
Z𝑛

]
𝑑−→

[
T
Z

]
∼ N2𝑝1 (𝜇TZ , ΣTZ), where

𝜇TZ = E


T

Z

 =


E(T )
E(Z)

 =


0

ωδ


and

ΣTZ =


V(T ) 𝐶𝑜𝑣(T ,Z)

𝐶𝑜𝑣(Z,T ) V(Z)


=


𝜎2Q−1

11.2 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11

𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11


= 𝜎2


Q−1

11.2 𝛀

𝛀 𝛀

 .
Here,

𝐶𝑜𝑣(T ,Z) = 𝐶𝑜𝑣 [T ,ω(U + δ)]

= 𝐶𝑜𝑣 [T ,U + δ]ω⊤

= 𝐶𝑜𝑣 [T ,U ]ω⊤ + 𝐶𝑜𝑣 [T , δ]ω⊤

= 𝜎2(−Q−1
11Q12Q

−1
22.1)ω⊤ + [E(Tδ) − E(T )E(δ)]ω⊤

= 𝜎2(−Q−1
11Q12Q

−1
22.1)(−Q−1

11Q12)
⊤ + 0

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 = 𝜎2𝛀.

(5) Lastly, we consider
W𝑛

Z𝑛

 =


T𝑛 − ω𝑛

√
𝑛β̂UE2

T𝑛 − (T𝑛 − ω𝑛
√
𝑛β̂UE2 )

 = T𝑛


I𝑝1

0𝑝1

 +

−ω𝑛

√
𝑛β̂UE2

ω𝑛
√
𝑛β̂UE2

 ,
which is a linear function ofT𝑛. Again, by Slutsky’s theorem, the joint distribution

ofW𝑛 and Z𝑛 as 𝑛→ ∞ is
[
W𝑛
Z𝑛

]
𝑑−→

[
W
Z

]
∼ N2𝑝1 (𝜇WZ , ΣWZ), where

𝜇Y Z = E


W

Z

 =


E(W )
E(Z)

 =


−ωδ
ωδ
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and

ΣWZ =


V(W ) 𝐶𝑜𝑣(W ,Z)

𝐶𝑜𝑣(Z,W ) V(Z)

 =


𝜎2Q−1

11 0

0 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11


= 𝜎2


Q−1

11 0

0 𝛀

 .
Here,

𝐶𝑜𝑣(W ,Z) = 𝐶𝑜𝑣 [T − ω(U + δ),ω(U + δ)]

= 𝐶𝑜𝑣 [T ,ω(U + δ)] − 𝐶𝑜𝑣 [ω(U + δ),ω(U + δ)]

= 𝐶𝑜𝑣 [T ,U ] (ω)⊤ − V[ω(U + δ)]

= 𝐶𝑜𝑣 [T ,U ] (ω)⊤ − ωV[U + δ] (ω)⊤

= 𝜎2(−Q−1
11Q12Q

−1
22.1) (−Q−1

11Q12)
⊤

− (−Q−1
11Q12)𝜎2Q−1

22.1(−Q−1
11Q12)

⊤

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 − 𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11

= 0.

□

Corollary 1. Under usual regularity conditions and the sequence of local alternatives,

as 𝑛→ ∞,

Z∗
𝑛 =

√
𝑛𝜎−1𝛀

− 1
2

𝑛 (β̂UE
1 − β̂RE

1 ) 𝐷−→ Z∗ ∼ N𝑝1 (𝜎−1𝛀− 1
2ωδ, I𝑝1),

where 𝛀𝑛 = C−1
11C12C

−1
22.1C21C

−1
11 and 𝛀𝑛

𝑃−→ 𝛀.

Proof. Note that

Z∗
𝑛 =

√
𝑛𝜎−1𝛀

− 1
2

𝑛 (β̂UE1 − β̂RE1 )

= 𝜎−1𝛀
− 1
2

𝑛

√
𝑛(β̂UE1 − β̂RE1 )

= 𝜎−1𝛀
− 1
2

𝑛 Z𝑛,

which is a linear function of Z𝑛, by𝛀
− 1
2

𝑛 being a continuous function of𝛀𝑛 converging

in probability to 𝛀− 1
2 , or 𝛀− 1

2
𝑛

𝑃−→ 𝛀− 1
2 = (Q−1

11Q12Q
−1
22.1Q21Q

−1
11 )−

1
2 . Therefore, as
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𝑛→ ∞ and by Slutsky’s theorem, Z∗
𝑛

𝐷−→ Z∗ ∼ N𝑝2 (𝜇Z∗ , ΣZ∗). Here

𝜇Z∗ = E(Z∗) = E[𝜎−1𝛀− 1
2Z]

= 𝜎−1𝛀− 1
2E(Z)

= 𝜎−1𝛀− 1
2ωδ

= (𝜎2𝛀)− 1
2ωδ,

and

ΣZ∗ = V(Z∗) = V[𝜎−1𝛀
− 1
2

𝑛 Z]

= 𝜎−1𝛀− 1
2V(Z)(𝜎−1𝛀− 1

2 )⊤

= (𝜎2𝛀)− 1
2𝜎2𝛀((𝜎2𝛀)− 1

2 )⊤

= (𝜎2𝛀)− 1
2𝜎2𝛀(𝜎2𝛀)− 1

2

= I𝑝1 .

□

It can be noted that the asymptotic distribution ofZ𝑛 has covariance matrix

𝜎2𝛀, whileZ∗
𝑛 has covariance matrix I𝑝1 . The purpose of transformation is to stabilize

the covariance matrix ofZ𝑛 so that wemay use Theorem 3.6.2 for computing the ADQB

and ADQR of the estimators. The relation between Z and Z∗ is

Z = 𝜎𝛀
1
2Z∗ = (𝜎2𝛀) 12Z∗. (4.1)

4.1.1 Asymptotic Distributional Quadratic Bias

Next, the expression of the asymptotic distributional bias (ADB) is

presented. From Theorems 3.6.1 and 3.6.2, the ADB expression is derived as the fol-

lowing Theorem.

Theorem 4.1.2. Under the sequence {𝐾𝑛} and usual regularity condition, as 𝑛 → ∞.

The ADBs of all estimators are

ADB(β̂UE
1 ) = 0,

ADB(β̂RE
1 ) = Q−1

11Q12δ,

ADB(β̂LS
1 ) = 𝜋Q−1

11Q12δ,

ADB(β̂PT
1 ) = Q−1

11Q12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ),
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ADB(β̂SP
1 ) = 𝜋Q−1

11Q12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ),

ADB(β̂S
1) = 𝑐Q−1

11Q12δE[𝜒−2𝑝2+2(Δ)],

ADB(β̂S+
1 ) = Q−1

11Q12δ{𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) > 𝑐)]}.

Here, 𝑐 = 𝑝2 − 2, 𝑝2 > 2, 𝐻𝜈 (· ;Δ) is a cumulative distribution function (CDF) of

non-central chi-square with 𝜈 degrees of freedom and non-centrality parameter Δ, and

E
[
𝜒
−2 𝑗
𝜈 (Δ)

]
=

∞∫
0

𝑥−2 𝑗𝑑𝜙𝜈 (𝑥;Δ).

Proof.

ADB(β̂UE1 ) = lim
𝑛→∞
E[

√
𝑛(β̂UE1 − β1)]

= E
[
lim
𝑛→∞

T𝑛

]
= E(T )

= 0.

ADB(β̂RE1 ) = lim
𝑛→∞
E[

√
𝑛(β̂RE1 − β1)]

= E
[
lim
𝑛→∞

W𝑛

]
= E(W )

= −ωδ = Q−1
11Q12δ.

ADB(β̂LS1 ) = lim
𝑛→∞
E[

√
𝑛(β̂LS1 − β1)]

= lim
𝑛→∞
E[

√
𝑛(𝜋β̂RE1 + (1 − 𝜋)β̂UE1 − β1)]

= lim
𝑛→∞
E[

√
𝑛(𝜋β̂RE1 + β̂UE1 − 𝜋β̂UE1 − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂UE1 − β1) − 𝜋

√
𝑛(β̂UE1 − β̂RE1 )]

= lim
𝑛→∞
E[

√
𝑛(β̂UE1 − β1)] − 𝜋 lim

𝑛→∞
E[

√
𝑛(β̂UE1 − β̂RE1 )]

= E
[
lim
𝑛→∞

T𝑛

]
− 𝜋E

[
lim
𝑛→∞

Z𝑛

]
= E(T ) − 𝜋E(Z)

= −𝜋ωδ

= −𝜋(−Q−1
11Q12)δ

= 𝜋Q−1
11Q12δ.
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ADB(β̂PT1 ) = lim
𝑛→∞
E[

√
𝑛(β̂PT1 − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂UE1 − (β̂UE1 − β̂RE1 )𝐼 (Λ𝑛 ≤ 𝜆𝛼) − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂UE1 − β1) −

√
𝑛(β̂UE1 − β̂RE1 )𝐼 (Λ𝑛 ≤ 𝜆𝛼)]

= lim
𝑛→∞
E[T𝑛 −Z𝑛𝐼 (Λ𝑛 ≤ 𝜆𝛼)]

= E
[
lim
𝑛→∞

T𝑛

]
− E

[
lim
𝑛→∞

Z𝑛𝐼 (Λ𝑛 ≤ 𝜆𝛼)
]

= E(T ) − E[Z 𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= −E[(𝜎2𝛀) 12Z∗𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)] ∵ by (4.1)

= −(𝜎2𝛀) 12E[Z∗𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= −(𝜎2𝛀) 12 (𝜎2𝛀)− 1
2ωδE[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)] ∵ by (3.39)

= Q−1
11Q12δP[𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼]

= Q−1
11Q12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ).

ADB(β̂SP1 ) = lim
𝑛→∞
E[

√
𝑛(β̂SP1 − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂UE1 − 𝜋(β̂UE1 − β̂RE1 )𝐼 (Λ𝑛 ≤ 𝜆𝛼) − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂UE1 − β1) − 𝜋

√
𝑛(β̂UE1 − β̂RE1 )𝐼 (Λ𝑛 ≤ 𝜆𝛼)]

= lim
𝑛→∞
E[T𝑛 − 𝜋Z𝑛𝐼 (Λ𝑛 ≤ 𝜆𝛼)]

= E
[
lim
𝑛→∞

T𝑛

]
− 𝜋E

[
lim
𝑛→∞

Z𝑛𝐼 (Λ𝑛 ≤ 𝜆𝛼)
]

= E(T ) − 𝜋E[Z 𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= −𝜋E[(𝜎2𝛀) 12Z∗𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)] ∵ by (4.1)

= −𝜋(𝜎2𝛀) 12E[Z∗𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= −𝜋(𝜎2𝛀) 12 (𝜎2𝛀)− 1
2ωδE[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)] ∵ by (3.39)

= 𝜋Q−1
11Q12δP[𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼]

= 𝜋Q−1
11Q12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ).
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ADB(β̂S1) = lim
𝑛→∞
E[

√
𝑛(β̂S1 − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂RE1 + (1 − 𝑐Λ−1

𝑛 ) (β̂UE1 − β̂RE1 ) − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂RE1 + β̂UE1 − β̂RE1 − 𝑐Λ−1

𝑛 (β̂UE1 − β̂RE1 ) − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂UE1 − β1) − 𝑐Λ−1

𝑛

√
𝑛(β̂UE1 − β̂RE1 )]

= lim
𝑛→∞
E[T𝑛 − 𝑐Λ−1

𝑛 Z𝑛]

= E
[
lim
𝑛→∞

T𝑛

]
− 𝑐E

[
lim
𝑛→∞

(Λ−1
𝑛 Z𝑛)

]
= E(T ) − 𝑐E(Z𝜒−2𝑝2 (Δ))

= −𝑐E[(𝜎2𝛀) 12Z∗𝜒−2𝑝2 (Δ)] ∵ by (4.1)

= −𝑐(𝜎2𝛀) 12 (𝜎2𝛀)− 1
2ωδE[𝜒−2𝑝2+2(Δ)] ∵ by (3.39)

= 𝑐Q−1
11Q12δE[𝜒−2𝑝2+2(Δ)] .

ADB(β̂S+1 ) = lim
𝑛→∞

E[
√
𝑛(β̂S+1 − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂S1 − (1 − 𝑐Λ−1

𝑛 )(β̂UE1 − β̂RE1 )𝐼 (Λ𝑛 ≤ 𝑐) − β1)]

= lim
𝑛→∞
E[

√
𝑛(β̂S1 − β1) − (1 − 𝑐Λ−1

𝑛 )
√
𝑛(β̂UE1 − β̂RE1 )𝐼 (Λ𝑛 ≤ 𝑐)]

= ADB(β̂S1) − lim
𝑛→∞
E[(1 − 𝑐Λ−1

𝑛 )Z𝑛𝐼 (Λ𝑛 ≤ 𝑐)]

= ADB(β̂S1) − E
[
lim
𝑛→∞

(1 − 𝑐Λ−1
𝑛 )Z𝑛𝐼 (Λ𝑛 ≤ 𝑐)

]
= ADB(β̂S1) − E[(1 − 𝑐𝜒−2𝑝2 (Δ))Z 𝐼 (𝜒

2
𝑝2 (Δ) ≤ 𝑐)]

= ADB(β̂S1) − E[(1 − 𝑐𝜒−2𝑝2+2(Δ)) (𝜎
2𝛀) 12Z∗𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)] ∵ by (4.1)

= ADB(β̂S1) −


(𝜎2𝛀) 12 (𝜎2𝛀)− 1
2ωδ

E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]

 ∵ by (3.39)

= ADB(β̂S1) +Q−1
11Q12δE [(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)] .

= 𝑐Q−1
11Q12δE[𝜒−2𝑝2+2(Δ)] +Q

−1
11Q12δE[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

= Q−1
11Q12δ

[
𝑐E[𝜒−2𝑝2+2(Δ)] + E[(1 − 𝑐𝜒

−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

]
= Q−1

11Q12δ


𝑐E[𝜒−2𝑝2+2(Δ)] + E[𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

−𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]


= Q−1

11Q12δ{𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)] [1 − 𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]}

= Q−1
11Q12δ{𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒

2
𝑝2+2(Δ) > 𝑐)]}.
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□

For making a possible comparison, we present the asymptotic distri-

butional quadratic bias (ADQB) of all estimators as follows:

Theorem 4.1.3. Suppose that the conditions of Theorem 4.1.2 hold. The ADQBs of the

estimators are

ADQB(β̂UE
1 ) = 0,

ADQB(β̂RE
1 ) = Δ∗,

ADQB(β̂LS
1 ) = 𝜋2Δ∗,

ADQB(β̂PT
1 ) = Δ∗ [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]

2
,

ADQB(β̂SP
1 ) = 𝜋2Δ∗ [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]

2
,

ADQB(β̂S
1) = 𝑐2Δ∗{E[𝜒−2𝑝2+2(Δ)]}

2
,

ADQB(β̂S+
1 ) = Δ∗{𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒

2
𝑝2+2(Δ) > 𝑐)]}

2,

where 𝑐 = 𝑝2 − 2, 𝑝2 > 2, Δ∗ = 𝜎−2δ⊤Q∗δ andQ∗ = Q21Q
−1
11Q11.2Q

−1
11Q12.

Proof.

ADQB(β̂UE1 ) =
[
ADB(β̂UE1 )

]⊤
𝜎−2Q11.2

[
ADB(β̂UE1 )

]
= 0.

ADQB(β̂RE1 ) =
[
ADB(β̂RE1 )

]⊤
𝜎−2Q11.2

[
ADB(β̂RE1 )

]
= (Q−1

11Q12δ)
⊤(𝜎−2Q11.2)(Q−1

11Q12δ)

= 𝜎−2δ⊤Q⊤
12(Q−1

11 )
⊤
Q11.2Q

−1
11Q12δ

= 𝜎−2δ⊤Q21Q
−1
11Q11.2Q

−1
11Q12δ

= 𝜎2δ⊤Q∗δ = Δ∗.

ADQB(β̂LS1 ) =
[
ADB(β̂LS1 )

]⊤
𝜎−2Q11.2

[
ADB(β̂LS1 )

]
= (𝜋Q−1

11Q12δ)
⊤(𝜎−2Q11.2)(𝜋Q−1

11Q12δ)

= 𝜋2(Q−1
11Q12δ)

⊤(𝜎−2Q11.2) (Q−1
11Q12δ)

= 𝜋2Δ∗.
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ADQB(β̂PT1 ) =
[
ADB(β̂PT1 )

]⊤
𝜎−2Q11.2

[
ADB(β̂PT1 )

]
= [Q−1

11Q12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]
⊤(𝜎−2Q11.2)

× [Q−1
11Q12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]

= (Q−1
11Q12𝛿)

⊤(𝜎−2Q11.2)(Q−1
11Q12δ) [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]

2

= Δ∗ [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]
2
.

ADQB(β̂SP1 ) =
[
ADB(β̂SP1 )

]⊤
𝜎−2Q11.2

[
ADB(β̂SP1 )

]
= [𝜋Q−1

11Q12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]
⊤(𝜎−2Q11.2)

× [𝜋Q−1
11Q12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]

= 𝜋2(Q−1
11Q12δ)

⊤(𝜎−2Q11.2)(Q−1
11Q12δ) [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]

2

= 𝜋2Δ∗ [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]
2
.

ADQB(β̂S1) =
[
ADB(β̂S1)

]⊤
𝜎−2Q11.2

[
ADB(β̂S1)

]
= [(𝑝2 − 2)Q−1

11Q12δE[𝜒−2𝑝2+2(Δ)]]
⊤(𝜎−2Q11.2)

× [(𝑝2 − 2)Q−1
11Q12δE[𝜒−2𝑝2+2(Δ)]

= (𝑝2 − 2)2(Q−1
11Q12δ)

⊤(𝜎−2Q11.2)(Q−1
11Q12δ){E[𝜒−2𝑝2+2(Δ)]}

2

= (𝑝2 − 2)2Δ∗{E[𝜒−2𝑝2+2(Δ)]}
2

= 𝑐2Δ∗{E[𝜒−2𝑝2+2(Δ)]}
2
.

ADQB(β̂S+1 ) =
[
ADB(β̂S+1 )

]⊤
(𝜎−2Q11.2)

[
ADB(β̂S+1 )

]
=

{
Q−1

11Q12δ
[
𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒

2
𝑝2+2(Δ) > 𝑐)]

]}⊤
× (𝜎−2Q11.2)

×
{
Q−1

11Q12δ
[
𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒

2
𝑝2+2(Δ) > 𝑐)]

]}
.

= (Q−1
11Q12δ)

⊤(𝜎−2Q11.2) (Q−1
11Q12δ)

× {𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) > 𝑐)]}

2

= Δ∗{𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) > 𝑐)]}

2.

□
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The ADQBs of the suggested estimators are different depending on

the values of 𝑝2, 𝛼, 𝜋, and Δ∗. The plots of the ADQBs show this behavior clearly.

Figures 4.1 to 4.2 show the graphs of ADQBs of the estimators for different configura-

tions of 𝑝1 = 3, 𝑝2 = 3 and 7, 𝛼 = 0.01 and 0.05, and 𝜋 = 0.25, 0.50, and 0.75. The

other values of 𝑝2, 𝛼, 𝜋, and Δ∗ were also studied, however, their results were similar.

Hence, we did not reproduce the graph here. The results of ADQB of the estimators can

be summarized as follows:

(i) Only β̂UE1 is an unbiased estimator for the parameter β1.

(ii) All remaining estimators are also unbiased if Δ∗ = 0.

(iii) For Δ∗ > 0, the ADQBs of both β̂RE1 and β̂LS1 are an unbounded function of Δ∗.

The ADQB functions of all remaining estimators are bounded in Δ∗.

(iv) The ADQB of β̂LS1 is a function of Δ∗ and 𝜋. The ADQB(β̂LS1 ) = 𝜋2ADQB(β̂RE1 )
and ADQB(β̂LS1 ) < ADQB(β̂RE1 ) if 0 < 𝜋 < 1.

(v) The ADQBs of both β̂PT1 and β̂SP1 increase at first, reach a maximum, and then

decrease to become equal with the β̂UE1 as Δ∗ → ∞.

(vi) Since ADQB(β̂SP1 ) = 𝜋2ADQB(β̂PT1 ), then ADQB(β̂SP1 ) < ADQB(β̂PT1 ) when
0 < 𝜋 < 1.

(vii) For fixed Δ∗, the ADQB of β̂SP1 is similar to that of β̂UE1 when 𝜋 = 0, and to that

of β̂PT1 when 𝜋 = 1.

(viii) At Δ∗ = 0, the ADQBs of both β̂S1 and β̂
S+
1 start from zero, increase to a point, and

then decrease to zero as E[𝜒−2𝑝2+2(Δ)] is a decreasing log-convex function of Δ.

(ix) The properties of β̂S+1 are similar to those of β̂S1 , however, the ADQB of β̂S+1 is

smaller than or equal to β̂S1 ; we can derive as follows:
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For 𝑝2 ≥ 3,

ADQB(β̂S1) = 𝑐2Δ∗{E[𝜒−2𝑝2+2(Δ)]}
2

= Δ∗{𝑐E[𝜒−2𝑝2+2(Δ)]}
2

= Δ∗

𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒

2
𝑝2+2(Δ) > 𝑐)]

+𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]


2

.

When 𝜒2𝑝2+2(Δ) > 𝑐, we get

ADQB(β̂S1) = Δ∗{𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) > 𝑐)]}

2 = ADQB(β̂S+1 )

due to 𝐻𝑝2+2(𝑐;Δ) = 0 and E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)] = 0. If 𝜒2𝑝2+2(Δ) ≤ 𝑐,

we obtain

ADQB(β̂S1) = Δ∗{𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]}

2

and

ADQB(β̂S+1 ) = Δ∗{𝐻𝑝2+2(𝑐;Δ)}2 = Δ∗{E[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]}
2.

Since 0 < 𝜒2𝑝2+2(Δ) ≤ 𝑐, we therefore get

1 ≤ 𝑐

𝜒2𝑝2+2(Δ)

E[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)] ≤ E
[

𝑐

𝜒2𝑝2+2(Δ)
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)

]
Δ∗{E[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]}

2 ≤ Δ∗
{
E

[
𝑐

𝜒2𝑝2+2(Δ)
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)

]}2

Δ∗{𝐻𝑝2+2(𝑐;Δ)}2 ≤ Δ∗{𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]}

2.

Hence, ADQB(β̂S+1 ) ≤ ADQB(β̂S1) for all Δ∗ > 0.

4.1.2 Asymptotic Distributional Quadratic Risk

To study the asymptotic distributional quadratic risk (ADQR) of an

estimator, we display the asymptotic mean squared error matrix (AMSEM) of the pro-

posed estimators which are given by as following Theorem:
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(f) 𝜋 = 0.75, 𝛼 = 0.05

Figure 4.1 ADQB curves of the suggested estimators for nonlinear regression model
with 𝑝1 = 3 and 𝑝2 = 3
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(e) 𝜋 = 0.75, 𝛼 = 0.01

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

∆*

A
D

Q
B

RE
LS
PT
SP
S
S+

(f) 𝜋 = 0.75, 𝛼 = 0.05

Figure 4.2 ADQB curves of the suggested estimators for nonlinear regression model
with 𝑝1 = 3 and 𝑝2 = 7
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Theorem 4.1.4. Under the sequence of local alternative {𝐾𝑛} and usual regularity con-
ditions, as 𝑛→ ∞ the AMSEMs of the estimators are

𝚪∗(β̂UE
1 ) = 𝜎2Q−1

11.2,

𝚪∗(β̂RE
1 ) = 𝜎2Q−1

11 +Q−1
11Q12δδ

⊤Q21Q
−1
11 ,

𝚪∗(β̂LS
1 ) = 𝜎2Q−1

11.2 − 𝜋(2 − 𝜋)𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 + 𝜋2Q−1

11Q12δδ
⊤Q21Q

−1
11 ,

𝚪∗(β̂PT
1 ) = 𝜎2Q−1

11.2 − 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11 [2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

𝚪∗(β̂SP
1 ) = 𝜎2Q−1

11.2 − 𝜋(2 − 𝜋)𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11 [2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

𝚪∗(β̂S
1) = 𝜎2Q−1

11.2 − 𝑐𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

+ 𝑐Q−1
11Q12δδ

⊤Q21Q
−1
11 (2E[𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒

−4
𝑝2+4(Δ)]),

𝚪∗(β̂S+
1 ) = 𝚪(β̂S

1) − 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

−Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))

2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

+ 2Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)] .

Proof. Applying the AMSEM of an estimator β̂∗
1 defined as Equation (3.38), we have

𝚪∗(β̂UE1 ) = lim
𝑛→∞
E

[√
𝑛(β̂UE1 − β1)

√
𝑛(β̂UE1 − β1)

⊤]
= E lim

𝑛→∞
(T𝑛T ⊤

𝑛 ) = E(TT ⊤)

= V(T ) + E(T )E(T ⊤)

= 𝜎2Q−1
11.2.

𝚪∗(β̂RE1 ) = lim
𝑛→∞
E

[√
𝑛(β̂RE1 − β1)

√
𝑛(β̂RE1 − β1)

⊤]
= E lim

𝑛→∞
(W𝑛W

⊤
𝑛 ) = E(WW ⊤)

= V(W ) + E(W )E(W ⊤)

= 𝜎2Q−1
11 + (−ωδ) (−ωδ)⊤

= 𝜎2Q−1
11 + (Q−1

11Q12δ) (Q−1
11Q12δ)

⊤

= 𝜎2Q−1
11 +Q−1

11Q12δδ
⊤Q21Q

−1
11 .
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𝚪∗(β̂LS1 ) = lim
𝑛→∞
E

[√
𝑛(β̂LS1 − β1)

√
𝑛(β̂LS1 − β1)

⊤]
= E lim

𝑛→∞
[(T𝑛 − 𝜋Z𝑛)(T𝑛 − 𝜋Z𝑛)⊤]

= E[(T − 𝜋Z) (T − 𝜋Z)⊤]

= E[TT ⊤ − 𝜋TZ⊤ − 𝜋ZT ⊤ + 𝜋2ZZ⊤]

= E[TT ⊤]︸    ︷︷    ︸
𝚪∗ (β̂UE

1 )

−2𝜋 E[TZ⊤]︸    ︷︷    ︸
E1

+𝜋2 E[ZZ⊤]︸    ︷︷    ︸
E2

,

where

E2 = E[ZZ⊤]

= V(Z) + E(Z)E(Z⊤)

= 𝜎2𝛀 + (ωδ) (ωδ)⊤

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 + (−Q−1

11Q12δ)(−Q−1
11Q12δ)

⊤

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 +Q−1

11Q12δδ
⊤Q21Q

−1
11 .

By law of total expectation and conditional expectation of a multivariate normal distri-

bution in Theorem 3.6.3, we may rewrite E1 as

E1 = E[TZ⊤]

= E[E(TZ⊤ |Z)]

= E[E(T |Z)Z⊤]

= E[{E(T ) + 𝐶𝑜𝑣(T ,Z) [V(Z)]−1(Z − E(Z)}Z⊤]

= E[{0 + (𝜎2𝛀)(𝜎2𝛀)−1(Z − (ωδ))}Z⊤]

= E[(Z − (−Q−1
11Q12δ))Z⊤]

= E[(Z +Q−1
11Q12δ)Z⊤]

= E(ZZ⊤) +Q−1
11Q12δE(Z⊤)

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 +Q−1

11Q12δδ
⊤Q21Q

−1
11 + (Q−1

11Q12δ)(−Q−1
11Q12δ)

⊤

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 +Q−1

11Q12δδ
⊤Q21Q

−1
11 −Q−1

11Q12δδ
⊤Q21Q

−1
11

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 .
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Then, the AMSEM of β̂LS1 becomes

𝚪∗(β̂LS1 ) = 𝜎2Q−1
11.2 − 2𝜋𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11

+ 𝜋2(𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11 +Q−1

11Q12δδ
⊤Q21Q

−1
11 )

= 𝜎2Q−1
11.2 − 𝜋(2 − 𝜋)𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11 + 𝜋2Q−1

11Q12δδ
⊤Q21Q

−1
11 .

The 𝚪∗(β̂PT1 ) can be written as

𝚪∗(β̂PT1 ) = lim
𝑛→∞
E

[√
𝑛(β̂PT1 − β1)

√
𝑛(β̂PT1 − β1)

⊤]
= E lim

𝑛→∞
[(T𝑛 −Z𝑛𝐼 (Λ𝑛 ≤ 𝜆𝛼)) (T𝑛 −Z𝑛𝐼 (Λ𝑛 ≤ 𝜆𝛼))⊤]

= E[(T −Z 𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)) (T −Z 𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼))
⊤]

= E[TT ⊤ − 2TZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼) +ZZ
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[TT ⊤]︸    ︷︷    ︸
𝚪∗ (β̂UE

1 )

−2E[TZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]︸                              ︷︷                              ︸
E3

+E[ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]︸                               ︷︷                               ︸
E4

,

Using Equations (4.1) and (3.40), we have

E4 = E[ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[(𝜎2𝛀) 12Z∗((𝜎2𝛀) 12Z∗)⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= (𝜎2𝛀) 12E[Z∗(Z∗)⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)] ((𝜎
2𝛀) 12 )⊤

= (𝜎2𝛀) 12


V(Z∗)E[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)]
+E(Z∗)E(Z∗)⊤E[𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝜒2𝑝2,𝛼)]

 ((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12


I𝑝2E[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)]
+(𝜎2𝛀)− 1

2ωδ((𝜎2𝛀)− 1
2ωδ)⊤E[𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝜒2𝑝2,𝛼)]

 ((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12 ((𝜎2𝛀) 12 )⊤E[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)]

+ (𝜎2𝛀) 12 (𝜎2𝛀)− 1
2ωδ(ωδ)⊤((𝜎2𝛀)− 1

2 )⊤((𝜎2𝛀) 12 )⊤E[𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝜒2𝑝2,𝛼)]

= 𝜎2𝛀E[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)] + ωδ(ωδ)
⊤E[𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝜒2𝑝2,𝛼)]

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11P(𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)

+ (−Q−1
11Q12δ)(−Q−1

11Q12δ)
⊤
P(𝜒2𝑝2+4(Δ) ≤ 𝜒2𝑝2,𝛼)

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) +Q

−1
11Q12δδ

⊤Q21Q
−1
11𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ).
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Using the rule of conditional expectation in Equation (3.41), E3 therefore becomes

E3 = E[TZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[E(TZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼) |Z)]

= E[E(T |Z)Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[{E(T ) + 𝐶𝑜𝑣(T ,Z) [V(Z)]−1(Z − E(Z)}Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[{0 + (𝜎2𝛀)(𝜎2𝛀)−1(Z − ωδ)}Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[(Z − (−Q−1
11Q12δ))Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]︸                               ︷︷                               ︸
E4

−(−Q−1
11Q12δ) E[Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]︸                            ︷︷                            ︸

E5

.

Applying Equations (4.1) and (3.39), we get

E5 = E[Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[((𝜎2𝛀) 12Z∗)⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= ((𝜎2𝛀) 12 )⊤((𝜎2𝛀)− 1
2ωδ)⊤E[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)]

= (−Q−1
11Q12δ)

⊤
P(𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)

= (−Q−1
11Q12δ)

⊤
𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ).

Replacing E4 and E5 in E3, we obtain

E3 = 𝜎
2Q−1

11Q12Q
−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

− (−Q−1
11Q12δ) (−Q−1

11Q12δ)
⊤
𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

−Q−1
11Q12δδ

⊤Q21Q
−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

−Q−1
11Q12δδ

⊤Q21Q
−1
11 [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)] .
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Substituting E3 and E4 into 𝚪∗(β̂PT1 ), we then get

𝚪∗(β̂PT1 ) = 𝜎2Q−1
11.2 − 2𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ 2Q−1
11Q12δδ

⊤Q21Q
−1
11 [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)]

+ 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

= 𝜎2Q−1
11.2 − 𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11 [2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)] .

Next, we consider the AMSEM of β̂SP1 , and we therefore obtain

𝚪∗(β̂SP1 ) = lim
𝑛→∞
E

[√
𝑛(β̂SP1 − β1)

√
𝑛(β̂SP1 − β1)

⊤]
= E lim

𝑛→∞
[(T𝑛 − 𝜋Z𝑛𝐼 (Λ𝑛 ≤ 𝜆𝛼)) (T𝑛 − 𝜋Z𝑛𝐼 (Λ𝑛 ≤ 𝜆𝛼))⊤]

= E[(T − 𝜋Z 𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)) (T − 𝜋Z 𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼))
⊤]

= E[TT ⊤ − 𝜋TZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼) − 𝜋Z 𝐼 (𝜒
2
𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)T

⊤

+ 𝜋2ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[TT ⊤ − 2𝜋TZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼) + 𝜋
2ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[TT ⊤]︸    ︷︷    ︸
𝚪∗ (β̂UE

1 )

−2𝜋 E[TZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]︸                              ︷︷                              ︸
E3

+𝜋2 E[ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]︸                               ︷︷                               ︸
E4

= 𝜎2Q−1
11.2 − 2𝜋𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ 2𝜋Q−1
11Q12δδ

⊤Q21Q
−1
11 [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)]

+ 𝜋2𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ 𝜋2Q−1
11Q12δδ

⊤Q21Q
−1
11𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

= 𝜎2Q−1
11.2 − 𝜋(2 − 𝜋)𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11


2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 2𝜋𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

+𝜋2𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)


= 𝜎2Q−1

11.2 − 𝜋(2 − 𝜋)𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11 [2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)] .
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Let us regard 𝚪∗(β̂S1),

𝚪∗(β̂S1) = lim
𝑛→∞
E

[√
𝑛(β̂S1 − β1)

√
𝑛(β̂S1 − β1)

⊤]
= E lim

𝑛→∞
[(T𝑛 − 𝑐Z𝑛Λ−1

𝑛 )(T𝑛 − 𝑐Z𝑛Λ−1
𝑛 )⊤]

= E[(T − 𝑐Z𝜒−2𝑝2 (Δ)) (T − 𝑐Z𝜒−2𝑝2 (Δ))
⊤]

= E[TT ⊤ − 𝑐TZ⊤𝜒−2𝑝2 (Δ) − 𝑐ZT
⊤𝜒−2𝑝2 (Δ) + 𝑐

2ZZ⊤𝜒−4𝑝2 (Δ)]

= E[TT ⊤ − 2𝑐TZ⊤𝜒−2𝑝2 (Δ) + 𝑐
2ZZ⊤𝜒−4𝑝2 (Δ)]

= E[TT ⊤]︸    ︷︷    ︸
𝚪∗ (β̂UE

1 )

−2𝑐 E[TZ⊤𝜒−2𝑝2 (Δ)]︸               ︷︷               ︸
E6

+𝑐2 E[ZZ⊤𝜒−4𝑝2 (Δ)]︸               ︷︷               ︸
E7

.

Applying Equations (4.1) and (3.40) to E7, we get

E7 = E[ZZ⊤𝜒−4𝑝2 (Δ)]

= E[(𝜎2𝛀) 12Z∗((𝜎2𝛀) 12Z∗)⊤𝜒−4𝑝2 (Δ)]

= (𝜎2𝛀) 12E[Z∗(Z∗)⊤𝜒−4𝑝2 (Δ)] ((𝜎
2𝛀) 12 )⊤

= (𝜎2𝛀) 12
[
V(Z∗)E[𝜒−4𝑝2+2(Δ)] + E(Z

∗)E(Z∗)⊤E[𝜒−4𝑝2+4(Δ)]
]
((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12
[
I𝑝2E[𝜒−4𝑝2+2(Δ)] + (𝜎2𝛀)− 1

2ωδ((𝜎2𝛀)− 1
2ωδ)⊤E[𝜒−4𝑝2+4(Δ)]

]
((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12 ((𝜎2𝛀) 12 )⊤E[𝜒−4𝑝2+2(Δ)]

+ (𝜎2𝛀) 12 (𝜎2𝛀)− 1
2ωδ(ωδ)⊤((𝜎2𝛀)− 1

2 )⊤((𝜎2𝛀) 12 )⊤E[𝜒−4𝑝2+4(Δ)]

= 𝜎2𝛀E[𝜒−4𝑝2+2(Δ)] + ωδ(ωδ)
⊤E[𝜒−4𝑝2+4(Δ)]

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[𝜒−4𝑝2+2(Δ)] +Q

−1
11Q12δδ

⊤Q21Q
−1
11E[𝜒−4𝑝2+4(Δ)] .

Again, using conditional expectation, E6 becomes,

E6 = E[TZ⊤𝜒−2𝑝2 (Δ)]

= E[E(TZ⊤𝜒−2𝑝2 (Δ) |Z)]

= E[E(T |Z)Z⊤𝜒−2𝑝2 (Δ)]

= E[{E(T ) + 𝐶𝑜𝑣(T ,Z) [V(Z)]−1(Z − E(Z))}Z⊤𝜒−2𝑝2 (Δ)]

= E[{0 + (𝜎2𝛀) (𝜎2𝛀)−1(Z − ωδ)}Z⊤𝜒−2𝑝2 (Δ)]

= E[(Z − (−Q−1
11Q12δ))Z⊤𝜒−2𝑝2 (Δ)]

= E[ZZ⊤𝜒−2𝑝2 (Δ)]︸               ︷︷               ︸
E8

−(−Q−1
11Q12δ) E[Z⊤𝜒−2𝑝2 (Δ)]︸            ︷︷            ︸

E9

.
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By Equation (4.1) and Theorem 3.6.2, we may rewrite E8 and E9 as

E8 = E[ZZ⊤𝜒−2𝑝2 (Δ)]

= E[(𝜎2𝛀) 12Z∗((𝜎2𝛀) 12Z∗)⊤𝜒−2𝑝2 (Δ)]

= (𝜎2𝛀) 12E[Z∗(Z∗)⊤𝜒−2𝑝2 (Δ)] ((𝜎
2𝛀) 12 )⊤

= (𝜎2𝛀) 12
[
V(Z∗)E[𝜒−2𝑝2+2(Δ)] + E(Z

∗)E(Z∗)⊤E[𝜒−2𝑝2+4(Δ)]
]
((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12
[
I𝑝2E[𝜒−2𝑝2+2(Δ)] + (𝜎2𝛀)− 1

2ωδ((𝜎2𝛀)− 1
2ωδ)⊤E[𝜒−2𝑝2+4(Δ)]

]
((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12 ((𝜎2𝛀) 12 )⊤E[𝜒−2𝑝2+2(Δ)]

+ (𝜎2𝛀) 12 (𝜎2𝛀)− 1
2ωδ(ωδ)⊤((𝜎2𝛀)− 1

2 )⊤((𝜎2𝛀) 12 )⊤E[𝜒−2𝑝2+4(Δ)]

= 𝜎2𝛀E[𝜒−2𝑝2+2(Δ)] + ωδ(ωδ)
⊤E[𝜒−2𝑝2+4(Δ)]

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[𝜒−2𝑝2+2(Δ)] +Q

−1
11Q12δδ

⊤Q21Q
−1
11E[𝜒−2𝑝2+4(Δ)]

and

E9 = E[Z⊤𝜒−2𝑝2 (Δ)]

= E[((𝜎2𝛀) 12Z∗)⊤𝜒−2𝑝2 (Δ)]

= ((𝜎2𝛀) 12 )⊤((𝜎2𝛀)− 1
2ωδ)⊤E[𝜒−2𝑝2+2(Δ)]

= (−Q−1
11Q12δ)⊤E[𝜒−2𝑝2+2(Δ)] .

Thus, E6 can be rewritten as

E6 = 𝜎
2Q−1

11Q12Q
−1
22.1Q21Q

−1
11E[𝜒−2𝑝2+2(Δ)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[𝜒−2𝑝2+4(Δ)]

− (−Q−1
11Q12δ)(−Q−1

11Q12δ)
⊤
E[𝜒−2𝑝2+2(Δ)]

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[𝜒−2𝑝2+2(Δ)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[𝜒−2𝑝2+4(Δ)]

−Q−1
11Q12δδ

⊤Q21Q
−1
11E[𝜒−2𝑝2+2(Δ)]

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[𝜒−2𝑝2+2(Δ)]

−Q−1
11Q12δδ

⊤Q21Q
−1
11 (E[𝜒−2𝑝2+2(Δ)] − E[𝜒

−2
𝑝2+4(Δ)]).
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Then, by substituting E6 and E7 into 𝚪(β̂S1), we obtain

𝚪(β̂S1) = 𝜎2Q−1
11.2 − 2𝑐𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11E[𝜒−2𝑝2+2(Δ)]

+ 2𝑐Q−1
11Q12δδ

⊤Q21Q
−1
11 (E[𝜒−2𝑝2+2(Δ)] − E[𝜒

−2
𝑝2+4(Δ)])

+ 𝑐2𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[𝜒−4𝑝2+2(Δ)]

+ 𝑐2Q−1
11Q12δδ

⊤Q21Q
−1
11E[𝜒−4𝑝2+4(Δ)]

= 𝜎2Q−1
11.2 − 𝑐𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11 (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

+ 𝑐Q−1
11Q12δδ

⊤Q21Q
−1
11 (2E[𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒

−4
𝑝2+4(Δ)]).

Finally, we derive the AMSEM of β̂S+1 , which is

𝚪∗(β̂S+1 ) = lim
𝑛→∞
E

[√
𝑛(β̂S+1 − β1)

√
𝑛(β̂S+1 − β1)

⊤]
= E lim

𝑛→∞


{T𝑛 − 𝑐Z𝑛Λ−1

𝑛 −Z𝑛𝐼 (Λ𝑛 ≤ 𝑐) + 𝑐Z𝑛Λ−1
𝑛 𝐼 (Λ𝑛 ≤ 𝑐)}

{T𝑛 − 𝑐Z𝑛Λ−1
𝑛 −Z𝑛𝐼 (Λ𝑛 ≤ 𝑐) + 𝑐Z𝑛Λ−1

𝑛 𝐼 (Λ𝑛 ≤ 𝑐)}
⊤


= E lim

𝑛→∞


{(T𝑛 − 𝑐Z𝑛Λ−1

𝑛 ) − (1 − 𝑐Λ−1
𝑛 )Z𝑛𝐼 (Λ𝑛 ≤ 𝑐)}

{(T𝑛 − 𝑐Z𝑛Λ−1
𝑛 ) − (1 − 𝑐Λ−1

𝑛 )Z𝑛𝐼 (Λ𝑛 ≤ 𝑐)}⊤


= E


{(T − 𝑐Z𝜒−2𝑝2 (Δ)) − (1 − 𝑐𝜒−2𝑝2 (Δ))Z 𝐼 (𝜒

2
𝑝2 (Δ) ≤ 𝑐)}

{(T − 𝑐Z𝜒−2𝑝2 (Δ)) − (1 − 𝑐𝜒−2𝑝2 (Δ))Z 𝐼 (𝜒
2
𝑝2 (Δ) ≤ 𝑐)}

⊤


= E



(T − 𝑐Z𝜒−2𝑝2 (Δ)) (T − 𝑐Z𝜒−2𝑝2 (Δ))
⊤

−(T − 𝑐Z𝜒−2𝑝2 (Δ)) (1 − 𝑐𝜒
−2
𝑝2 (Δ))Z

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)
−(1 − 𝑐𝜒−2𝑝2 (Δ))Z 𝐼 (𝜒

2
𝑝2 (Δ) ≤ 𝑐) (T − 𝑐Z𝜒−2𝑝2 (Δ))

⊤

+(1 − 𝑐𝜒−2𝑝2 (Δ))
2
ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)


= E[(T − 𝑐Z𝜒−2𝑝2 (Δ)) (T − 𝑐Z)⊤𝜒−2𝑝2 (Δ)]︸                                               ︷︷                                               ︸

𝚪∗ (β̂S
1)

− 2E[(T − 𝑐Z𝜒−2𝑝2 (Δ)) (1 − 𝑐𝜒
−2
𝑝2 (Δ))Z

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

+ E[(1 − 𝑐𝜒−2𝑝2 (Δ))
2
ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= 𝚪∗(β̂S1) − 2E


(1 − 𝑐𝜒−2𝑝2 (Δ))TZ

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)
−𝑐𝜒−2𝑝2 (Δ) (1 − 𝑐𝜒

−2
𝑝2 (Δ))ZZ

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)


+ E[(1 − 𝑐𝜒−2𝑝2 (Δ))

2
ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]
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𝚪∗(β̂S+1 ) = 𝚪∗(β̂S1) − 2E[(1 − 𝑐𝜒−2𝑝2 (Δ))TZ
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]︸                                             ︷︷                                             ︸

E10

+ 2E[𝑐𝜒−2𝑝2 (Δ) (1 − 𝑐𝜒
−2
𝑝2 (Δ))ZZ

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]︸                                                         ︷︷                                                         ︸
E11

+ E[(1 − 𝑐𝜒−2𝑝2 (Δ))
2ZZ⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]︸                                               ︷︷                                               ︸
E12

.

Using conditional expectation, E10 becomes

E10 = E[(1 − 𝑐𝜒−2𝑝2 (Δ))TZ
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ))E(TZ
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐) |Z)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ))E(T |Z)Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ)){E(T ) + 𝐶𝑜𝑣(T ,Z) [V(Z)]−1(Z − E(Z))}Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ)){0 + (𝜎2𝛀) (𝜎2𝛀)−1(Z − ωδ)}Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ)) (Z − (−Q−1
11Q12δ))Z⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ))ZZ
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]︸                                             ︷︷                                             ︸

E13

− (−Q−1
11Q12δ) E[(1 − 𝑐𝜒−2𝑝2 (Δ))Z

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]︸                                          ︷︷                                          ︸
E14

.

By Theorem 3.6.2, E13 and E14 given as

E13 = E[(1 − 𝑐𝜒−2𝑝2 (Δ))ZZ
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ)) (𝜎
2𝛀) 12Z∗((𝜎2𝛀) 12Z)⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= (𝜎2𝛀) 12E[(1 − 𝑐𝜒−2𝑝2 (Δ))Z
∗(Z∗)⊤𝐼 (𝜒2𝑝2 ≤ 𝑐)] ((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12


V(Z∗)E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]

+E(Z∗)E(Z∗)⊤E[(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒
2
𝑝2+4(Δ) ≤ 𝑐)]

 ((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12


I𝑝2E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+


(𝜎2𝛀)− 1
2ωδ((𝜎2𝛀)− 1

2ωδ)⊤

×E[(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒
2
𝑝2+4(Δ) ≤ 𝑐)]



((𝜎2𝛀) 12 )⊤
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E13 = (𝜎2𝛀) 12 ((𝜎2𝛀) 12 )⊤E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]

+

(𝜎2𝛀) 12 (𝜎2𝛀)− 1

2ωδ(ωδ)⊤((𝜎2𝛀)− 1
2 )⊤((𝜎2𝛀) 12 )⊤

×E[(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒
2
𝑝2+4(Δ) ≤ 𝑐)]


= 𝜎2𝛀E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+ ωδ(ωδ)⊤E[(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒
2
𝑝2+4(Δ) ≤ 𝑐)]

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]

and

E14 = E[(1 − 𝑐𝜒−2𝑝2 (Δ))Z
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ)) ((𝜎
2𝛀) 12Z∗)⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= ((𝜎2𝛀) 12 )⊤((𝜎2𝛀)− 1
2ωδ)⊤E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

= (−Q−1
11Q12δ)⊤E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)] .

Replacing E13 and E14 in E10, then

E10 = 𝜎
2Q−1

11Q12Q
−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]

− (−Q−1
11Q12δ) (−Q−1

11Q12δ)
⊤
E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]

−Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)] .

Using Equation (3.40), we can write E11 and E12 as

E11 = E[𝑐𝜒−2𝑝2 (Δ)(1 − 𝑐𝜒
−2
𝑝2 (Δ))ZZ

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= E[𝑐𝜒−2𝑝2 (Δ)(1 − 𝑐𝜒
−2
𝑝2 (Δ)) (𝜎

2𝛀) 12Z∗((𝜎2𝛀) 12Z∗)⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= (𝜎2𝛀) 12E[𝑐𝜒−2𝑝2 (Δ)(1 − 𝑐𝜒
−2
𝑝2 (Δ))Z

∗(Z∗)⊤𝐼 (𝜒2𝑝2 ≤ 𝑐)] ((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12


V(Z∗)E[𝑐𝜒−2𝑝2+2(Δ) (1 − 𝑐𝜒

−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+


E(Z∗)E(Z∗)⊤

×E[𝑐𝜒−2𝑝2+4(Δ)(1 − 𝑐𝜒
−2
𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]



((𝜎2𝛀) 12 )⊤
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E11 = (𝜎2𝛀) 12


I𝑝2E[𝑐𝜒−2𝑝2+2(Δ)(1 − 𝑐𝜒

−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+


(𝜎2𝛀)− 1
2ωδ((𝜎2𝛀)− 1

2ωδ)⊤

×E[𝑐𝜒−2𝑝2+4(Δ)(1 − 𝑐𝜒
−2
𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]



((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12 ((𝜎2𝛀) 12 )⊤E[𝑐𝜒−2𝑝2+2(Δ)(1 − 𝑐𝜒
−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+

(𝜎2𝛀) 12 (𝜎2𝛀)− 1

2ωδ(ωδ)⊤((𝜎2𝛀)− 1
2 )⊤((𝜎2𝛀) 12 )⊤

×E[𝑐𝜒−2𝑝2+4(Δ) (1 − 𝑐𝜒
−2
𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]


= 𝜎2𝛀E[𝑐𝜒−2𝑝2+2(Δ) (1 − 𝑐𝜒

−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+ (ωδ)(ωδ)⊤E[𝑐𝜒−2𝑝2+4(Δ) (1 − 𝑐𝜒
−2
𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[𝑐𝜒−2𝑝2+2(Δ) (1 − 𝑐𝜒

−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[𝑐𝜒−2𝑝2+4(Δ)(1 − 𝑐𝜒

−2
𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]

and

E12 = E[(1 − 𝑐𝜒−2𝑝2 (Δ))
2ZZ⊤𝐼 (𝜒2𝑝2 ≤ 𝑐)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ))
2(𝜎2𝛀) 12Z∗((𝜎2𝛀) 12Z∗)⊤𝐼 (𝜒2𝑝2 ≤ 𝑐)]

= (𝜎2𝛀) 12E[(1 − 𝑐𝜒−2𝑝2 (Δ))
2Z∗(Z∗)⊤𝐼 (𝜒2𝑝2 ≤ 𝑐)] ((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12


V(Z∗)E[(1 − 𝑐𝜒−2𝑝2+2(Δ))
2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+E(Z∗)E(Z∗)⊤E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

 ((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12


I𝑝2E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+


(𝜎2𝛀)− 1
2ωδ((𝜎2𝛀)− 1

2ωδ)⊤

×E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]



((𝜎2𝛀) 12 )⊤

= (𝜎2𝛀) 12 ((𝜎2𝛀) 12 )⊤E[(1 − 𝑐𝜒−2𝑝2+2(Δ))
2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+

(𝜎2𝛀) 12 (𝜎2𝛀)− 1

2ωδ(ωδ)⊤((𝜎2𝛀)− 1
2 )⊤((𝜎2𝛀) 12 )⊤

×E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]


= 𝜎2𝛀E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+ ωδ(ωδ)⊤E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

= 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))

2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)] .
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Finally, substituting E10, E11, and E12 into 𝚪∗(β̂S+1 ) and rearranging the terms, we have

𝚪∗(β̂S+1 ) = 𝚪∗(β̂S1) − 2𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

− 2Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]

+ 2Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+ 2𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[𝑐𝜒−2𝑝2+2(Δ)(1 − 𝑐𝜒

−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+ 2Q−1
11Q12δδ

⊤Q21Q
−1
11E[𝑐𝜒−2𝑝2+4(Δ)(1 − 𝑐𝜒

−2
𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]

+ 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))

2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

= 𝚪∗(β̂S1)

− 2𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11

× E


(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)

−𝑐𝜒−2𝑝2+2(Δ) (1 − 𝑐𝜒
−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)


− 2Q−1

11Q12δδ
⊤Q21Q

−1
11

× E


(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒
2
𝑝2+4(Δ) ≤ 𝑐)

−𝑐𝜒−2𝑝2+4(Δ)(1 − 𝑐𝜒
−2
𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)


+ 2Q−1

11Q12δδ
⊤Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+ 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))

2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

= 𝚪∗(β̂S1)

− 2𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E


(1 − 𝑐𝜒−2𝑝2+2(Δ)) (1 − 𝑐𝜒

−2
𝑝2+2(Δ))

𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)


− 2Q−1

11Q12δδ
⊤Q21Q

−1
11E


(1 − 𝑐𝜒−2𝑝2+4(Δ)) (1 − 𝑐𝜒

−2
𝑝2+4(Δ))

𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)


+ 2Q−1

11Q12δδ
⊤Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+ 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))

2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]
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Hence,

𝚪∗(β̂S+1 ) = 𝚪∗(β̂S1) − 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

−Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))

2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

+ 2Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)] .

□

Using Equation (3.37) and the above AMSEMs, the result of the

asymptotic distributional quadratic risk (ADQR) of the proposed estimators depend on

the following theorem.

Theorem 4.1.5. Under the assumed regularity condition and local alternative {𝐾𝑛}, as
𝑛→ ∞, the ADQRs of the estimators are as follows:

ADQR(β̂UE
1 ) = 𝜎2tr[WQ−1

11.2],

ADQR(β̂RE
1 ) = ADQR(β̂UE

1 ) − 𝜎2tr[Q◦Q−1
22.1] + δ⊤Q◦δ,

ADQR(β̂LS
1 ) = ADQR(β̂UE

1 ) − 𝜋(2 − 𝜋)𝜎2tr[Q◦Q−1
22.1] + 𝜋2δ⊤Q◦δ,

ADQR(β̂PT
1 ) = ADQR(β̂UE

1 ) − 𝜎2tr[Q◦Q−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ δ⊤Q◦δ[2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

ADQR(β̂SP
1 ) = ADQR(β̂UE

1 ) − 𝜋(2 − 𝜋)𝜎2tr[Q◦Q−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ δ⊤Q◦δ[2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

ADQR(β̂S
1) = ADQR(β̂UE

1 ) − 𝑐𝜎2tr[Q◦Q−1
22.1] (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

+ 𝑐δ⊤Q◦δ(2𝐸 [𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒
−4
𝑝2+4(Δ)]),

ADQR(β̂S+
1 ) = ADQR(β̂S

1) − 𝜎2tr[Q◦Q−1
22.1]E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

− δ⊤Q◦δE[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

+ 2δ⊤Q◦δE[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)],

where 𝑐 = 𝑝2 − 2, 𝑝2 > 2, andQ◦ = Q21Q
−1
11WQ−1

11Q12.

Proof. The ADQRs of all estimators can be derived as follows:

ADQR(β̂UE1 ) = tr[W𝚪∗(β̂UE1 )]

= tr[W𝜎2Q−1
11.2]

= 𝜎2tr[WQ−1
11.2] .
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ADQR(β̂RE1 ) = tr[W𝚪∗(β̂RE1 )]

= tr[W (𝜎2Q−1
11 +Q−1

11Q12δδ
⊤Q21Q

−1
11 )]

= tr


W

©«

𝜎2Q−1
11 + 𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11︸                                         ︷︷                                         ︸

𝜎2Q−1
11.2

−𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11

+Q−1
11Q12δδ

⊤Q21Q
−1
11

ª®®®®®®®¬


= 𝜎2tr[WQ−1

11.2] − 𝜎2tr[WQ−1
11Q12Q

−1
22.1Q21Q

−1
11 ]

+ tr[WQ−1
11Q12δδ

⊤Q21Q
−1
11 ]

= ADQR(β̂UE1 ) − 𝜎2tr[Q21Q
−1
11WQ−1

11Q12Q
−1
22.1]

+ tr[δ⊤Q21Q
−1
11WQ−1

11Q12δ]

= ADQR(β̂UE1 ) − 𝜎2tr[Q21Q
−1
11WQ−1

11Q12Q
−1
22.1]

+ δ⊤Q21Q
−1
11WQ−1

11Q12δ

= ADQR(β̂UE1 ) − 𝜎2tr[Q◦Q−1
22.1] + δ⊤Q◦δ.

ADQR(β̂LS1 ) = tr[W𝚪∗(β̂LS1 )]

= tr
W ©«

𝜎2Q−1
11.2 − 𝜋(2 − 𝜋)𝜎2Q−1

11Q12Q
−1
22.1Q21Q

−1
11

+𝜋2Q−1
11Q12δδ

⊤Q21Q
−1
11

ª®¬


= 𝜎2tr[WQ−1
11.2] − 𝜋(2 − 𝜋)𝜎2tr[WQ−1

11Q12Q
−1
22.1Q21Q

−1
11 ]

+ 𝜋2tr[δ⊤Q21Q
−1
11WQ−1

11Q12δ]

= ADQR(β̂UE1 ) − 𝜋(2 − 𝜋)𝜎2tr[Q21Q
−1
11WQ−1

11Q12Q
−1
22.1]

+ 𝜋2δ⊤Q21Q
−1
11WQ−1

11Q12δ

= ADQR(β̂UE1 ) − 𝜋(2 − 𝜋)𝜎2tr[Q◦Q−1
22.1] + 𝜋2δ⊤Q◦δ.

ADQR(β̂PT1 ) = tr[W𝚪∗(β̂PT1 )]

= tr


W

©«
𝜎2Q−1

11.2 − 𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11


2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)
−𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)


ª®®®®¬


= 𝜎2tr[WQ−1
11.2] − 𝜎2tr[ Q21Q

−1
11WQ−1

11Q12Q
−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ tr[δ⊤Q21Q
−1
11WQ−1

11Q12δ] [2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)]
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ADQR(β̂PT1 ) = ADQR(β̂UE1 ) − 𝜎2tr[Q21Q
−1
11WQ−1

11Q12Q
−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ δ⊤Q21Q
−1
11WQ−1

11Q12δ[2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)]

= ADQR(β̂UE1 ) − 𝜎2tr[Q◦Q−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ δ⊤Q◦δ[2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)] .

ADQR(β̂SP1 ) = tr[W𝚪∗(β̂SP1 )]

= tr


W

©«
𝜎2Q−1

11.2 − 𝜋(2 − 𝜋)𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+Q−1
11Q12δδ

⊤Q21Q
−1
11


2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

−𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)


ª®®®®¬


= 𝜎2tr[WQ−1
11.1] − 𝜋(2 − 𝜋)𝜎2tr[WQ−1

11Q12Q
−1
22.1Q21Q

−1
11 ]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ tr[δ⊤Q21Q
−1
11WQ−1

11Q12δ]


2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)
−𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)


= ADQR(β̂UE1 ) − 𝜋(2 − 𝜋)𝜎2tr[Q21Q

−1
11WQ−1

11Q12Q
−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ δ⊤Q21Q
−1
11WQ−1

11Q12δ


2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

−𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)


= ADQR(β̂UE1 ) − 𝜋(2 − 𝜋)𝜎2tr[Q◦Q−1

22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ δ⊤Q◦δ[2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)] .

ADQR(β̂S1) = tr[W𝚪∗(β̂S1)]

= tr


W

©«
𝜎2Q−1

11.2 − 𝑐𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11


2E[𝜒−2𝑝2+2(Δ)]
−𝑐E[𝜒−4𝑝2+2(Δ)]


+𝑐Q−1

11Q12δδ
⊤Q21Q

−1
11


2E[𝜒−2𝑝2+2(Δ)] − 2[𝜒−2𝑝2+4,Δ]

+𝑐E[𝜒−4𝑝2+4(Δ)]



ª®®®®®®®¬


= 𝜎2tr[WQ−1

11.2] − 𝑐𝜎2tr[WQ−1
11Q12Q

−1
22.1Q21Q

−1
11 ]


2E[𝜒−2𝑝2+2(Δ)]
−𝑐E[𝜒−4𝑝2+2(Δ)]


+ 𝑐 tr[δ⊤Q21Q

−1
11WQ−1

11Q12δ]

2E[𝜒−2𝑝2+2(Δ)] − 2[𝜒−2𝑝2+4(Δ)]

+𝑐E[𝜒−4𝑝2+4(Δ)]
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ADQR(β̂S1) = ADQR(β̂UE1 ) − 𝑐𝜎2tr[Q21Q
−1
11WQ−1

11Q12Q
−1
22.1]


2E[𝜒−2𝑝2+2(Δ)]
−𝑐E[𝜒−4𝑝2+2(Δ)]


+ 𝑐δ⊤Q21Q

−1
11WQ−1

11Q12δ


2E[𝜒−2𝑝2+2(Δ)] − 2[𝜒−2𝑝2+4(Δ)]

+𝑐E[𝜒−4𝑝2+4(Δ)]


= ADQR(β̂UE1 ) − 𝑐𝜎2tr[Q◦Q−1

22.1] (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒
−4
𝑝2+2(Δ)])

+ 𝑐δ⊤Q◦δ[2E[𝜒−2𝑝2+2(Δ)] − 2[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒
−4
𝑝2+4] (Δ)] .

ADQR(β̂S+1 ) = tr[W𝚪∗(β̂S+1 )]

= tr


W

©«
𝚪∗(β̂S1)

−𝜎2Q−1
11Q12Q

−1
22.1Q21Q

−1
11E

[
(1−𝑐𝜒−2𝑝2+2 (Δ))

2

𝐼 (𝜒2𝑝2+2 (Δ)≤𝑐)

]
+Q−1

11Q12δδ
⊤Q21Q

−1
11

{
2E[(1−𝑐𝜒−2𝑝2+2 (Δ))𝐼 (𝜒

2
𝑝2+2

(Δ)≤𝑐)]

−E[(1−𝑐𝜒−2𝑝2+4 (Δ))
2
𝐼 (𝜒2𝑝2+4 (Δ)≤𝑐)]

}
ª®®®®®®¬


= tr[W𝚪∗(β̂S1)]

− 𝜎2tr[WQ−1
11Q12Q

−1
22.1Q21Q

−1
11 ]E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+ tr[δ⊤Q21Q
−1
11WQ−1

11Q12δ]

2E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)])

−E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]


= ADQR(β̂S1)

− 𝜎2tr[Q21Q
−1
11WQ−1

11Q12Q
−1
22.1]E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+ δ⊤Q21Q
−1
11WQ−1

11Q12δ


2E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)])

−E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]


= ADQR(β̂S1) − 𝜎2tr[Q◦Q−1

22.1]E[(1 − 𝑐𝜒−2𝑝2+2(Δ))
2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

− δ⊤Q◦δE[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

+ 2δ⊤Q◦δE[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)] .

□

In the ADQR analysis, we exclude the case Q12 = 0, since in this

situation Q21Q
−1
11WQ−1

11Q12 = 0 and Q−1
11.2 = Q−1

11 +Q−1
11Q12Q

−1
22.1Q21Q

−1
11 = Q−1

11 .

The ADQRs of all estimators are then reduced to a common value 𝜎2𝑡𝑟 [WQ−1
11 ], which

is the ADQR of β̂UE1 . Hence, all estimators become ADQR equivalent. In the remaining

discussion, we assume thatQ12 is not null (Q12 ≠ 0).
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The ADQR of β̂UE1 is uncorrelated with the UPI and so does not de-

pend on δ while the other estimators are functions of δ. In Theorem 4.1.5, the ADQR

expressions are explained as a loss function of the Mahalanobis distance. We consider

the special case ofW = 𝜎−2Q11.2 and𝜎2tr[WQ−1
11.2] = 𝑝1. We note that ADQR(β̂UE1 )

reduces to 𝑝1, which is constant and independent of δ. The simplified ADQR expres-

sions are provided in the following corollary.

Corollary 2. ForW = 𝜎−2Q11.2, the ADQR expressions simplify to

ADQR(β̂UE
1 ) = 𝑝1,

ADQR(β̂RE
1 ) = 𝑝1 − tr[Q∗Q−1

22.1] + Δ∗,

ADQR(β̂LS
1 ) = 𝑝1 − 𝜋(2 − 𝜋)𝑡𝑟 [Q∗Q−1

22.1] + 𝜋2Δ∗,

ADQR(β̂PT
1 ) = 𝑝1 − tr[Q∗Q−1

22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ Δ∗ [2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

ADQR(β̂SP
1 ) = 𝑝1 − 𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ Δ∗ [2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

ADQR(β̂S
1) = 𝑝1 − 𝑐tr[Q∗Q−1

22.1] (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒
−4
𝑝2+2(Δ)])

+ 𝑐Δ∗(2𝐸 [𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒
−4
𝑝2+4(Δ)]),

ADQR(β̂S+
1 ) = ADQR(β̂S

1) − tr[Q∗Q−1
22.1]E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

− Δ∗E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

+ 2Δ∗E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)],

where 𝑐 = 𝑝2 − 2, 𝑝2 > 2, Δ∗ = 𝜎−2δ⊤Q∗δ andQ∗ = Q21Q
−1
11Q11.2Q

−1
11Q12.

The RE, LS, PT, SP, S, and S+ estimators are compared with the UE

using ADQR. For comparison, the following definition is very helpful.

Definition 4.1.1. LetB1 be the parameter space of β1. If two estimators β̂0
1 and β̂

∗
1 are

such that ADQR(β̂0
1) ≤ ADQR(β̂∗

1) for all values of β1 ∈ B1, with strict inequality for

at least one β1, we say that β̂0
1 dominates β̂

∗
1.
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Theorem 4.1.6. (Courant-Fischer (Gruber, 1998, p. 205)) IfB andD are two positive

semi-definite matrices, both of order (𝑚 × 𝑚), andD is nonsingular, then

𝑐ℎmin(BD−1) ≤ x
⊤Bx

x⊤Dx
≤ 𝑐ℎmax(BD−1), (4.2)

where 𝑐ℎmin(·) and 𝑐ℎmax(·) are the smallest and largest eigenvalues of (·), and x is

a column vector of order (𝑚 × 1). We note that the above lower and upper bounds are
equal to the infimum and supremum, respectively, of the ratio x⊤Bx

x⊤Dx for x ≠ 0. For

D = I , the ratio is known as the Rayleigh quotient for matrixB.

Further, we consider Theorem 4.1.6 and set W = 𝜎−2Q11.2, then

Q◦ = 𝜎−2Q21Q
−1
11Q11.2Q

−1
11Q12 = 𝜎−2Q∗, so we have

𝑐ℎmin(Q∗Q−1
22.1) ≤

𝜎−2δ⊤Q∗δ

𝜎−2δ⊤Q22.1δ
≤ 𝑐ℎmax(Q∗Q−1

22.1)

𝑐ℎmin(Q∗Q−1
22.1) ≤

Δ∗

Δ
≤ 𝑐ℎmax(Q∗Q−1

22.1)

Δ𝑐ℎmin(Q∗Q−1
22.1) ≤ Δ∗ ≤ Δ𝑐ℎmax(Q∗Q−1

22.1), (4.3)

where 𝑐ℎmin(Q∗Q−1
22.1) and 𝑐ℎmax(Q∗Q−1

22.1) are the smallest and largest eigenvalues
of (Q∗Q−1

22.1).

The comparison of the ADQR can be regarded as follows:

4.1.2.1 Comparing β̂UE1 and β̂RE1
Consider the difference between the ADQRs of β̂UE1 and β̂RE1 ,

then we get, ADQR(β̂UE1 )−ADQR(β̂RE1 ) = tr[Q∗Q−1
22.1] −Δ∗. It can be written in terms

of Δ∗ as

Δ∗ = ADQR(β̂RE1 ) − ADQR(β̂UE1 ) + tr[Q∗Q−1
22.1] .

As a consequence of the Courant-Fischer Theorem using (4.3), we can write

Δ𝑐ℎmin(Q∗Q−1
22.1) ≤ ADQR(β̂RE1 )−ADQR(β̂UE1 )+tr[Q∗Q−1

22.1] ≤ Δ𝑐ℎmax(Q∗Q−1
22.1).

Then, we get︷                               ︸︸                               ︷
ADQR(β̂UE1 ) − tr[Q∗Q−1

22.1]
+Δ𝑐ℎmin(Q∗Q−1

22.1)︸                               ︷︷                               ︸ ≤ ADQR(β̂RE1 ) ≤

︷                               ︸︸                               ︷
ADQR(β̂UE1 ) − tr[Q∗Q−1

22.1]
+Δ𝑐ℎmax(Q∗Q−1

22.1)︸                               ︷︷                               ︸ . (4.4)
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If the null hypothesis is true (that is, UPI is correct or Δ = 0), then the lower and upper

bounds of ADQR(β̂RE1 ) in the above equation are the same, and we have

ADQR(β̂RE1 ) = ADQR(β̂UE1 ) − tr[Q∗Q−1
22.1]

ADQR(β̂UE1 ) − ADQR(β̂RE1 ) = tr[Q∗Q−1
22.1] ≥ 0,

which means that β̂RE1 strictly outperforms β̂UE1 when the restriction is correctly speci-

fied.

Next, consider the right-hand side of Equation (4.4) for Δ ≤
tr[Q∗Q−1

22.1]
𝑐ℎmax (Q∗Q−1

22.1)
,

ADQR(β̂RE1 ) ≤ ADQR(β̂UE1 ) − tr[Q∗Q−1
22.1] +

[
tr[Q∗Q−1

22.1]
𝑐ℎmax(Q∗Q−1

22.1)

]
𝑐ℎmax(Q∗Q−1

22.1)

ADQR(β̂RE1 ) ≤ ADQR(β̂UE1 ),

which shows that β̂RE1 also dominates β̂UE1 in the interval Δ ∈
[
0,

tr[Q∗Q−1
22.1]

𝑐ℎmax (Q∗Q−1
22.1)

)
. We

also consider the interval Δ ≥ tr[Q∗Q−1
22.1]

𝑐ℎmin (Q∗Q−1
22.1)

, the left-hand side of Equation (4.4) is

ADQR(β̂UE1 ) − tr[Q∗Q−1
22.1] +

[
tr[Q∗Q−1

22.1]
𝑐ℎmin(Q∗Q−1

22.1)

]
𝑐ℎmin(Q∗Q−1

22.1) ≤ ADQR(β̂RE1 )

ADQR(β̂UE1 ) ≤ ADQR(β̂RE1 ).

Hence, β̂UE1 outperforms β̂RE1 for Δ ∈
[

tr[Q∗Q−1
22.1]

𝑐ℎmin (Q∗Q−1
22.1)

,∞
)
. Clearly, the ADQR of β̂RE1

becomes unbounded beyond tr[Q∗Q−1
22.1]

𝑐ℎmin (Q∗Q−1
22.1)

when Δ moves away from the null hypoth-

esis.

4.1.2.2 Comparing β̂UE1 and β̂LS1
The difference between ADQR of β̂UE1 and β̂LS1 is given as

ADQR(β̂UE1 ) − ADQR(β̂LS1 ) = 𝜋(2 − 𝜋)tr[Q∗Q−1
22.1] − 𝜋2Δ∗, which gives

Δ∗ =
ADQR(β̂LS1 ) − ADQR(β̂UE1 ) + 𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]
𝜋2

. (4.5)
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Replacing Equation (4.5) in Equation (4.3) and solving for ADQR(β̂LS1 ), we have

︷                       ︸︸                       ︷
ADQR(β̂UE1 )

−𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]

+𝜋2Δ𝑐ℎmin(Q∗Q−1
22.1)︸                       ︷︷                       ︸

≤ ADQR(β̂LS1 ) ≤

︷                       ︸︸                       ︷
ADQR(β̂UE1 )

−𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]

+𝜋2Δ𝑐ℎmax(Q∗Q−1
22.1)︸                       ︷︷                       ︸

. (4.6)

For 𝜋 ∈ (0, 1) and Δ = 0, we get

ADQR(β̂LS1 ) = ADQR(β̂UE1 ) − 𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]

ADQR(β̂UE1 ) − ADQR(β̂LS1 ) = 𝜋(2 − 𝜋)tr[Q∗Q−1
22.1] ≥ 0.

Thus, we conclude that β̂LS1 outperforms β̂UE1 under the null hypothesis. Moreover, the

ADQR of β̂LS1 decreases as 𝜋 increases, and becomes equal to the ADQR of β̂UE1 when

𝜋 = 1. For Δ ∈
[
0,

𝜋(2−𝜋)tr[Q∗Q−1
22.1]

𝜋2𝑐ℎmax (Q∗Q−1
22.1)

)
, the right-hand side of Equation (4.6) reduces to

ADQR(β̂LS1 ) ≤ ADQR(β̂UE1 ),

which means that β̂LS1 performs better than β̂UE1 . On the other hand, the left-hand side

of Equation (4.6) under Δ ∈
[
𝜋(2−𝜋)tr[Q∗Q−1

22.1]
𝜋2𝑐ℎmin (Q∗Q−1

22.1)
,∞

)
reduces to

ADQR(β̂UE1 ) ≤ ADQR(β̂LS1 ),

which indicates the superiority of β̂UE1 in this region.

4.1.2.3 Comparing β̂UE1 , β̂PT1 , and β̂SP1
We express ADQR of β̂SP1 in terms of ADQR(β̂SP1 ) as

ADQR(β̂SP1 ) = ADQR(β̂UE1 ) − 𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ Δ∗ [2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

and solving for Δ∗, we get

Δ∗ =
ADQR(β̂SP1 ) − ADQR(β̂UE1 ) + 𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)
[2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)]

. (4.7)
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A solution of ADQR(β̂SP1 ) after replacing Equation (4.7) in Equation (4.3) is given

below

ADQR(β̂SP1 ) ≤

︷                                                    ︸︸                                                    ︷
ADQR(β̂UE1 ) − 𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]𝐻∗
𝑝2+2

+Δ𝑐ℎmax(Q∗Q−1
22.1)


2𝜋𝐻∗

𝑝2+2

−𝜋(2 − 𝜋)𝐻∗
𝑝2+4

︸                                                    ︷︷                                                    ︸
, (4.8)

and ︷                                                    ︸︸                                                    ︷
ADQR(β̂UE1 ) − 𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]𝐻∗
𝑝2+2

+Δ𝑐ℎmin(Q∗Q−1
22.1)


2𝜋𝐻∗

𝑝2+2

−𝜋(2 − 𝜋)𝐻∗
𝑝2+4

︸                                                    ︷︷                                                    ︸
≤ ADQR(β̂SP1 ) (4.9)

where 𝐻∗
𝜈 = 𝐻𝜈 (𝜒2𝑝2,𝛼;Δ). When the hypothesis is true, Equations (4.8) and (4.9) are

equal and we have

ADQR(β̂UE1 ) − ADQR(β̂SP1 ) = 𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) ≥ 0,

which indicates that β̂SP1 performs better than β̂UE1 at Δ∗ = 0. Now, from Equation (4.8)

for the interval

Δ ∈
[
0,

𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]𝐻∗

𝑝2+2

𝑐ℎmax(Q∗Q−1
22.1) [2𝜋𝐻∗

𝑝2+2 − 𝜋(2 − 𝜋)𝐻
∗
𝑝2+4]

)
,

we have ADQR(β̂SP1 ) − ADQR(β̂UE1 ) ≤ 0. This means that β̂SP1 dominates β̂UE1 . Simi-

larly, from Equation (4.9) for

Δ ∈
[

𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]𝐻∗

𝑝2+2

𝑐ℎmin(Q∗Q−1
22.1) [2𝜋𝐻∗

𝑝2+2 − 𝜋(2 − 𝜋)𝐻
∗
𝑝2+4]

,∞
)

becomes ADQR(β̂SP1 ) − ADQR(β̂UE1 ) ≥ 0, which is β̂UE1 outperforming β̂SP1 .

The preliminary test estimator (β̂PT1 ) is a special case of the
shrinkage preliminary test estimator (β̂SP1 ) for the choice of 𝜋 = 1. Hence, β̂PT1 performs

better than β̂UE1 when

Δ ∈
[
0,

tr[Q∗Q−1
22.1]𝐻∗

𝑝2+2

𝑐ℎmax(Q∗Q−1
22.1) [2𝐻∗

𝑝2+2 − 𝐻
∗
𝑝2+4]

)
and the reverse is true when Δ ∈

[
tr[Q∗Q−1

22.1]𝐻
∗
𝑝2+2

𝑐ℎmin (Q∗Q−1
22.1) [2𝐻

∗
𝑝2+2

−𝐻∗
𝑝2+4

] ,∞
)
.
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4.1.2.4 Comparing β̂UE1 , β̂S1 , and β̂
S+
1

In order to compare the ADQR of β̂S1 and β̂
UE
1 , normally, we

write ADQR(β̂S1) as

ADQR(β̂S1) = ADQR(β̂UE1 ) − 𝑐tr[Q∗Q−1
22.1] (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

+ 𝑐Δ∗(2E[𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒
−4
𝑝2+4(Δ)]). (4.10)

Using a trivial improvement of a result (2.2.13d) and (2.2.13e) cited in Saleh (2006,

p. 32) as

ΔE[𝜒−4𝑝2+4(Δ)] = E[𝜒
−2
𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)]

E[𝜒−2𝑝2+2(Δ)] = 𝑐E[𝜒
−4
𝑝2+2(Δ)] + ΔE[𝜒−4𝑝2+4(Δ)] (4.11)

and

2E[𝜒−4𝑝2+4(Δ)] = E[𝜒
−2
𝑝2+2(Δ)] − E[𝜒

−2
𝑝2+4(Δ)]

4E[𝜒−4𝑝2+4(Δ)] = 2E[𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] . (4.12)

Replacing Equations (4.11) and (4.12) in Equation (4.10), we get

ADQR(β̂S1) − ADQR(β̂UE1 ) = −𝑐tr[Q∗Q−1
22.1]


2
{
𝑐E[𝜒−4𝑝2+2(Δ)] + ΔE[𝜒−4𝑝2+4(Δ)]

}
−𝑐E[𝜒−4𝑝2+2(Δ)]


+ 𝑐Δ∗(4E[𝜒−4𝑝2+4(Δ)] + 𝑐E[𝜒

−4
𝑝2+4(Δ)])

= −𝑐tr[Q∗Q−1
22.1]


2𝑐E[𝜒−4𝑝2+2(Δ)] + 2ΔE[𝜒−4𝑝2+4(Δ)]

−𝑐E[𝜒−4𝑝2+2(Δ)]


+ 𝑐(4 + 𝑐)Δ∗E[𝜒−4𝑝2+4(Δ)]

= −𝑐tr[Q∗Q−1
22.1]

[
𝑐E[𝜒−4𝑝2+2(Δ)] + 2ΔE[𝜒−4𝑝2+4(Δ)]

]
+ 𝑐(4 + 𝑝2 − 2)Δ∗E[𝜒−4𝑝2+4(Δ)]

= −𝑐tr[Q∗Q−1
22.1]


𝑐E[𝜒−4𝑝2+2(Δ)] + 2ΔE[𝜒−4𝑝2+4(Δ)]

− (𝑝2+2)Δ∗

tr[Q∗Q−1
22.1]
E[𝜒−4𝑝2+4(Δ)]


= −𝑐tr[Q∗Q−1

22.1]


𝑐E[𝜒−4𝑝2+2(Δ)]

+2ΔE[𝜒−4𝑝2+4(Δ)]
{
1 − (𝑝2+2)

2tr[Q∗Q−1
22.1]

Δ∗

Δ

} .
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Since the expectations E[𝜒−4𝑝2+2(Δ)] and E[𝜒
−4
𝑝2+4(Δ)] are positive,

ADQR(β̂S1) − ADQR(β̂UE1 ) ≥ 0 if 1 − (𝑝2 + 2)
2tr[Q∗Q−1

22.1]
Δ∗

Δ
≥ 0,

and 𝑝2 ≥ 3. By Equation (4.3), we write

1 − (𝑝2 + 2)
2tr[Q∗Q−1

22.1]
Δ∗

Δ
≤ 0

1 − (𝑝2 + 2)
2tr[Q∗Q−1

22.1]
𝑐ℎmax(Q∗Q−1

22.1) ≥ 0,

which reduces to

tr[Q∗Q−1
22.1]

𝑐ℎmax(Q∗Q−1
22.1)

≥ (𝑝2 + 2)
2

.

Thus, β̂S1 performs better than β̂
UE
1 for all Δ, 𝑝2 ≥ 3, and Q ∈ Q where

Q =

{
Q :

tr[Q∗Q−1
22.1]

𝑐ℎmax(Q∗Q−1
22.1)

≥ (𝑝2 + 2)
2

}
.

Next, consider the ADQR difference between β̂S1 and β̂
S+
1 as

ADQR(β̂S1) − ADQR(β̂S+1 ) = tr[Q∗Q−1
22.1]E

[(
1 − 𝑐𝜒−2𝑝2+2(Δ)

)2
𝐼
(
𝜒2𝑝2+2(Δ) ≤ 𝑐

)]
+ Δ∗E

[(
1 − 𝑐𝜒−2𝑝2+4(Δ)

)2
𝐼
(
𝜒2𝑝2+4(Δ) ≤ 𝑐

)]
− 2Δ∗E

[(
1 − 𝑐𝜒−2𝑝2+2(Δ)

)
𝐼
(
𝜒2𝑝2+2(Δ) ≤ 𝑐

)]
.

Since,

E

[(
1 − 𝑐𝜒−2𝑝2+2(Δ)

)2
𝐼
(
𝜒2𝑝2+2(Δ) ≤ 𝑐

)]
≥ 0,

E

[(
1 − 𝑐𝜒−2𝑝2+4(Δ)

)2
𝐼
(
𝜒2𝑝2+4(Δ) ≤ 𝑐

)]
≥ 0,

and

E
[(
1 − 𝑐𝜒−2𝑝2+2(Δ)

)
𝐼
(
𝜒2𝑝2+2(Δ) ≤ 𝑐

)]
≤ 0.

It indicates that ADQR(β̂S+1 ) ≤ ADQR(β̂S1) for all Δ and Q ∈ Q with 𝑝2 ≥ 3. That

means the β̂S+1 dominates β̂S1 and hence, β̂
S+
1 also outperforms β̂UE1 . Thus,

ADQR(β̂S+1 ) ≤ ADQR(β̂S1) ≤ ADQR(β̂UE1 ).
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4.1.2.5 Comparing β̂RE1 and β̂LS1
Both of ADQR(β̂RE1 ) and ADQR(β̂LS1 ) are unbound functions

of Δ∗ and the performance of β̂LS1 is controlled by the values of 𝜋 ∈ (0, 1). The differ-
ence between ADQR of β̂RE1 and β̂LS1 is

ADQR(β̂RE1 ) − ADQR(β̂LS1 ) = −(1 − 𝜋)2tr[Q∗Q−1
22.1] + (1 − 𝜋2)Δ∗. (4.13)

For Δ = 0, ADQR(β̂RE1 ) − ADQR(β̂LS1 ) < 0. This means that ADQR(β̂RE1 ) holds
superiority over ADQR(β̂LS1 ) under the null hypothesis. For Δ > 0, Equation (4.13)

can be written in the terms

Δ∗ =
ADQR(β̂RE1 ) − ADQR(β̂LS1 ) + (1 − 𝜋)2tr[Q∗Q−1

22.1]
(1 − 𝜋2) .

Replacing Δ∗ in Equation (4.3) gives︷                               ︸︸                               ︷
ADQR(β̂LS1 )

−(1 − 𝜋)2tr[Q∗Q−1
22.1]

+(1 − 𝜋2)Δ𝑐ℎmin(Q∗Q−1
22.1)︸                               ︷︷                               ︸

≤ ADQR(β̂RE1 ) ≤

︷                               ︸︸                               ︷
ADQR(β̂LS1 )

−(1 − 𝜋)2tr[Q∗Q−1
22.1]

+(1 − 𝜋2)Δ𝑐ℎmax(Q∗Q−1
22.1)︸                               ︷︷                               ︸

. (4.14)

Next, consider the right-hand side of Equation (4.14) for the

interval

0 ≤ Δ <
(1 − 𝜋)2tr[Q∗Q−1

22.1]
(1 − 𝜋2)𝑐ℎmax(Q∗Q−1

22.1)
,

ADQR(β̂RE1 ) ≤ ADQR(β̂LS1 ). It indicates that β̂RE1 dominates β̂LS1 when the null hy-

pothesis is true or nearly true. On the other hand, consider the left-hand side of Equation

(4.14), ADQR(β̂LS1 ) ≤ ADQR(β̂RE1 ), so that the null hypothesis does not hold when

Δ ≥
(1 − 𝜋)2tr[Q∗Q−1

22.1]
(1 − 𝜋2)𝑐ℎmin(Q∗Q−1

22.1)
.

4.1.2.6 Comparing β̂RE1 , β̂PT1 , and β̂SP1
First, we want to compare the ADQR of β̂RE1 and β̂SP1 . Note

that

ADQR(β̂RE1 ) − ADQR(β̂SP1 ) = −[1 − 𝜋(2 − 𝜋)𝐻∗
𝑝2+2]tr[Q

∗Q−1
22.1]

+ Δ∗ [1 − 2𝜋𝐻∗
𝑝2+2 + 𝜋(2 − 𝜋)𝐻

∗
𝑝2+4],
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where 𝐻∗
𝜈 = 𝐻𝜈 (𝜒2𝑝2,𝛼;Δ) and

Δ∗ =
ADQR(β̂RE1 ) − ADQR(β̂SP1 ) + [1 − 𝜋(2 − 𝜋)𝐻∗

𝑝2+2]tr[Q
∗Q−1

22.1]
[1 − 2𝜋𝐻∗

𝑝2+2 + 𝜋(2 − 𝜋)𝐻
∗
𝑝2+4]

.

By Equation (4.3), we get

ADQR(β̂RE1 ) ≤

︷                                                           ︸︸                                                           ︷
ADQR(β̂SP1 ) − [1 − 𝜋(2 − 𝜋)𝐻∗

𝑝2+2]tr[Q
∗Q−1

22.1]

+Δ𝑐ℎmax(Q∗Q−1
22.1)


1 − 2𝜋𝐻∗

𝑝2+2

+𝜋(2 − 𝜋)𝐻∗
𝑝2+4

︸                                                           ︷︷                                                           ︸
(4.15)

and ︷                                                           ︸︸                                                           ︷
ADQR(β̂SP1 ) − [1 − 𝜋(2 − 𝜋)𝐻∗

𝑝2+2]tr[Q
∗Q−1

22.1]

+Δ𝑐ℎmin(Q∗Q−1
22.1)


1 − 2𝜋𝐻∗

𝑝2+2

+𝜋(2 − 𝜋)𝐻∗
𝑝2+4

︸                                                           ︷︷                                                           ︸
≤ ADQR(β̂RE1 ). (4.16)

When the null hypothesis is true, Equations (4.15) and (4.16) are equal and we have

ADQR(β̂RE1 ) − ADQR(β̂SP1 ) = −[1 − 𝜋(2 − 𝜋)𝐻∗
𝑝2+2]tr[Q

∗Q−1
22.1] < 0.

This indicates that β̂RE1 outperforms β̂SP1 when Δ = 0.

For the general case Δ > 0, consider Equation (4.15), we have

ADQR(β̂RE1 ) ≤ ADQR(β̂SP1 ) and then β̂RE1 dominates β̂SP1 when

Δ ∈
[
0,

[1 − 𝜋(2 − 𝜋)𝐻∗
𝑝2+2]tr[Q

∗Q−1
22.1]

𝑐ℎmax(Q∗Q−1
22.1) [1 − 2𝜋𝐻∗

𝑝2+2 + 𝜋(2 − 𝜋)𝐻
∗
𝑝2+4]

)
.

Again, for Equation (4.16), we get ADQR(β̂SP1 ) ≤ ADQR(β̂RE1 ), which means that the
dominance situation changes in support of the β̂SP1 when

Δ ∈
[

[1 − 𝜋(2 − 𝜋)𝐻∗
𝑝2+2]tr[Q

∗Q−1
22.1]

𝑐ℎmin(Q∗Q−1
22.1) [1 − 2𝜋𝐻∗

𝑝2+2 + 𝜋(2 − 𝜋)𝐻
∗
𝑝2+4]

,∞
)
.

From the above results when Δ = 0 and 𝜋 = 1, β̂RE1 performs

better than β̂PT1 . For Δ > 0 and 𝜋 = 1, the use of β̂RE1 is suggested for

Δ ≤
(1 − 𝐻∗

𝑝2+2)tr[Q
∗Q−1

22.1]
𝑐ℎmax(Q∗Q−1

22.1) [1 − 2𝐻∗
𝑝2+2 + 𝐻

∗
𝑝2+4]

,
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but becomes inferior to β̂PT1 when

Δ ≥
(1 − 𝐻∗

𝑝2+2)tr[Q
∗Q−1

22.1]
𝑐ℎmin(Q∗Q−1

22.1) [1 − 2𝐻∗
𝑝2+2 + 𝐻

∗
𝑝2+4]

.

4.1.2.7 Comparing β̂RE1 , β̂S1 and β̂
S+
1

The difference in ADQR of β̂RE1 and β̂S1 can be written as

ADQR(β̂RE1 ) − ADQR(β̂S1) = −tr[Q∗Q−1
22.1] + Δ∗

+ 𝑐tr[Q∗Q−1
22.1]

[
2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)]

]
− 𝑐Δ∗

[
2E[𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒

−4
𝑝2+4(Δ)]

]
= −tr[Q∗Q−1

22.1]
(
1 − 𝑐

{
2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)]

})
Δ∗

(
1 − 𝑐

{
2E[𝜒−2𝑝2+2 (Δ)]−2E[𝜒

−2
𝑝2+4

(Δ)]
+𝑐E[𝜒−4𝑝2+4 (Δ)]

})
.

Using Equation (4.12), we can rewrite this as

ADQR(β̂RE1 ) − ADQR(β̂S1) = −tr[Q∗Q−1
22.1]

(
1 − 𝑐

{
2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)]

})
Δ∗

(
1 − 𝑐(𝑝2 + 2)E[𝜒−4𝑝2+4(Δ)]

)
.

and solving for Δ∗, we get

Δ∗ =

ADQR(β̂RE1 ) − ADQR(β̂S1) + tr[Q∗Q−1
22.1]

©«1 − 𝑐

2E[𝜒−2𝑝2+2(Δ)]
−𝑐E[𝜒−4𝑝2+2(Δ)]

ª®¬
1 − 𝑐(𝑝2 + 2)E[𝜒−4𝑝2+4(Δ)]

.

Using Equation (4.3), we obtain

ADQR(β̂RE1 ) ≤

︷                                                                   ︸︸                                                                   ︷
ADQR(β̂S1) − tr[Q∗Q−1

22.1]
©«1 − 𝑐


2E[𝜒−2𝑝2+2(Δ)]
−𝑐E[𝜒−4𝑝2+2(Δ)]

ª®¬
+Δ𝑐ℎmax(Q∗Q−1

22.1)
©«1 −


𝑐(𝑝2 + 2)
E[𝜒−4𝑝2+4(Δ)]

ª®¬︸                                                                   ︷︷                                                                   ︸
(4.17)
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and ︷                                                                   ︸︸                                                                   ︷
ADQR(β̂S1) − tr[Q∗Q−1

22.1]
©«1 − 𝑐


2E[𝜒−2𝑝2+2(Δ)]
−𝑐E[𝜒−4𝑝2+2(Δ)]

ª®¬
+Δ𝑐ℎmin(Q∗Q−1

22.1)
©«1 −


𝑐(𝑝2 + 2)
E[𝜒−4𝑝2+4(Δ)]

ª®¬︸                                                                   ︷︷                                                                   ︸
≤ ADQR(β̂RE1 ). (4.18)

From Equation (4.17) for the interval

Δ ∈
0,

tr[Q∗Q−1
22.1]

(
1 − 𝑐

[
2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)]

] )
𝑐ℎmax(Q∗Q−1

22.1)
(
1 − 𝑐(𝑝2 + 2)E[𝜒−4𝑝2+4(Δ)]

) ª®®¬ ,
ADQR(β̂RE1 ) ≤ ADQR(β̂S1) shows that β̂RE1 dominates β̂S1 . While from Equation (4.18)

for the interval

Δ ∈

tr[Q∗Q−1

22.1]
(
1 − 𝑐

[
2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)]

] )
𝑐ℎmin(Q∗Q−1

22.1)
(
1 − 𝑐(𝑝2 + 2)E[𝜒−4𝑝2+4(Δ)]

) ,∞
ª®®¬ ,

ADQR(β̂S1) ≤ ADQR(β̂RE1 ) shows that β̂S1 starts dominating β̂RE1 . Hence, under local

alternatives, neither β̂RE1 nor β̂S1 dominates the other asymptotically.

Next, we consider the difference between β̂RE1 and β̂S+1 . This

yields

ADQR(β̂RE1 ) − ADQR(β̂S+1 ) = ADQR(β̂UE1 ) − tr[Q∗Q−1
22.1] + Δ∗ − ADQR(β̂S1)

+ tr[Q∗Q−1
22.1]E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+ Δ∗E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

− 2Δ∗E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]

= −tr[Q∗Q−1
22.1] + Δ∗

+ 𝑐tr[Q∗Q−1
22.1] (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

− 𝑐Δ∗(2E[𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒
−4
𝑝2+4(Δ)])

+ tr[Q∗Q−1
22.1]E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+ Δ∗E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

− 2Δ∗E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)] .
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Then, we get

ADQR(β̂RE1 ) − ADQR(β̂S+1 ) = −tr[Q∗Q−1
22.1]

(
1+𝑐(2E[𝜒−2𝑝2+2 (Δ)]−𝑐E[𝜒

−4
𝑝2+2

(Δ)])

−E[(1−𝑐𝜒−2𝑝2+2 (Δ))
2
𝐼 (𝜒2𝑝2+2 (Δ)≤𝑐)]

)
+ Δ∗ ©«

1−𝑐(2E[𝜒−2𝑝2+2 (Δ)]−2E[𝜒
−2
𝑝2+4

(Δ)]+𝑐E[𝜒−4𝑝2+4 (Δ)])

+E[(1−𝑐𝜒−2𝑝2+4 (Δ))
2
𝐼 (𝜒2𝑝2+4 (Δ)≤𝑐)]

−2E[(1−𝑐𝜒−2𝑝2+2 (Δ))𝐼 (𝜒
2
𝑝2+2

(Δ)≤𝑐)]

ª®¬ ,
and we have

Δ∗ =

ADQR(β̂RE1 ) − ADQR(β̂S+1 ) + tr[Q∗Q−1
22.1]

(
1+𝑐(2E[𝜒−2𝑝2+2 (Δ)]−𝑐E[𝜒

−4
𝑝2+2

(Δ)])

−E[(1−𝑐𝜒−2𝑝2+2 (Δ))
2
𝐼 (𝜒2𝑝2+2 (Δ)≤𝑐)]

)
©«
1−𝑐(2E[𝜒−2𝑝2+2 (Δ)]−2E[𝜒

−2
𝑝2+4

(Δ)]+𝑐E[𝜒−4𝑝2+4 (Δ)])

+E[(1−𝑐𝜒−2𝑝2+4 (Δ))
2
𝐼 (𝜒2𝑝2+4 (Δ)≤𝑐)]

−2E[(1−𝑐𝜒−2𝑝2+2 (Δ))𝐼 (𝜒
2
𝑝2+2

(Δ)≤𝑐)]

ª®¬
.

(4.19)

Substitution of Δ∗ into Equation (4.3) obtains:

ADQR(β̂RE1 ) ≤

︷                                                                         ︸︸                                                                         ︷
ADQR(β̂S+

1 )−tr[Q∗Q−1
22.1]

©«
1+𝑐(2E[𝜒−2𝑝2+2 (Δ)]−𝑐E[𝜒

−4
𝑝2+2

(Δ)])

−E[(1−𝑐𝜒−2𝑝2+2 (Δ))
2
𝐼 (𝜒2𝑝2+2 (Δ)≤𝑐)]

ª®¬
+Δ𝑐ℎmax (Q∗Q−1

22.1)
©«
1−𝑐(2E[𝜒−2𝑝2+2 (Δ)]−2E[𝜒

−2
𝑝2+4

(Δ)]+𝑐E[𝜒−4𝑝2+4 (Δ)])

+E[(1−𝑐𝜒−2𝑝2+4 (Δ))
2
𝐼 (𝜒2𝑝2+4 (Δ)≤𝑐)]

−2E[(1−𝑐𝜒−2𝑝2+2 (Δ))𝐼 (𝜒
2
𝑝2+2

(Δ)≤𝑐)]

ª®®®¬︸                                                                         ︷︷                                                                         ︸
(4.20)

and︷                                                                        ︸︸                                                                        ︷
ADQR(β̂S+

1 )−tr[Q∗Q−1
22.1]

©«
1+𝑐(2E[𝜒−2𝑝2+2 (Δ)]−𝑐E[𝜒

−4
𝑝2+2

(Δ)])

−E[(1−𝑐𝜒−2𝑝2+2 (Δ))
2
𝐼 (𝜒2𝑝2+2 (Δ)≤𝑐)]

ª®¬
+Δ𝑐ℎmin (Q∗Q−1

22.1)
©«
1−𝑐(2E[𝜒−2𝑝2+2 (Δ)]−2E[𝜒

−2
𝑝2+4

(Δ)]+𝑐E[𝜒−4𝑝2+4 (Δ)])

+E[(1−𝑐𝜒−2𝑝2+4 (Δ))
2
𝐼 (𝜒2𝑝2+4 (Δ)≤𝑐)]

−2E[(1−𝑐𝜒−2𝑝2+2 (Δ))𝐼 (𝜒
2
𝑝2+2

(Δ)≤𝑐)]

ª®®®¬︸                                                                        ︷︷                                                                        ︸
≤ ADQR(β̂RE1 ). (4.21)

From Equation (4.20), ADQR(β̂RE1 ) is smaller than ADQR(β̂S+1 ) when

Δ ∈


0,

tr[Q∗Q−1
22.1]

©«
1 + 𝑐(2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

−E[(1 − 𝑐𝜒−2𝑝2+2(Δ))
2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

ª®¬
𝑐ℎmax(Q∗Q−1

22.1)
©«
1−𝑐(2E[𝜒−2𝑝2+2 (Δ)]−2E[𝜒

−2
𝑝2+4

(Δ)]+𝑐E[𝜒−4𝑝2+4 (Δ)])

+E[(1−𝑐𝜒−2𝑝2+4 (Δ))
2
𝐼 (𝜒2𝑝2+4 (Δ)≤𝑐)]

−2E[(1−𝑐𝜒−2𝑝2+2 (Δ))𝐼 (𝜒
2
𝑝2+2

(Δ)≤𝑐)]

ª®¬

ª®®®®®®®®¬
. (4.22)
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Also, from Equation (4.21), ADQR(β̂S+1 ) is smaller than ADQR(β̂RE1 ) when

Δ ∈



tr[Q∗Q−1
22.1]

©«
1 + 𝑐(2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

−E[(1 − 𝑐𝜒−2𝑝2+2(Δ))
2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

ª®¬
𝑐ℎmin(Q∗Q−1

22.1)
©«
1−𝑐(2E[𝜒−2𝑝2+2 (Δ)]−2E[𝜒

−2
𝑝2+4

(Δ)]+𝑐E[𝜒−4𝑝2+4 (Δ)])

+E[(1−𝑐𝜒−2𝑝2+4 (Δ))
2
𝐼 (𝜒2𝑝2+4 (Δ)≤𝑐)]

−2E[(1−𝑐𝜒−2𝑝2+2 (Δ))𝐼 (𝜒
2
𝑝2+2

(Δ)≤𝑐)]

ª®¬
,∞

ª®®®®®®®®¬
. (4.23)

Finally, we compare the ADQRs of β̂RE1 , β̂S1 , and β̂
S+
1 when

Δ = 0, and we obtain

ADQR(β̂RE1 ) − ADQR(β̂S1) = −tr[Q∗Q−1
22.1]

(
1 − 𝑐

{
2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)]

})
≤ 0,

ADQR(β̂RE1 ) − ADQR(β̂S+1 ) = −tr[Q∗Q−1
22.1]

©«
1 + 𝑐(2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

−E[(1 − 𝑐𝜒−2𝑝2+2(Δ))
2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

ª®¬
≤ 0,

and

ADQR(β̂S+1 ) − ADQR(β̂S1) = −tr[Q∗Q−1
22.1]E

[(
1 − 𝑐𝜒−2𝑝2+2(Δ)

)2
𝐼
(
𝜒2𝑝2+2(Δ) ≤ 𝑐

)]
≤ 0.

SinceADQR(β̂S+1 ) ≤ ADQR(β̂S1), we can conclude that ADQR(β̂RE1 ) ≤ ADQR(β̂S+1 ) ≤
ADQR(β̂S1) when the null hypothesis is true and 𝑝2 ≥ 3.

4.1.2.8 Comparing β̂LS1 , β̂PT1 , and β̂SP1
Consider the ADQR difference between β̂LS1 and β̂SP1 . It can

be written as

ADQR(β̂LS1 ) − ADQR(β̂SP1 ) = −𝜋(2 − 𝜋)tr[Q∗Q−1
22.1] + 𝜋2Δ∗

+ 𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

− Δ∗ [2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)]

= −𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]

(
1 − 𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

)
+ Δ∗ ©«

𝜋2 − 2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)
+𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

ª®¬ .

Ref. code: 25645909320011YZA



81

This give

Δ∗ =
ADQR(β̂LS1 ) − ADQR(β̂SP1 ) + 𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]
(
1 − 𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

)
𝜋2 − 2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) + 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

.

Using the Courant-Fisher Theorem, by substituting Δ∗ into Equation (4.3), this yields

ADQR(β̂LS1 ) ≤

︷                                                                          ︸︸                                                                          ︷
ADQR(β̂SP1 ) − 𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]
(
1 − 𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

)
+Δ𝑐ℎmax(Q∗Q−1

22.1)
©«
𝜋2 − 2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)
+𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

ª®¬︸                                                                          ︷︷                                                                          ︸
, (4.24)

and︷                                                                          ︸︸                                                                          ︷
ADQR(β̂SP1 ) − 𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]
(
1 − 𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

)
+Δ𝑐ℎmin(Q∗Q−1

22.1)
©«
𝜋2 − 2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)
+𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

ª®¬︸                                                                          ︷︷                                                                          ︸
≤ ADQR(β̂LS1 ). (4.25)

From Equation (4.24), we obtain ADQR(β̂LS1 ) ≤ ADQR(β̂SP1 )
for the interval

0 ≤ Δ <
𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]
(
1 − 𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

)
𝑐ℎmax(Q∗Q−1

22.1)
(
𝜋2 − 2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) + 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

) ,
which implies that β̂LS1 is more efficient than β̂SP1 . Otherwise, from Equation (4.25),

ADQR(β̂SP1 ) ≤ ADQR(β̂LS1 ). It can be concluded that β̂SP1 performs better than β̂LS1 in

the region of parameter

Δ ≥
𝜋(2 − 𝜋)tr[Q∗Q−1

22.1]
(
1 − 𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

)
𝑐ℎmin(Q∗Q−1

22.1)
(
𝜋2 − 2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) + 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

) .
For the case of Δ = 0, we have

ADQR(β̂LS1 ) − ADQR(β̂SP1 ) = −𝜋(2 − 𝜋)tr[Q∗Q−1
22.1]

(
1 − 𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

)
,

which is always negative for all 𝜋 ∈ (0, 1), and we get ADQR(β̂LS1 ) ≤ ADQR(β̂SP1 ).
So β̂LS1 can be suggested when the null hypothesis holds.
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For the special case of β̂SP1 when 𝜋 = 1 is β̂PT1 , we can conclude

that β̂LS1 outperforms β̂PT1 in the interval

Δ ∈
0,

tr[Q∗Q−1
22.1]

(
1 − 𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

)
𝑐ℎmax(Q∗Q−1

22.1)
(
−2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) + 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

) ª®®¬ .
However, when

Δ ∈


tr[Q∗Q−1
22.1]

(
1 − 𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

)
𝑐ℎmin(Q∗Q−1

22.1)
(
−2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) + 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

) ,∞ª®®¬ ,
β̂LS1 has a higher ADQR than β̂PT1 . For Δ = 0, ADQR(β̂LS1 ) ≤ ADQR(β̂PT1 ), which
means that β̂LS1 can be also suggested when the subspace information is true.

4.1.2.9 Comparing β̂PT1 and β̂SP1
The ADQR difference of the two estimators is given as:

ADQR(β̂PT1 ) − ADQR(β̂SP1 ) = −tr[Q∗Q−1
22.1] (1 − 𝜋)2𝐻∗

𝑝2+2

+ Δ∗(1 − 𝜋) [2𝐻∗
𝑝2+2 − (1 − 𝜋)𝐻∗

𝑝2+4],

where 𝐻∗
𝜈 = 𝐻𝜈 (𝜒2𝑝2,𝛼;Δ) such that

Δ∗ =
ADQR(β̂PT1 ) − ADQR(β̂SP1 ) + tr[Q∗Q−1

22.1] (1 − 𝜋)
2𝐻∗

𝑝2+2
(1 − 𝜋) [2𝐻∗

𝑝2+2 − (1 − 𝜋)𝐻∗
𝑝2+4]

. (4.26)

Replacing Equation (4.26) in Equation (4.3) and solving for ADQR(β̂PT1 ), we get

ADQR(β̂PT1 ) ≤

︷                                                      ︸︸                                                      ︷
ADQR(β̂SP1 ) − tr[Q∗Q−1

22.1] (1 − 𝜋)
2𝐻∗

𝑝2+2

+Δ𝑐ℎmax(Q∗Q−1
22.1) (1 − 𝜋)


2𝐻∗

𝑝2+2

−(1 − 𝜋)𝐻∗
𝑝2+4

︸                                                      ︷︷                                                      ︸
(4.27)

and ︷                                                      ︸︸                                                      ︷
ADQR(β̂SP1 ) − tr[Q∗Q−1

22.1] (1 − 𝜋)
2𝐻∗

𝑝2+2

+Δ𝑐ℎmin(Q∗Q−1
22.1) (1 − 𝜋)


2𝐻∗

𝑝2+2

−(1 − 𝜋)𝐻∗
𝑝2+4

︸                                                      ︷︷                                                      ︸
≤ ADQR(β̂PT1 ). (4.28)
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From Equation (4.27) for

Δ ∈
[
0,

tr[Q∗Q−1
22.1] (1 − 𝜋)𝐻∗

𝑝2+2

𝑐ℎmax(Q∗Q−1
22.1) [2𝐻∗

𝑝2+2 − (1 − 𝜋)𝐻∗
𝑝2+4]

)
it reduces to ADQR(β̂PT1 ) ≤ ADQR(β̂SP1 ), showing the dominance of β̂PT1 over β̂SP1 .

On the other hand, for

Δ ∈
[

tr[Q∗Q−1
22.1] (1 − 𝜋)𝐻∗

𝑝2+2

𝑐ℎmin(Q∗Q−1
22.1) [2𝐻∗

𝑝2+2 − (1 − 𝜋)𝐻∗
𝑝2+4]

,∞
)
,

the Equation (4.28) as ADQR(β̂SP1 ) ≤ ADQR(β̂PT1 ), which indicates that β̂SP1 outper-

forms β̂PT1 . Moreover, for a large value of 𝜋 (close to 1) the dominance region of β̂PT1
is small.

When the null hypothesis is true, the ADQR difference be-

tween β̂PT1 and β̂SP1 is as follows:

ADQR(β̂PT1 ) − ADQR(β̂SP1 ) = −tr[Q∗Q−1
22.1] (1 − 𝜋)2𝐻∗

𝑝2+2 ≤ 0.

Thus, β̂PT1 is superior to β̂SP1 for all 𝜋 ∈ (0, 1). Moreover, the ADQR(β̂SP1 ) decreases
and approaches ADQR(β̂PT1 ) when 𝜋 increases.

4.1.2.10 Comparing β̂SP1 and β̂S1
Since the ADQRs of β̂SP1 and β̂S1 intersect each other at some

point neither of the two estimators is better. However, in most of the parameter space,

β̂S1 performs better than β̂SP1 . The difference between ADQR(β̂S1) and ADQR(β̂SP1 )
under the null hypothesis is

ADQR(β̂S1) − ADQR(β̂SP1 ) = tr[Q∗Q−1
22.1]


𝜋(2 − 𝜋)𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

−𝑐
[
2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)]

] .
Since E[𝜒−2𝑝2+2] =

1
𝑝2
and E[𝜒−4𝑝2+2] =

1
𝑝2 (𝑝2−2) , it reduces to

ADQR(β̂S1) −ADQR(β̂SP1 ) = tr[Q∗Q−1
22.1]

[
𝜋(2 − 𝜋)𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) −

(𝑝2 − 2)
𝑝2

]
> 0.

Thus, β̂SP1 has a smaller ADQR than β̂S1 when Δ = 0, 𝑝2 ≥ 3, and

𝜋(2 − 𝜋)𝐻𝑝2+2(𝜒2𝑝2,𝛼; 0) −
(𝑝2 − 2)
𝑝2

> 0

𝜋2 − 2𝜋 < − (𝑝2 − 2)
𝑝2𝐻𝑝2+2(𝜒2𝑝2,𝛼; 0)

.
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Hence,

𝜋2 − 2𝜋 + (𝑝2 − 2)
𝑝2𝐻𝑝2+2(𝜒2𝑝2,𝛼; 0)

< 0,

which is a quadratic equation in 𝜋 with 𝑎 = 1, 𝑏 = −2, and 𝑐 = (𝑝2−2)
𝑝2𝐻𝑝2+2 (𝜒

2
𝑝2 ,𝛼

;0) , then the

solutions is

𝜋 =

2 ±
√
4 − 4(𝑝2−2)

𝑝2𝐻𝑝2+2 (𝜒
2
𝑝2 ,𝛼

;0)

2
= 1 ±

√√√(
1 − (𝑝2 − 2)

𝑝2𝐻𝑝2+2(𝜒2𝑝2,𝛼; 0)

)
.

Since 𝜋 ∈ (0, 1), it must satisfy

𝜋 = 1 −

√√√(
1 − (𝑝2 − 2)

𝑝2𝐻𝑝2+2(𝜒2𝑝2,𝛼; 0)

)
and

(𝑝2 − 2)
𝑝2

< 𝐻𝑝2+2(𝜒2𝑝2,𝛼; 0). (4.29)

Otherwise, β̂S1 has a smaller ADQR than β̂SP1 .

More commonly, we let Ψ∗
𝜋,𝛼 be the point at which β̂SP1 and

β̂S1 intersect provided the condition in Equation (4.29) is satisfied for fixed 𝜋 and 𝛼. The

β̂SP1 outperforms β̂S1 when Δ ∈ [0,Ψ∗
𝜋,𝛼). Conversely, β̂S1 dominates β̂SP1 in the region

Δ ∈ [Ψ∗
𝜋,𝛼,∞). On the other hand, if Equation (4.29) is not satisfied and there is no

intersecting point in the entire parameter space, then β̂S1 still outperforms β̂
SP
1 for the

dimension 𝑝2 ≥ 3. Therefore, for 𝑝2 < 3, the use of β̂SP1 is suggested for parameter

estimation.

Moreover, we also plotted the ADQRs of the suggested estimators

in Corollary 2 to facilitate comparison. A graphical representation of 𝑝1 = 3, 𝑝2 = 7

and 11, 𝛼 = 0.01 and 0.05, and 𝜋 = 0.25, 0.50, and 0.75 is shown in Figures 4.3 and

4.4. We can see that the ADQR of β̂UE1 is a constant, whereas the ADQRs of all other

estimators depend on the values of Δ∗. At Δ∗ = 0 or when the null hypothesis is true, all

suggested estimators outperform β̂UE1 , and β̂RE1 has the lowest ADQR, especially when

𝑝2 increases. When Δ∗ increases, the ADQRs of β̂RE1 and β̂LS1 become unbounded, in

which case the ADQR of β̂LS1 increases more slowly since it depends on 𝜋. The ADQRs

of β̂PT1 and β̂SP1 increase first, then reach the maximum value. The ADQRs in this part

are larger than that of β̂UE1 . After passing through that point, both ADQRs approach

β̂UE1 . The ADQRs of β̂S1 and β̂
S+
1 are smaller than that of β̂UE1 , and are more apparent

when 𝑝2 increases.
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(b) 𝜋 = 0.25, 𝛼 = 0.05

0 1 2 3 4 5

2.
0

2.
5

3.
0

∆*

A
D

Q
R

RE
LS
PT
SP
S
S+

(c) 𝜋 = 0.50, 𝛼 = 0.01
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(e) 𝜋 = 0.75, 𝛼 = 0.01
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(f) 𝜋 = 0.75, 𝛼 = 0.05

Figure 4.3 ADQR curves of the suggested estimators for nonlinear regression model
with 𝑝1 = 3 and 𝑝2 = 7
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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(b) 𝜋 = 0.25, 𝛼 = 0.05
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(c) 𝜋 = 0.50, 𝛼 = 0.01
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(d) 𝜋 = 0.50, 𝛼 = 0.05
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(e) 𝜋 = 0.75, 𝛼 = 0.01
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(f) 𝜋 = 0.75, 𝛼 = 0.05

Figure 4.4 ADQR curves of the suggested estimators for nonlinear regression model
with 𝑝1 = 3 and 𝑝2 = 11
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The comparison of the ADQRs of the proposed estimators shows that

none of the proposed estimators outperform the others. Each estimator has a particular

region in which its performance is superior. However, the suggested estimators are

still more effective than the unrestricted and restricted estimators in cases where the

correctness of the UPI is not known.

4.2 Simulation Results

For each model of interest, we assume the model has 𝑝 parameters and a

sample size 𝑛. The response values of the Cobb-Douglas model were simulated from

𝑦𝑖 = 𝛽1(𝑥𝛽2𝑖1 )(𝑥
𝛽3
𝑖2 )...(𝑥

𝛽𝑝
𝑖,𝑝−1) + 𝜀𝑖, (4.30)

where 𝑥𝑖 𝑗
𝑖.𝑖.𝑑∼ N(8, 1), 𝜀𝑖𝑖.𝑖.𝑑∼ N(0, 1), and 𝑖 = 1, 2, ..., 𝑛. For the exponential model, the

response values were generated from

𝑦𝑖 = 𝛽1𝑒
𝛽2𝑥𝑖1+𝛽3𝑥𝑖2+...+𝛽𝑝𝑥𝑖, 𝑝−1 + 𝜀𝑖, (4.31)

where 𝑥𝑖 𝑗
𝑖.𝑖.𝑑∼ N(0, 1), 𝜀𝑖𝑖.𝑖.𝑑∼ N(0, 1), and 𝑖 = 1, 2, ..., 𝑛. Lastly, for 𝑖 = 1, 2, ..., 𝑛, the

response values of the monomolecular model were given by

𝑦𝑖 = 𝛽1
(
1 − 𝛽2𝑒−𝛽3𝑥𝑖1−𝛽4𝑥𝑖2−...−𝛽𝑝𝑥𝑖, 𝑝−2

)
+ 𝜀𝑖, (4.32)

where 𝑥𝑖 𝑗
𝑖.𝑖.𝑑∼ N(0, 1) and 𝜀𝑖𝑖.𝑖.𝑑∼ N(0, 1). All models and simulations were written in the

R programming language.

4.2.1 Low-Dimensional Data Setting

As our focus was on testing the null hypothesis H0 : β2 = 0, we

partitioned the regression coefficients as β = (β⊤
1 ,β

⊤
2 )

⊤ and βH0 = (β⊤
1 , 0

⊤
𝑝2)

⊤, where

β is the coefficient vector taking true values in the simulation model, and βH0 is the

coefficient vector taking true values under subspace information. To access the effect of

uncertainty in the subspace information on the estimators, we determined the divergence

between coefficients in the simulation model and the subspace information as follows:

Δsim =
β − βH0

 = (β − βH0)⊤(β − βH0), (4.33)
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where ∥ · ∥ is the Euclidean norm. This is the measure of how far away we go from the

null hypothesis. If Δsim = 0, the null hypothesis was true and it means that the available

subspace information was correct. If Δsim > 0, the null hypothesis was not true and it

indicates that the available subspace information was incorrect.

In this dissertation, the two situations of the subspace information

considered were correct subspace information (Δsim = 0) and uncertain subspace in-

formation (Δsim ≥ 0). For Δsim = 0, we set the true values of β = (β⊤
1 ,β

⊤
2 )

⊤ in

the simulations as Equation (3.43). When Δsim ≥ 0, the simulation model had β1 =

(𝛽1, 𝛽2, ..., 𝛽𝑝1)⊤ and β2 = (Δsim, 0⊤𝑝2−1)
⊤.

To examine the impacts of parameters 𝜋 and 𝛼 for the PT and SP

estimators, the values of 𝜋 were set to 0.25, 0.50, and 0.75 and significant levels 𝛼 were

set to 0.01, 0.05, and 0.10. We set the sample size (𝑛) as 100, and the number of trials
was 𝑁 = 5, 000 as this was sufficient to obtain stable results. Note that the LASSO

and aLASSO estimators were excluded when Δsim > 0, because this estimator does not

make use of subspace information.

We discuss the results of a simulation study for each relevant model

in two parts, one for the case when the null hypothesis is assumed to be true and the

other when it may not be true.

4.2.1.1 Cobb-Douglas Model

(1) Correct Subspace Information (𝚫sim = 0)

Assuming the subspace information is correct, the true val-

ues of parameter β in the simulation model were set to β = (β⊤
1 ,β

⊤
2 )⊤, where β1 =

(0.75, 0.75, 0.75)⊤ and β2 = 0⊤𝑝2 . The RMSE was computed using active parameter

𝑝1 = 3 and inactive parameters 𝑝2 = 3, 5, 7, 11, 15 to cover a small to a large number of

the inactive parameters. The RMSEs of all proposed parameters for five pairings of 𝑝1
and 𝑝2 are shown in Tables 4.1. We can summarize these results as follows:

1. For fixed 𝜋 and 𝛼, the RMSEs of all estimators increased as the number of inactive

parameters increased. The RE had the highest RMSE, and the UE had the lowest

RMSE. It is clear that the RE dominated all other proposed estimators and all

estimators were better than UE.
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Table 4.1 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for Cobb-Douglas model with 𝑝1 = 3 at Δsim = 0

Estimator Number of Inactive Parameters (𝑝2)
3 5 7 11 15

RE 2.128 2.944 4.128 6.118 9.124
LS 𝜋 = 0.25 1.296 1.405 1.489 1.569 1.620

𝜋 = 0.50 1.647 1.978 2.296 2.651 2.929
𝜋 = 0.75 1.974 2.621 3.418 4.561 5.810

PT 𝛼 = 0.01 2.013 2.748 3.307 5.171 6.516
𝛼 = 0.05 1.746 2.276 2.515 3.617 4.250
𝛼 = 0.10 1.610 1.982 2.177 2.862 3.414

SP 𝜋 = 0.25 𝛼 = 0.01 1.276 1.384 1.434 1.538 1.572
𝛼 = 0.05 1.225 1.325 1.355 1.459 1.490
𝛼 = 0.10 1.194 1.277 1.308 1.392 1.437

𝜋 = 0.50 𝛼 = 0.01 1.594 1.909 2.082 2.505 2.677
𝛼 = 0.05 1.463 1.725 1.818 2.173 2.304
𝛼 = 0.10 1.389 1.592 1.677 1.938 2.097

𝜋 = 0.75 𝛼 = 0.01 1.880 2.473 2.869 4.049 4.701
𝛼 = 0.05 1.660 2.108 2.290 3.088 3.463
𝛼 = 0.10 1.543 1.868 2.023 2.545 2.920

S 1.143 1.620 2.087 3.123 4.141
S+ 1.310 1.892 2.397 3.667 5.094

LASSO 1.161 1.537 2.128 2.945 3.924
aLASSO 1.179 1.673 2.142 3.134 4.336

2. For a fixed 𝑝2, the RMSE of the LS estimator increased as 𝜋 increased. For fixed

𝜋, the LS estimator also had larger a RMSE than the SP estimator for all values

of 𝛼.

3. The PT estimator depended on the value of 𝛼 and performed well when 𝛼 de-

creased. The performance of the SP estimator depended on the choice of 𝜋 and

𝛼, and performance was better as 𝜋 increased and 𝛼 decreased.

4. The performance of the PT estimator was superior to that of the SP estimator at

the same significant level of 𝛼. At 𝛼 = 0.01, the PT estimator also had higher

RMSE than LS, S, S+, LASSO, and aLASSO.

5. For all 𝑝2, the RMSE of the S+ estimator was greater than that of the shrinkage

(S) estimator. The aLASSO estimator also outperformed the LASSO estimator.
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(2) Uncertain Subspace Information (𝚫sim ≥ 0)
The performance of the estimators was investigated when the

correctness of the information was unknown. The simulation model comprised 𝑝1 = 5

active parameters and 𝑝2 − 1 inactive parameters, with 𝑝2 set to 3, 5, 7, 11, and 15.

We set the true values of the active parameter as β1 = (2, 0.75, 0.75, 0.25, 0.25)⊤ and

the inactive parameter as β2 = (𝛽6, 0)⊤ where 𝛽6 is a scalar and that can have multiple

values. The values of 𝛽6 were set to equal Δsim, and lay between 0 and 0.1. The RMSEs

of the proposed estimators for each 𝑝2 are shown in Tables 4.2 to 4.4 and represented

graphically in Figures 4.5 to 4.9. These results can be summarized as follows:

1. As Δsim moved away from 0, the RMSE of the RE converged on 0 and the curve

fell below the horizontal line at RMSE = 1. For fixed 𝜋, the RMSE of the LS

estimator also approached 0 with a slower speed than that of the RE. The per-

formance of the LS estimator was superior to that of all other estimators in some

portion of Δsim.

2. The RMSEs of both the PT and SP estimators first fell below the horizontal line,

then increased to 1 as Δsim moved far away from zero. The performance of the

PT and SP estimators was poor when the significant level 𝛼 was large. For fixed

𝛼, the PT estimator performed more efficiently than the SP estimator when Δsim

was close to zero. However, it became inferior to the SP estimator in some space

of Δsim > 0, then they eventually became equal.

3. When Δsim was close to zero, the RMSE of the PT estimator exceeded those of the

S and S+ estimators in a small part of the parameter space for a small 𝛼. When 𝛼

was small, 𝜋 was large, and Δsim was nearly zero, the SP estimator dominated the

shrinkage estimator for all 𝑝2, and it outperformed the S+ estimator for a small

𝑝2. Conversely, the S and S+ estimators were superior to the PT and SP estimators

when Δsim was far from zero.

4. The RMSE of the S+ estimator was initially higher than that of the shrinkage

estimator whenΔsim > 0, but they converged to the same values asΔsim increased.

This suggests that the S+ estimator is preferred, as its performance remains robust

even if the assumed model is grossly wrong.
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Table 4.2 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝜋 = 0.25 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.000 1.705 1.222 1.648 1.528 1.416 1.209 1.178 1.148 1.148 1.241
0.005 1.454 1.209 1.376 1.287 1.233 1.181 1.145 1.118 1.136 1.178
0.010 1.021 1.180 0.974 0.951 0.946 1.119 1.067 1.044 1.066 1.087
0.015 0.676 1.135 0.726 0.794 0.849 1.026 0.996 0.991 1.024 1.032
0.020 0.453 1.077 0.676 0.817 0.888 0.965 0.976 0.984 1.010 1.011
0.025 0.314 1.008 0.778 0.906 0.946 0.967 0.984 0.991 1.005 1.005
0.030 0.226 0.933 0.895 0.968 0.990 0.983 0.995 0.998 1.002 1.002
0.035 0.167 0.854 0.973 0.997 0.998 0.996 0.999 1.000 1.001 1.001
0.040 0.128 0.776 0.997 1.000 1.000 0.999 1.000 1.000 1.000 1.000
0.060 0.053 0.501 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.080 0.026 0.315 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.015 0.200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.000 2.185 1.318 2.089 1.862 1.664 1.303 1.261 1.217 1.417 1.632
0.005 1.854 1.305 1.750 1.549 1.425 1.281 1.224 1.185 1.381 1.512
0.010 1.300 1.277 1.193 1.119 1.100 1.207 1.144 1.109 1.252 1.309
0.015 0.860 1.234 0.854 0.887 0.906 1.106 1.055 1.033 1.142 1.161
0.020 0.577 1.178 0.726 0.835 0.886 1.020 0.999 0.996 1.077 1.082
0.025 0.400 1.112 0.762 0.881 0.926 0.980 0.987 0.990 1.045 1.046
0.030 0.288 1.039 0.855 0.950 0.975 0.981 0.992 0.996 1.028 1.029
0.035 0.214 0.961 0.953 0.992 0.996 0.993 0.999 0.999 1.019 1.019
0.040 0.163 0.882 0.991 0.999 0.999 0.999 1.000 1.000 1.013 1.013
0.060 0.067 0.591 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.080 0.034 0.382 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.100 0.019 0.248 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 0.000 2.703 1.388 2.555 2.224 1.952 1.368 1.322 1.275 1.786 2.050
0.005 2.304 1.376 2.145 1.878 1.679 1.345 1.290 1.244 1.680 1.875
0.010 1.614 1.351 1.473 1.332 1.230 1.282 1.210 1.157 1.452 1.555
0.015 1.066 1.312 1.005 0.973 0.973 1.178 1.101 1.067 1.278 1.313
0.020 0.713 1.260 0.792 0.864 0.901 1.065 1.027 1.015 1.171 1.181
0.025 0.493 1.198 0.776 0.884 0.922 1.006 1.000 0.998 1.108 1.112
0.030 0.354 1.128 0.846 0.949 0.975 0.993 0.997 0.998 1.073 1.074
0.035 0.263 1.053 0.947 0.990 0.996 0.995 0.999 0.999 1.051 1.051
0.040 0.200 0.974 0.991 0.997 1.000 0.999 1.000 1.000 1.037 1.037
0.060 0.082 0.675 1.000 1.000 1.000 1.000 1.000 1.000 1.012 1.012
0.080 0.041 0.446 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.100 0.023 0.294 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
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Table 4.2 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝜋 = 0.25 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

11 0.000 3.888 1.480 3.483 2.824 2.429 1.450 1.392 1.346 2.411 2.869
0.005 3.319 1.468 2.937 2.472 2.129 1.430 1.372 1.319 2.216 2.582
0.010 2.336 1.445 2.023 1.740 1.542 1.375 1.297 1.237 1.869 2.070
0.015 1.549 1.412 1.337 1.202 1.144 1.274 1.180 1.135 1.576 1.661
0.020 1.040 1.368 0.969 0.968 0.971 1.150 1.080 1.052 1.382 1.408
0.025 0.721 1.315 0.846 0.909 0.943 1.054 1.018 1.011 1.259 1.264
0.030 0.518 1.255 0.859 0.945 0.972 1.006 1.003 1.002 1.180 1.180
0.035 0.385 1.188 0.931 0.984 0.995 0.999 1.001 1.000 1.127 1.127
0.040 0.293 1.117 0.982 0.998 1.001 1.000 1.000 1.001 1.092 1.092
0.060 0.121 0.825 1.000 1.000 1.000 1.000 1.000 1.000 1.029 1.029
0.080 0.061 0.576 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.010
0.100 0.034 0.394 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003

15 0.000 5.386 1.551 4.315 3.389 2.762 1.504 1.444 1.385 3.131 3.773
0.005 4.590 1.541 3.730 2.848 2.394 1.490 1.412 1.355 2.862 3.367
0.010 3.197 1.523 2.491 2.020 1.731 1.429 1.342 1.270 2.387 2.642
0.015 2.099 1.495 1.651 1.385 1.286 1.339 1.224 1.173 1.950 2.044
0.020 1.398 1.458 1.140 1.077 1.039 1.205 1.122 1.081 1.639 1.665
0.025 0.965 1.413 0.930 0.941 0.951 1.096 1.040 1.023 1.438 1.443
0.030 0.691 1.360 0.871 0.938 0.965 1.027 1.007 1.003 1.309 1.310
0.035 0.512 1.300 0.915 0.971 0.987 1.001 0.999 0.999 1.225 1.225
0.040 0.390 1.235 0.972 0.994 0.997 0.999 1.000 1.000 1.168 1.168
0.060 0.160 0.954 1.000 1.000 1.000 1.000 1.000 1.000 1.063 1.063
0.080 0.080 0.693 1.000 1.000 1.000 1.000 1.000 1.000 1.029 1.029
0.100 0.045 0.488 1.000 1.000 1.000 1.000 1.000 1.000 1.014 1.014
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Table 4.3 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝜋 = 0.50 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.000 1.705 1.451 1.648 1.528 1.416 1.420 1.349 1.283 1.148 1.241
0.005 1.454 1.394 1.376 1.287 1.233 1.334 1.259 1.209 1.136 1.178
0.010 1.021 1.260 0.974 0.951 0.946 1.158 1.081 1.050 1.066 1.087
0.015 0.676 1.085 0.726 0.794 0.849 0.972 0.954 0.960 1.024 1.032
0.020 0.453 0.904 0.676 0.817 0.888 0.887 0.935 0.959 1.010 1.011
0.025 0.314 0.739 0.778 0.906 0.946 0.915 0.963 0.979 1.005 1.005
0.030 0.226 0.599 0.895 0.968 0.990 0.959 0.987 0.996 1.002 1.002
0.035 0.167 0.486 0.973 0.997 0.998 0.990 0.999 0.999 1.001 1.001
0.040 0.128 0.396 0.997 1.000 1.000 0.999 1.000 1.000 1.000 1.000
0.060 0.053 0.187 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.080 0.026 0.100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.015 0.058 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.000 2.185 1.702 2.089 1.862 1.664 1.658 1.546 1.437 1.417 1.632
0.005 1.854 1.635 1.750 1.549 1.425 1.572 1.435 1.348 1.381 1.512
0.010 1.300 1.487 1.193 1.119 1.100 1.343 1.227 1.172 1.252 1.309
0.015 0.860 1.292 0.854 0.887 0.906 1.110 1.051 1.027 1.142 1.161
0.020 0.577 1.087 0.726 0.835 0.886 0.964 0.967 0.974 1.077 1.082
0.025 0.400 0.897 0.762 0.881 0.926 0.926 0.962 0.974 1.045 1.046
0.030 0.288 0.734 0.855 0.950 0.975 0.949 0.981 0.991 1.028 1.029
0.035 0.214 0.600 0.953 0.992 0.996 0.982 0.997 0.999 1.019 1.019
0.040 0.163 0.492 0.991 0.999 0.999 0.997 0.999 1.000 1.013 1.013
0.060 0.067 0.236 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.080 0.034 0.126 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.100 0.019 0.074 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 0.000 2.703 1.914 2.555 2.224 1.952 1.851 1.713 1.585 1.786 2.050
0.005 2.304 1.847 2.145 1.878 1.679 1.757 1.606 1.490 1.680 1.875
0.010 1.614 1.694 1.473 1.332 1.230 1.531 1.376 1.270 1.452 1.555
0.015 1.066 1.486 1.005 0.973 0.973 1.253 1.133 1.086 1.278 1.313
0.020 0.713 1.263 0.792 0.864 0.901 1.039 1.009 1.002 1.171 1.181
0.025 0.493 1.052 0.776 0.884 0.922 0.961 0.978 0.983 1.108 1.112
0.030 0.354 0.868 0.846 0.949 0.975 0.961 0.987 0.993 1.073 1.074
0.035 0.263 0.714 0.947 0.990 0.996 0.985 0.997 0.998 1.051 1.051
0.040 0.200 0.588 0.991 0.997 1.000 0.997 0.999 1.000 1.037 1.037
0.060 0.082 0.286 1.000 1.000 1.000 1.000 1.000 1.000 1.012 1.012
0.080 0.041 0.153 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.100 0.023 0.090 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
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Table 4.3 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝜋 = 0.50 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

11 0.000 3.888 2.254 3.483 2.824 2.429 2.141 1.935 1.788 2.411 2.869
0.005 3.319 2.181 2.937 2.472 2.129 2.044 1.853 1.697 2.216 2.582
0.010 2.336 2.025 2.023 1.740 1.542 1.812 1.603 1.458 1.869 2.070
0.015 1.549 1.812 1.337 1.202 1.144 1.490 1.302 1.219 1.576 1.661
0.020 1.040 1.575 0.969 0.968 0.971 1.203 1.102 1.065 1.382 1.408
0.025 0.721 1.343 0.846 0.909 0.943 1.039 1.008 1.005 1.259 1.264
0.030 0.518 1.131 0.859 0.945 0.972 0.981 0.994 0.998 1.180 1.180
0.035 0.385 0.947 0.931 0.984 0.995 0.987 0.998 1.000 1.127 1.127
0.040 0.293 0.792 0.982 0.998 1.001 0.997 1.000 1.001 1.092 1.092
0.060 0.121 0.401 1.000 1.000 1.000 1.000 1.000 1.000 1.029 1.029
0.080 0.061 0.219 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.010
0.100 0.034 0.130 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003

15 0.000 5.386 2.559 4.315 3.389 2.762 2.354 2.116 1.913 3.131 3.773
0.005 4.590 2.491 3.730 2.848 2.394 2.274 1.989 1.806 2.862 3.367
0.010 3.197 2.337 2.491 2.020 1.731 2.000 1.735 1.547 2.387 2.642
0.015 2.099 2.121 1.651 1.385 1.286 1.677 1.410 1.305 1.950 2.044
0.020 1.398 1.874 1.140 1.077 1.039 1.328 1.186 1.119 1.639 1.665
0.025 0.965 1.622 0.930 0.941 0.951 1.117 1.043 1.022 1.438 1.443
0.030 0.691 1.385 0.871 0.938 0.965 1.010 0.999 0.998 1.309 1.310
0.035 0.512 1.175 0.915 0.971 0.987 0.986 0.994 0.997 1.225 1.225
0.040 0.390 0.993 0.972 0.994 0.997 0.994 0.999 0.999 1.168 1.168
0.060 0.160 0.515 1.000 1.000 1.000 1.000 1.000 1.000 1.063 1.063
0.080 0.080 0.286 1.000 1.000 1.000 1.000 1.000 1.000 1.029 1.029
0.100 0.045 0.170 1.000 1.000 1.000 1.000 1.000 1.000 1.014 1.014
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Table 4.4 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝜋 = 0.75 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.000 1.705 1.634 1.648 1.528 1.416 1.585 1.479 1.381 1.148 1.241
0.005 1.454 1.490 1.376 1.287 1.233 1.409 1.312 1.251 1.136 1.178
0.010 1.021 1.194 0.974 0.951 0.946 1.102 1.038 1.015 1.066 1.087
0.015 0.676 0.892 0.726 0.794 0.849 0.860 0.882 0.911 1.024 1.032
0.020 0.453 0.652 0.676 0.817 0.888 0.784 0.880 0.927 1.010 1.011
0.025 0.314 0.480 0.778 0.906 0.946 0.850 0.937 0.964 1.005 1.005
0.030 0.226 0.359 0.895 0.968 0.990 0.930 0.978 0.993 1.002 1.002
0.035 0.167 0.273 0.973 0.997 0.998 0.982 0.998 0.999 1.001 1.001
0.040 0.128 0.212 0.997 1.000 1.000 0.998 1.000 1.000 1.000 1.000
0.060 0.053 0.091 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.080 0.026 0.046 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.100 0.015 0.026 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.000 2.185 2.052 2.089 1.862 1.664 1.973 1.781 1.607 1.417 1.632
0.005 1.854 1.866 1.750 1.549 1.425 1.765 1.563 1.440 1.381 1.512
0.010 1.300 1.497 1.193 1.119 1.100 1.337 1.217 1.168 1.252 1.309
0.015 0.860 1.122 0.854 0.887 0.906 1.010 0.989 0.981 1.142 1.161
0.020 0.577 0.823 0.726 0.835 0.886 0.855 0.909 0.937 1.077 1.082
0.025 0.400 0.607 0.762 0.881 0.926 0.850 0.926 0.953 1.045 1.046
0.030 0.288 0.455 0.855 0.950 0.975 0.906 0.966 0.984 1.028 1.029
0.035 0.214 0.347 0.953 0.992 0.996 0.969 0.995 0.998 1.019 1.019
0.040 0.163 0.270 0.991 0.999 0.999 0.994 0.999 0.999 1.013 1.013
0.060 0.067 0.116 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.080 0.034 0.059 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.100 0.019 0.034 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 0.000 2.703 2.465 2.555 2.224 1.952 2.343 2.077 1.851 1.786 2.050
0.005 2.304 2.253 2.145 1.878 1.679 2.098 1.846 1.662 1.680 1.875
0.010 1.614 1.817 1.473 1.332 1.230 1.614 1.425 1.298 1.452 1.555
0.015 1.066 1.367 1.005 0.973 0.973 1.181 1.084 1.051 1.278 1.313
0.020 0.713 1.005 0.792 0.864 0.901 0.934 0.951 0.962 1.171 1.181
0.025 0.493 0.742 0.776 0.884 0.922 0.878 0.938 0.957 1.108 1.112
0.030 0.354 0.556 0.846 0.949 0.975 0.910 0.971 0.985 1.073 1.074
0.035 0.263 0.425 0.947 0.990 0.996 0.969 0.994 0.997 1.051 1.051
0.040 0.200 0.331 0.991 0.997 1.000 0.994 0.998 1.000 1.037 1.037
0.060 0.082 0.142 1.000 1.000 1.000 1.000 1.000 1.000 1.012 1.012
0.080 0.041 0.072 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.100 0.023 0.041 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001

Ref. code: 25645909320011YZA
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Table 4.4 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝜋 = 0.75 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

11 0.000 3.888 3.287 3.483 2.824 2.429 3.003 2.529 2.228 2.411 2.869
0.005 3.319 3.014 2.937 2.472 2.129 2.705 2.318 2.028 2.216 2.582
0.010 2.336 2.464 2.023 1.740 1.542 2.108 1.791 1.581 1.869 2.070
0.015 1.549 1.883 1.337 1.202 1.144 1.518 1.310 1.222 1.576 1.661
0.020 1.040 1.405 0.969 0.968 0.971 1.129 1.061 1.036 1.382 1.408
0.025 0.721 1.049 0.846 0.909 0.943 0.962 0.969 0.981 1.259 1.264
0.030 0.518 0.793 0.859 0.945 0.972 0.930 0.974 0.987 1.180 1.180
0.035 0.385 0.609 0.931 0.984 0.995 0.964 0.993 0.998 1.127 1.127
0.040 0.293 0.476 0.982 0.998 1.001 0.991 1.000 1.001 1.092 1.092
0.060 0.121 0.206 1.000 1.000 1.000 1.000 1.000 1.000 1.029 1.029
0.080 0.061 0.106 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.010
0.100 0.034 0.060 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003

15 0.000 5.386 4.206 4.315 3.389 2.762 3.564 2.940 2.482 3.131 3.773
0.005 4.590 3.879 3.730 2.848 2.394 3.275 2.605 2.238 2.862 3.367
0.010 3.197 3.193 2.491 2.020 1.731 2.497 2.029 1.735 2.387 2.642
0.015 2.099 2.456 1.651 1.385 1.286 1.820 1.475 1.349 1.950 2.044
0.020 1.398 1.840 1.140 1.077 1.039 1.301 1.169 1.104 1.639 1.665
0.025 0.965 1.377 0.930 0.941 0.951 1.053 1.007 0.997 1.438 1.443
0.030 0.691 1.043 0.871 0.938 0.965 0.954 0.975 0.985 1.309 1.310
0.035 0.512 0.802 0.915 0.971 0.987 0.956 0.984 0.993 1.225 1.225
0.040 0.390 0.628 0.972 0.994 0.997 0.985 0.997 0.998 1.168 1.168
0.060 0.160 0.272 1.000 1.000 1.000 1.000 1.000 1.000 1.063 1.063
0.080 0.080 0.139 1.000 1.000 1.000 1.000 1.000 1.000 1.029 1.029
0.100 0.045 0.080 1.000 1.000 1.000 1.000 1.000 1.000 1.014 1.014

Ref. code: 25645909320011YZA
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(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 4.5 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 2 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 4.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 4 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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Figure 4.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 6 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(h) 𝜋 = 0.75, 𝛼 = 0.05

0.00 0.02 0.04 0.06 0.08 0.10

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

∆sim

R
M

S
E

RE
LS
PT
SP
S
S+

(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 4.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 10 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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0.00 0.02 0.04 0.06 0.08 0.10

1
2

3
4

5

∆sim

R
M

S
E

RE
LS
PT
SP
S
S+

(d) 𝜋 = 0.50, 𝛼 = 0.01

0.00 0.02 0.04 0.06 0.08 0.10

1
2

3
4

5

∆sim

R
M

S
E

RE
LS
PT
SP
S
S+

(e) 𝜋 = 0.50, 𝛼 = 0.05

0.00 0.02 0.04 0.06 0.08 0.10

1
2

3
4

5

∆sim

R
M

S
E

RE
LS
PT
SP
S
S+

(f) 𝜋 = 0.50, 𝛼 = 0.10

0.00 0.02 0.04 0.06 0.08 0.10

1
2

3
4

5

∆sim

R
M

S
E

RE
LS
PT
SP
S
S+

(g) 𝜋 = 0.75, 𝛼 = 0.01

0.00 0.02 0.04 0.06 0.08 0.10

1
2

3
4

5

∆sim

R
M

S
E

RE
LS
PT
SP
S
S+

(h) 𝜋 = 0.75, 𝛼 = 0.05
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(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 4.9 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cobb-

Douglas model with 𝑝1 = 5 and 𝑝2 − 1 = 14 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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4.2.1.2 Exponential Model

(1) Correct Subspace Information (𝚫sim = 0)
When Δsim = 0, we set the true values of β in the simulations

at β = (β⊤
1 ,β

⊤
2 )

⊤ = (β⊤
1 , 0

⊤
𝑝2)

⊤. The vector of active parameters (β1) was set to 0.27,

−1.25, 0.96, and 0.12. Five pairings of active and inactive parameters were chosen so
that (𝑝1, 𝑝2) = (4,3), (4,5), (4,7), (4,11), and (4,15). The RMSE results are shown in

Table 4.5. The results can be summarized as follows:

1. The RE performed better than all other estimators as it had the maximum RMSE

in all configurations. The RMSEs of all estimators increased as 𝑝2 increased.

2. The RMSE of the LS estimator depended on the choice of 𝜋. Its performance was

always superior to that of the SP estimator at the same value of 𝜋 and it performed

better than S, S+, LASSO, and aLASSO when 𝜋 was large. Its RMSE was close

to 1 when 𝜋 was small.

3. The RMSE of the PT estimator decreased as 𝛼 increased, while that of the SP es-

timator decreased as 𝜋 decreased and 𝛼 increased. For a fixed 𝛼, the PT estimator

dominated SP, S, S+, LASSO, and aLASSO estimators when 𝛼 was small. When

𝑝2 was large, the SP estimator outperformed S and LASSO estimators but it was

inferior to S+ and aLASSO estimators when 𝜋 was large and 𝛼 was small.

4. When 𝜋 became small, the S+ estimator was more efficient than LS and SP for

all 𝑝2 and 𝛼. The S+ estimator dominated the shrinkage estimator and the perfor-

mance of the aLASSO estimator was also superior to the LASSO estimator.

5. These results were similar to the Cobb-Douglas model presented previously, and

also consistent with the theoretical results at Δ∗ = 0.

(2) Uncertain Subspace Information (𝚫sim ≥ 0)
When the submodel is incorrect, Δsim > 0. We set the simu-

lation model with β1 = (0.9, 0.9, 0.9)⊤ and β2 = (𝛽4, 0⊤𝑝2−1)
⊤, where 𝛽4 = Δsim. To

study the behavior of the estimators as correct information changed to incorrect infor-

mation, the generated values of Δsim were between 0 and 0.6, and the number of inactive

parameters was 𝑝2 − 1, where 𝑝2 = 3, 5, 7, 11, 15, and 20. The RMSEs of the proposed

Ref. code: 25645909320011YZA
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Table 4.5 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for exponential model with 𝑝1 = 4 at Δsim = 0

Estimator Number of Inactive Parameters (𝑝2)
3 5 7 11 15

RE 1.368 1.615 1.947 2.637 3.778
LS 𝜋 = 0.25 1.131 1.201 1.267 1.374 1.463

𝜋 = 0.50 1.249 1.402 1.567 1.873 2.197
𝜋 = 0.75 1.334 1.557 1.831 2.395 3.168

PT 𝛼 = 0.01 1.337 1.566 1.852 2.425 3.340
𝛼 = 0.05 1.290 1.455 1.703 2.130 2.848
𝛼 = 0.10 1.227 1.381 1.584 1.909 2.437

SP 𝜋 = 0.25 𝛼 = 0.01 1.121 1.189 1.250 1.347 1.432
𝛼 = 0.05 1.106 1.160 1.219 1.304 1.386
𝛼 = 0.10 1.087 1.139 1.191 1.264 1.340

𝜋 = 0.50 𝛼 = 0.01 1.229 1.374 1.523 1.790 2.078
𝛼 = 0.05 1.198 1.310 1.445 1.664 1.921
𝛼 = 0.10 1.160 1.263 1.379 1.558 1.775

𝜋 = 0.75 𝛼 = 0.01 1.306 1.514 1.755 2.229 2.872
𝛼 = 0.05 1.263 1.418 1.628 1.993 2.519
𝛼 = 0.10 1.209 1.351 1.525 1.809 2.215

S 1.086 1.286 1.531 1.992 2.713
S+ 1.138 1.370 1.633 2.175 2.983

LASSO 1.096 1.161 1.225 1.391 1.681
aLASSO 1.176 1.336 1.532 1.999 3.126

estimators for each 𝑝2 and 𝜋 are shown in Tables 4.6 to 4.8. The graphical representa-

tions for each 𝑝2 are shown as Figures 4.10 to 4.14. The main findings are as follows:

1. We observed that no single estimator gave the best performance for parameter

estimation in all simulations. The RE performed better than all other estimators

in an area near the null hypothesis, but as the hypothesis error grew, orΔsimmoved

away from zero, its RMSE decreased sharply to zero.

2. Similarly, the LS estimator also decreased to zero, but it was higher than the RE

when Δsim was far from zero. The LS estimator also outperformed other estima-

tors in some areas of Δsim.

3. The PT estimator performed well at Δsim = 0. However, the PT estimator had an

estimator error smaller than the SP estimator in a small space of Δsim > 0.
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4. The RMSE of PT and SP estimators first fell gradually, becoming worse than the

UE, then increased to 1. However, both the PT and SP estimators also outper-

formed all other estimators in some parts of the parameter space Δsim.

5. The performance of the S+ estimator was superior to that of the shrinkage estima-

tor and both of them performed better than the other estimators in a large area of

Δsim. The overall results of these simulation studies were in line with the theoret-

ical results.

Table 4.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for exponen-

tial model with 𝑝1 = 3 and 𝜋 = 0.25 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.00 1.234 1.092 1.221 1.191 1.156 1.087 1.076 1.063 1.061 1.096
0.04 1.117 1.087 1.091 1.064 1.049 1.070 1.050 1.039 1.046 1.063
0.08 0.859 1.069 0.915 0.933 0.947 1.025 1.011 1.006 1.021 1.027
0.12 0.614 1.038 0.855 0.920 0.953 0.996 0.996 0.998 1.010 1.011
0.16 0.433 0.995 0.892 0.955 0.976 0.990 0.996 0.997 1.005 1.005
0.20 0.309 0.942 0.947 0.977 0.987 0.995 0.997 0.998 1.003 1.003
0.25 0.208 0.863 0.976 0.992 0.996 0.997 0.999 0.999 1.002 1.002
0.30 0.116 0.714 0.991 0.999 0.999 0.999 1.000 1.000 1.001 1.001
0.35 0.072 0.578 0.998 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.40 0.049 0.469 0.999 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.50 0.008 0.113 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.60 0.003 0.050 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.00 1.430 1.152 1.401 1.338 1.275 1.143 1.125 1.105 1.216 1.269
0.04 1.288 1.144 1.252 1.190 1.158 1.126 1.098 1.081 1.170 1.205
0.08 0.993 1.124 1.016 1.010 1.014 1.077 1.046 1.034 1.104 1.116
0.12 0.713 1.092 0.912 0.945 0.971 1.028 1.012 1.009 1.063 1.065
0.16 0.506 1.050 0.904 0.951 0.977 1.004 1.000 1.001 1.038 1.039
0.20 0.362 0.998 0.931 0.974 0.986 0.997 0.998 0.999 1.025 1.025
0.25 0.244 0.921 0.975 0.993 0.998 0.998 0.999 1.000 1.017 1.016
0.30 0.131 0.762 0.993 0.999 0.999 0.999 1.000 1.000 1.011 1.011
0.35 0.085 0.635 0.999 1.000 1.000 1.000 1.000 1.000 1.008 1.008
0.40 0.050 0.475 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006
0.50 0.011 0.155 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.60 0.005 0.069 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002
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Table: 4.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for expo-

nential model with 𝑝1 = 3 and 𝜋 = 0.25 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

7 0.00 1.580 1.194 1.530 1.442 1.365 1.181 1.157 1.135 1.350 1.411
0.04 1.412 1.186 1.346 1.279 1.215 1.161 1.133 1.107 1.270 1.320
0.08 1.087 1.166 1.067 1.048 1.032 1.107 1.073 1.052 1.163 1.190
0.12 0.782 1.136 0.920 0.958 0.963 1.046 1.026 1.015 1.102 1.110
0.16 0.556 1.095 0.903 0.948 0.963 1.014 1.005 1.002 1.068 1.070
0.20 0.398 1.044 0.925 0.972 0.976 1.002 1.000 0.998 1.048 1.048
0.25 0.268 0.966 0.962 0.989 0.992 0.997 1.000 0.999 1.032 1.032
0.30 0.179 0.868 0.990 0.998 0.998 1.000 1.000 1.000 1.023 1.023
0.35 0.125 0.768 0.996 0.999 0.999 1.000 1.000 1.000 1.017 1.017
0.40 0.088 0.661 0.999 1.000 1.000 1.000 1.000 1.000 1.012 1.012
0.50 0.020 0.250 1.000 1.000 1.000 1.000 1.000 1.000 1.005 1.005
0.60 0.015 0.197 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002

11 0.00 2.056 1.287 1.957 1.800 1.677 1.269 1.239 1.210 1.719 1.819
0.04 1.877 1.285 1.763 1.603 1.481 1.256 1.214 1.180 1.617 1.699
0.08 1.456 1.272 1.345 1.246 1.201 1.196 1.140 1.111 1.446 1.482
0.12 1.045 1.248 1.080 1.073 1.054 1.113 1.075 1.053 1.311 1.322
0.16 0.737 1.214 0.996 0.994 0.997 1.060 1.030 1.019 1.220 1.225
0.20 0.525 1.170 0.960 0.983 0.993 1.023 1.011 1.007 1.160 1.162
0.25 0.352 1.100 0.974 0.991 0.994 1.007 1.003 1.001 1.113 1.113
0.30 0.227 0.998 0.982 0.995 0.996 1.001 1.000 1.000 1.082 1.082
0.35 0.156 0.894 0.992 0.997 0.999 1.000 1.000 1.000 1.063 1.063
0.40 0.098 0.741 0.997 0.998 0.999 1.000 1.000 1.000 1.049 1.049
0.50 0.011 0.153 1.000 1.000 1.000 1.000 1.000 1.000 1.024 1.024
0.60 0.004 0.065 1.000 1.000 1.000 1.000 1.000 1.000 1.008 1.008

15 0.00 2.576 1.361 2.355 2.057 1.871 1.334 1.288 1.255 2.088 2.222
0.04 2.342 1.358 2.086 1.829 1.689 1.316 1.264 1.231 1.960 2.059
0.08 1.811 1.345 1.588 1.408 1.315 1.259 1.193 1.152 1.702 1.755
0.12 1.296 1.322 1.216 1.144 1.097 1.171 1.107 1.074 1.491 1.516
0.16 0.911 1.289 1.054 1.030 1.024 1.091 1.050 1.035 1.352 1.361
0.20 0.626 1.240 0.985 0.991 0.992 1.042 1.022 1.013 1.262 1.264
0.25 0.411 1.167 0.972 0.985 0.996 1.016 1.006 1.004 1.188 1.188
0.30 0.279 1.080 0.986 0.994 0.999 1.006 1.001 1.001 1.140 1.140
0.35 0.120 0.822 0.992 0.997 0.998 1.001 1.000 1.000 1.106 1.106
0.40 0.084 0.698 0.997 0.999 0.999 1.000 1.000 1.000 1.083 1.083
0.50 0.036 0.414 1.000 1.000 1.000 1.000 1.000 1.000 1.036 1.036
0.60 0.018 0.237 1.000 1.000 1.000 1.000 1.000 1.000 1.019 1.019
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Table 4.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for exponen-

tial model with 𝑝1 = 3 and 𝜋 = 0.50 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.00 1.234 1.168 1.221 1.191 1.156 1.159 1.137 1.114 1.061 1.096
0.04 1.117 1.142 1.091 1.064 1.049 1.112 1.080 1.061 1.046 1.063
0.08 0.859 1.062 0.915 0.933 0.947 1.017 1.002 0.999 1.021 1.027
0.12 0.614 0.947 0.855 0.920 0.953 0.967 0.980 0.989 1.010 1.011
0.16 0.433 0.817 0.892 0.955 0.976 0.968 0.987 0.993 1.005 1.005
0.20 0.309 0.687 0.947 0.977 0.987 0.984 0.992 0.996 1.003 1.003
0.25 0.208 0.541 0.976 0.992 0.996 0.992 0.997 0.998 1.002 1.002
0.30 0.116 0.357 0.991 0.999 0.999 0.997 1.000 1.000 1.001 1.001
0.35 0.072 0.243 0.998 1.000 1.000 0.999 1.000 1.000 1.001 1.001
0.40 0.049 0.175 0.999 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.50 0.008 0.031 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.60 0.003 0.013 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.00 1.430 1.291 1.401 1.338 1.275 1.274 1.235 1.194 1.216 1.269
0.04 1.288 1.257 1.252 1.190 1.158 1.224 1.170 1.139 1.170 1.205
0.08 0.993 1.170 1.016 1.010 1.014 1.109 1.064 1.048 1.104 1.116
0.12 0.713 1.048 0.912 0.945 0.971 1.021 1.006 1.008 1.063 1.065
0.16 0.506 0.910 0.904 0.951 0.977 0.988 0.992 0.998 1.038 1.039
0.20 0.362 0.772 0.931 0.974 0.986 0.984 0.993 0.996 1.025 1.025
0.25 0.244 0.614 0.975 0.993 0.998 0.992 0.998 1.000 1.017 1.016
0.30 0.131 0.397 0.993 0.999 0.999 0.998 1.000 1.000 1.011 1.011
0.35 0.085 0.281 0.999 1.000 1.000 1.000 1.000 1.000 1.008 1.008
0.40 0.050 0.176 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006
0.50 0.011 0.044 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.60 0.005 0.018 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002

7 0.00 1.580 1.384 1.530 1.442 1.365 1.355 1.302 1.255 1.350 1.411
0.04 1.412 1.346 1.346 1.279 1.215 1.294 1.240 1.189 1.270 1.320
0.08 1.087 1.255 1.067 1.048 1.032 1.163 1.109 1.077 1.163 1.190
0.12 0.782 1.127 0.920 0.958 0.963 1.046 1.027 1.014 1.102 1.110
0.16 0.556 0.983 0.903 0.948 0.963 1.001 0.998 0.997 1.068 1.070
0.20 0.398 0.836 0.925 0.972 0.976 0.989 0.995 0.993 1.048 1.048
0.25 0.268 0.666 0.962 0.989 0.992 0.989 0.997 0.998 1.032 1.032
0.30 0.179 0.508 0.990 0.998 0.998 0.998 1.000 0.999 1.023 1.023
0.35 0.125 0.390 0.996 0.999 0.999 0.999 1.000 1.000 1.017 1.017
0.40 0.088 0.293 0.999 1.000 1.000 1.000 1.000 1.000 1.012 1.012
0.50 0.020 0.075 1.000 1.000 1.000 1.000 1.000 1.000 1.005 1.005
0.60 0.015 0.057 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002
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Table 4.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for exponen-

tial model with 𝑝1 = 3 and 𝜋 = 0.50 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

11 0.00 2.056 1.621 1.957 1.800 1.677 1.573 1.495 1.427 1.719 1.819
0.04 1.877 1.596 1.763 1.603 1.481 1.524 1.425 1.347 1.617 1.699
0.08 1.456 1.508 1.345 1.246 1.201 1.354 1.245 1.192 1.446 1.482
0.12 1.045 1.374 1.080 1.073 1.054 1.174 1.117 1.081 1.311 1.322
0.16 0.737 1.213 0.996 0.994 0.997 1.081 1.039 1.026 1.220 1.225
0.20 0.525 1.044 0.960 0.983 0.993 1.023 1.012 1.009 1.160 1.162
0.25 0.352 0.844 0.974 0.991 0.994 1.005 1.002 1.001 1.113 1.113
0.30 0.227 0.637 0.982 0.995 0.996 0.999 0.999 0.999 1.082 1.082
0.35 0.156 0.486 0.992 0.997 0.999 0.999 0.999 1.000 1.063 1.063
0.40 0.098 0.333 0.997 0.998 0.999 1.000 1.000 1.000 1.049 1.049
0.50 0.011 0.042 1.000 1.000 1.000 1.000 1.000 1.000 1.024 1.024
0.60 0.004 0.017 1.000 1.000 1.000 1.000 1.000 1.000 1.008 1.008

15 0.00 2.576 1.838 2.355 2.057 1.871 1.753 1.624 1.534 2.088 2.222
0.04 2.342 1.808 2.086 1.829 1.689 1.687 1.549 1.467 1.960 2.059
0.08 1.811 1.714 1.588 1.408 1.315 1.507 1.359 1.275 1.702 1.755
0.12 1.296 1.569 1.216 1.144 1.097 1.289 1.176 1.120 1.491 1.516
0.16 0.911 1.394 1.054 1.030 1.024 1.136 1.073 1.051 1.352 1.361
0.20 0.626 1.189 0.985 0.991 0.992 1.055 1.028 1.017 1.262 1.264
0.25 0.411 0.954 0.972 0.985 0.996 1.017 1.006 1.005 1.188 1.188
0.30 0.279 0.750 0.986 0.994 0.999 1.006 1.001 1.001 1.140 1.140
0.35 0.120 0.398 0.992 0.997 0.998 1.001 0.999 1.000 1.106 1.106
0.40 0.084 0.295 0.997 0.999 0.999 0.999 1.000 1.000 1.083 1.083
0.50 0.036 0.137 1.000 1.000 1.000 1.000 1.000 1.000 1.036 1.036
0.60 0.018 0.068 1.000 1.000 1.000 1.000 1.000 1.000 1.019 1.019
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Table 4.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for exponen-

tial model with 𝑝1 = 3 and 𝜋 = 0.75 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.00 1.234 1.218 1.221 1.191 1.156 1.206 1.177 1.146 1.061 1.096
0.04 1.117 1.152 1.091 1.064 1.049 1.120 1.084 1.065 1.046 1.063
0.08 0.859 0.983 0.915 0.933 0.947 0.978 0.975 0.979 1.021 1.027
0.12 0.614 0.783 0.855 0.920 0.953 0.918 0.954 0.974 1.010 1.011
0.16 0.433 0.603 0.892 0.955 0.976 0.934 0.973 0.985 1.005 1.005
0.20 0.309 0.459 0.947 0.977 0.987 0.968 0.985 0.992 1.003 1.003
0.25 0.208 0.326 0.976 0.992 0.996 0.985 0.995 0.997 1.002 1.002
0.30 0.116 0.192 0.991 0.999 0.999 0.994 0.999 1.000 1.001 1.001
0.35 0.072 0.123 0.998 1.000 1.000 0.999 1.000 1.000 1.001 1.001
0.40 0.049 0.085 0.999 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.50 0.008 0.014 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.60 0.003 0.006 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.00 1.430 1.392 1.401 1.338 1.275 1.367 1.311 1.254 1.216 1.269
0.04 1.288 1.311 1.252 1.190 1.158 1.270 1.203 1.166 1.170 1.205
0.08 0.993 1.119 1.016 1.010 1.014 1.086 1.052 1.041 1.104 1.116
0.12 0.713 0.896 0.912 0.945 0.971 0.979 0.983 0.995 1.063 1.065
0.16 0.506 0.694 0.904 0.951 0.977 0.954 0.975 0.989 1.038 1.039
0.20 0.362 0.531 0.931 0.974 0.986 0.962 0.985 0.992 1.025 1.025
0.25 0.244 0.380 0.975 0.993 0.998 0.985 0.996 0.999 1.017 1.016
0.30 0.131 0.216 0.993 0.999 0.999 0.996 1.000 0.999 1.011 1.011
0.35 0.085 0.143 0.999 1.000 1.000 0.999 1.000 1.000 1.008 1.008
0.40 0.050 0.085 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006
0.50 0.011 0.020 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.60 0.005 0.008 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002

7 0.00 1.580 1.529 1.530 1.442 1.365 1.484 1.407 1.338 1.350 1.411
0.04 1.412 1.433 1.346 1.279 1.215 1.364 1.293 1.227 1.270 1.320
0.08 1.087 1.223 1.067 1.048 1.032 1.148 1.100 1.070 1.163 1.190
0.12 0.782 0.981 0.920 0.958 0.963 1.000 1.004 0.996 1.102 1.110
0.16 0.556 0.762 0.903 0.948 0.963 0.962 0.978 0.983 1.068 1.070
0.20 0.398 0.584 0.925 0.972 0.976 0.963 0.986 0.986 1.048 1.048
0.25 0.268 0.416 0.962 0.989 0.992 0.977 0.994 0.996 1.032 1.032
0.30 0.179 0.290 0.990 0.998 0.998 0.995 0.999 0.999 1.023 1.023
0.35 0.125 0.209 0.996 0.999 0.999 0.998 1.000 1.000 1.017 1.017
0.40 0.088 0.149 0.999 1.000 1.000 1.000 1.000 1.000 1.012 1.012
0.50 0.020 0.035 1.000 1.000 1.000 1.000 1.000 1.000 1.005 1.005
0.60 0.015 0.026 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002

Ref. code: 25645909320011YZA



109

Table 4.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for exponen-

tial model with 𝑝1 = 3 and 𝜋 = 0.75 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

11 0.00 2.056 1.923 1.957 1.800 1.677 1.840 1.710 1.602 1.719 1.819
0.04 1.877 1.835 1.763 1.603 1.481 1.725 1.574 1.460 1.617 1.699
0.08 1.456 1.587 1.345 1.246 1.201 1.413 1.285 1.225 1.446 1.482
0.12 1.045 1.282 1.080 1.073 1.054 1.161 1.116 1.082 1.311 1.322
0.16 0.737 0.998 0.996 0.994 0.997 1.058 1.027 1.018 1.220 1.225
0.20 0.525 0.765 0.960 0.983 0.993 1.001 1.003 1.004 1.160 1.162
0.25 0.352 0.547 0.974 0.991 0.994 0.993 0.998 0.998 1.113 1.113
0.30 0.227 0.369 0.982 0.995 0.996 0.992 0.997 0.998 1.082 1.082
0.35 0.156 0.262 0.992 0.997 0.999 0.996 0.998 0.999 1.063 1.063
0.40 0.098 0.168 0.997 0.998 0.999 0.999 0.999 0.999 1.049 1.049
0.50 0.011 0.019 1.000 1.000 1.000 1.000 1.000 1.000 1.024 1.024
0.60 0.004 0.008 1.000 1.000 1.000 1.000 1.000 1.000 1.008 1.008

15 0.00 2.576 2.333 2.355 2.057 1.871 2.164 1.926 1.772 2.088 2.222
0.04 2.342 2.222 2.086 1.829 1.689 2.002 1.772 1.644 1.960 2.059
0.08 1.811 1.924 1.588 1.408 1.315 1.642 1.443 1.336 1.702 1.755
0.12 1.296 1.557 1.216 1.144 1.097 1.307 1.190 1.128 1.491 1.516
0.16 0.911 1.212 1.054 1.030 1.024 1.123 1.066 1.048 1.352 1.361
0.20 0.626 0.905 0.985 0.991 0.992 1.034 1.017 1.009 1.262 1.264
0.25 0.411 0.635 0.972 0.985 0.996 1.002 0.999 1.002 1.188 1.188
0.30 0.279 0.451 0.986 0.994 0.999 0.999 0.998 1.000 1.140 1.140
0.35 0.120 0.205 0.992 0.997 0.998 0.997 0.998 0.999 1.106 1.106
0.40 0.084 0.146 0.997 0.999 0.999 0.999 1.000 1.000 1.083 1.083
0.50 0.036 0.064 1.000 1.000 1.000 1.000 1.000 1.000 1.036 1.036
0.60 0.018 0.031 1.000 1.000 1.000 1.000 1.000 1.000 1.019 1.019
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Figure 4.10 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for expo-

nential model with 𝑝1 = 3 and 𝑝2 − 1 = 2 at Δsim ≥ 0
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Figure 4.11 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for expo-

nential model with 𝑝1 = 3 and 𝑝2 − 1 = 4 at Δsim ≥ 0
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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Figure 4.12 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for expo-

nential model with 𝑝1 = 3 and 𝑝2 − 1 = 6 at Δsim ≥ 0
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Figure 4.13 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for expo-

nential model with 𝑝1 = 3 and 𝑝2 − 1 = 10 at Δsim ≥ 0
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Figure 4.14 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for expo-

nential model with 𝑝1 = 3 and 𝑝2 − 1 = 14 at Δsim ≥ 0
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4.2.1.3 Monomolecular Model

(1) Correct Subspace Information (𝚫sim = 0)
In this case, the submodel is assumed to be the true model

under the null hypothesis. The true values of β1 in this simulation were given as 3.5,

1.9, 1.4, and −0.2. The RMSEs of RE, LS, PT, SP, S, S+, LASSO, and aLASSO with

respect to UE were computed for 𝑝1 = 4 and 𝑝2 = 3, 5, 7, 11, and 15. The results are

reported in Table 4.9 and summarized as follows:

Table 4.9 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for monomolecular model with 𝑝1 = 4 at Δsim = 0

Estimator Number of Inactive Parameters (𝑝2)
3 5 7 11 15

RE 1.083 1.127 1.183 1.248 1.402
LS 𝜋 = 0.25 1.035 1.053 1.074 1.101 1.142

𝜋 = 0.50 1.062 1.094 1.133 1.184 1.272
𝜋 = 0.75 1.078 1.120 1.171 1.236 1.366

PT 𝛼 = 0.01 1.080 1.121 1.171 1.233 1.374
𝛼 = 0.05 1.067 1.104 1.146 1.218 1.335
𝛼 = 0.10 1.057 1.091 1.129 1.198 1.286

SP 𝜋 = 0.25 𝛼 = 0.01 1.034 1.051 1.070 1.096 1.134
𝛼 = 0.05 1.029 1.045 1.061 1.089 1.122
𝛼 = 0.10 1.025 1.039 1.054 1.081 1.108

𝜋 = 0.50 𝛼 = 0.01 1.059 1.090 1.125 1.174 1.255
𝛼 = 0.05 1.051 1.078 1.108 1.162 1.229
𝛼 = 0.10 1.044 1.069 1.096 1.147 1.200

𝜋 = 0.75 𝛼 = 0.01 1.075 1.114 1.160 1.222 1.341
𝛼 = 0.05 1.063 1.099 1.138 1.207 1.305
𝛼 = 0.10 1.055 1.086 1.122 1.188 1.263

S 1.023 1.071 1.112 1.185 1.327
S+ 1.038 1.090 1.141 1.220 1.350

LASSO 1.029 1.073 1.126 1.181 1.317
aLASSO 1.033 1.080 1.128 1.217 1.320

The RMSE behavior of all estimators showed a similar pat-

tern to the result from Cobb-Douglas and exponential models. The performance of all

estimators increased as 𝑝2 increased and the RE had the highest RMSE. As 𝜋 increased,

the RMSE of the LS estimator also increased and came close to that of the RE. When

𝛼 increased, the performance of the PT estimator decreased. The performance of the

SP estimator fell as 𝛼 increased and 𝜋 decreased. The PT estimator was also superior

to the SP estimator at the same 𝛼. The performance of the S+ estimator was superior to

Ref. code: 25645909320011YZA
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that of shrinkage estimator. Finally, the LASSO estimator was inferior to the aLASSO

estimator for all numbers of inactive parameters.

(2) Uncertain Subspace Information (𝚫sim ≥ 0)

For cases where the candidate submodel is not true, we set the

true values of the active parameter in this simulation as β1 = (3, 1.2, 1.2, 0.1, 0.1, 0.1)⊤.
The simulation model had β2 = (𝛽7, 0⊤𝑝2−1)

⊤, where 𝛽7 = Δsim and selected a value of

Δsim between 0 and 0.2. Here, 𝑝2 − 1 is the number of inactive parameters and 𝑝2 = 3,

5, 7, 11, and 15 were used in the simulations. The RMSEs of the proposed estimator

for each 𝑝2 are shown in Tables 4.10 to 4.12 and Figures 4.15 to 4.19. The findings are

summarized as follows:

In this case, all estimators showed a similar pattern of RMSE

behavior to both previous models. For Δsim > 0, the RMSEs of both the RE and LS

estimators converged to zero. When Δsim increased, the RMSEs of the PT and SP es-

timators dropped below 1, then gradually increased again, converging to 1. They were

asymptotically equivalent to the UE when Δsim was large. The RMSEs of S and S+ es-

timator fell gradually to 1. The performance of S+ was superior to that of the shrinkage

estimator when Δsim was close to zero, but they had the same values when Δsim was far

from zero.

Table 4.10 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝜋 = 0.25 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.00 1.083 1.034 1.080 1.071 1.062 1.033 1.029 1.025 1.029 1.037
0.01 1.052 1.031 1.046 1.035 1.028 1.028 1.022 1.017 1.017 1.025
0.02 0.976 1.026 0.975 0.986 0.987 1.013 1.009 1.006 1.007 1.011
0.04 0.762 1.005 0.931 0.970 0.983 0.994 0.997 0.999 1.002 1.002
0.06 0.559 0.973 0.981 0.996 0.997 0.999 1.000 1.000 1.000 1.001
0.08 0.406 0.933 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.10 0.299 0.885 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.12 0.225 0.832 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.16 0.136 0.718 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.087 0.603 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4.10 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝜋 = 0.25 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

5 0.00 1.147 1.057 1.140 1.125 1.116 1.055 1.049 1.045 1.086 1.101
0.01 1.115 1.055 1.106 1.089 1.080 1.050 1.043 1.037 1.074 1.084
0.02 1.034 1.050 1.026 1.016 1.017 1.035 1.024 1.020 1.048 1.054
0.04 0.804 1.030 0.949 0.965 0.979 1.007 1.001 1.001 1.016 1.016
0.06 0.586 0.999 0.963 0.986 0.993 0.997 0.999 0.999 1.006 1.006
0.08 0.423 0.959 0.990 0.995 0.998 0.998 0.999 1.000 1.003 1.003
0.10 0.310 0.911 0.998 1.000 1.000 1.000 1.000 1.000 1.002 1.002
0.12 0.232 0.857 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.16 0.139 0.740 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.089 0.622 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 0.00 1.175 1.073 1.160 1.133 1.120 1.068 1.059 1.053 1.098 1.132
0.01 1.144 1.072 1.124 1.101 1.092 1.064 1.054 1.048 1.096 1.117
0.02 1.063 1.067 1.049 1.035 1.037 1.051 1.038 1.032 1.080 1.087
0.04 0.826 1.048 0.968 0.985 0.987 1.020 1.010 1.006 1.042 1.042
0.06 0.601 1.018 0.971 0.989 0.994 1.002 1.000 1.000 1.022 1.022
0.08 0.433 0.978 0.989 0.997 0.998 0.999 1.000 1.000 1.013 1.013
0.10 0.317 0.929 0.997 1.000 1.000 1.000 1.000 1.000 1.008 1.008
0.12 0.236 0.874 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006
0.16 0.143 0.760 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.20 0.091 0.639 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002

11 0.00 1.306 1.113 1.291 1.259 1.227 1.108 1.098 1.087 1.221 1.258
0.01 1.277 1.113 1.256 1.215 1.179 1.105 1.091 1.078 1.198 1.231
0.02 1.190 1.109 1.153 1.115 1.086 1.089 1.068 1.055 1.156 1.177
0.04 0.930 1.092 0.979 0.984 0.986 1.037 1.020 1.012 1.090 1.094
0.06 0.678 1.065 0.958 0.989 0.993 1.006 1.004 1.002 1.054 1.054
0.08 0.489 1.027 0.982 0.996 0.998 1.000 1.000 1.000 1.035 1.035
0.10 0.358 0.980 0.996 0.998 0.999 1.000 1.000 1.000 1.024 1.024
0.12 0.268 0.927 1.000 1.000 1.000 1.000 1.000 1.000 1.018 1.018
0.16 0.155 0.801 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.010
0.20 0.101 0.684 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006

15 0.00 1.390 1.143 1.358 1.307 1.273 1.135 1.120 1.107 1.307 1.341
0.01 1.352 1.141 1.315 1.260 1.225 1.130 1.112 1.097 1.286 1.310
0.02 1.256 1.136 1.203 1.153 1.130 1.112 1.088 1.073 1.235 1.248
0.04 0.980 1.116 1.008 1.013 1.015 1.052 1.034 1.025 1.139 1.141
0.06 0.717 1.086 0.970 0.983 0.989 1.013 1.005 1.003 1.082 1.082
0.08 0.519 1.047 0.979 0.995 0.998 1.001 1.001 1.000 1.051 1.051
0.10 0.381 1.000 0.993 0.999 1.000 1.000 1.000 1.000 1.034 1.034
0.12 0.285 0.947 1.000 1.001 1.000 1.000 1.000 1.000 1.023 1.023
0.16 0.170 0.827 1.000 1.000 1.000 1.000 1.000 1.000 1.012 1.012
0.20 0.110 0.708 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006

Ref. code: 25645909320011YZA
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Table 4.11 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝜋 = 0.50 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.00 1.083 1.060 1.080 1.071 1.062 1.058 1.051 1.044 1.029 1.037
0.01 1.052 1.051 1.046 1.035 1.028 1.045 1.035 1.028 1.017 1.025
0.02 0.976 1.030 0.975 0.986 0.987 1.013 1.010 1.005 1.007 1.011
0.04 0.762 0.956 0.931 0.970 0.983 0.980 0.991 0.995 1.002 1.002
0.06 0.559 0.856 0.981 0.996 0.997 0.995 0.999 0.999 1.000 1.001
0.08 0.406 0.746 0.998 1.000 1.000 0.999 1.000 1.000 1.000 1.000
0.10 0.299 0.640 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.12 0.225 0.543 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.16 0.136 0.387 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.087 0.276 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.00 1.147 1.104 1.140 1.125 1.116 1.098 1.088 1.081 1.086 1.101
0.01 1.115 1.095 1.106 1.089 1.080 1.087 1.073 1.064 1.074 1.084
0.02 1.034 1.074 1.026 1.016 1.017 1.052 1.035 1.029 1.048 1.054
0.04 0.804 0.998 0.949 0.965 0.979 1.000 0.996 0.997 1.016 1.016
0.06 0.586 0.894 0.963 0.986 0.993 0.990 0.996 0.998 1.006 1.006
0.08 0.423 0.779 0.990 0.995 0.998 0.996 0.998 0.999 1.003 1.003
0.10 0.310 0.666 0.998 1.000 1.000 0.999 1.000 1.000 1.002 1.002
0.12 0.232 0.564 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.16 0.139 0.400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.089 0.285 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 0.00 1.175 1.131 1.160 1.133 1.120 1.121 1.103 1.093 1.098 1.132
0.01 1.144 1.124 1.124 1.101 1.092 1.109 1.091 1.081 1.096 1.117
0.02 1.063 1.103 1.049 1.035 1.037 1.079 1.058 1.050 1.080 1.087
0.04 0.826 1.027 0.968 0.985 0.987 1.021 1.011 1.006 1.042 1.042
0.06 0.601 0.920 0.971 0.989 0.994 0.997 0.998 0.999 1.022 1.022
0.08 0.433 0.801 0.989 0.997 0.998 0.996 0.999 0.999 1.013 1.013
0.10 0.317 0.685 0.997 1.000 1.000 0.999 1.000 1.000 1.008 1.008
0.12 0.236 0.577 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006
0.16 0.143 0.414 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.20 0.091 0.293 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002

11 0.00 1.306 1.211 1.291 1.259 1.227 1.202 1.181 1.160 1.221 1.258
0.01 1.277 1.206 1.256 1.215 1.179 1.192 1.163 1.138 1.198 1.231
0.02 1.190 1.187 1.153 1.115 1.086 1.151 1.114 1.090 1.156 1.177
0.04 0.930 1.111 0.979 0.984 0.986 1.045 1.023 1.014 1.090 1.094
0.06 0.678 1.002 0.958 0.989 0.993 1.001 1.004 1.002 1.054 1.054
0.08 0.489 0.878 0.982 0.996 0.998 0.997 1.000 1.000 1.035 1.035
0.10 0.358 0.754 0.996 0.998 0.999 0.999 0.999 1.000 1.024 1.024
0.12 0.268 0.641 1.000 1.000 1.000 1.000 1.000 1.000 1.018 1.018
0.16 0.155 0.446 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.010
0.20 0.101 0.323 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006

Ref. code: 25645909320011YZA
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Table 4.11 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝜋 = 0.50 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

15 0.00 1.390 1.272 1.358 1.307 1.273 1.253 1.222 1.197 1.307 1.341
0.01 1.352 1.263 1.315 1.260 1.225 1.239 1.202 1.174 1.286 1.310
0.02 1.256 1.239 1.203 1.153 1.130 1.194 1.149 1.124 1.235 1.248
0.04 0.980 1.157 1.008 1.013 1.015 1.072 1.048 1.037 1.139 1.141
0.06 0.717 1.042 0.970 0.983 0.989 1.013 1.004 1.002 1.082 1.082
0.08 0.519 0.914 0.979 0.995 0.998 0.997 1.000 1.000 1.051 1.051
0.10 0.381 0.787 0.993 0.999 1.000 0.998 1.000 1.000 1.034 1.034
0.12 0.285 0.670 1.000 1.001 1.000 1.000 1.001 1.000 1.023 1.023
0.16 0.170 0.478 1.000 1.000 1.000 1.000 1.000 1.000 1.012 1.012
0.20 0.110 0.345 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006

Table 4.12 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝜋 = 0.75 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.00 1.083 1.077 1.080 1.071 1.062 1.074 1.066 1.057 1.029 1.037
0.01 1.052 1.058 1.046 1.035 1.028 1.051 1.039 1.032 1.017 1.025
0.02 0.976 1.013 0.975 0.986 0.987 1.000 1.002 0.999 1.007 1.011
0.04 0.762 0.869 0.931 0.970 0.983 0.959 0.982 0.990 1.002 1.002
0.06 0.559 0.703 0.981 0.996 0.997 0.989 0.998 0.998 1.000 1.001
0.08 0.406 0.555 0.998 1.000 1.000 0.999 1.000 1.000 1.000 1.000
0.10 0.299 0.435 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.12 0.225 0.342 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.16 0.136 0.218 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.087 0.145 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.00 1.147 1.135 1.140 1.125 1.116 1.128 1.114 1.105 1.086 1.101
0.01 1.115 1.116 1.106 1.089 1.080 1.106 1.089 1.079 1.074 1.084
0.02 1.034 1.068 1.026 1.016 1.017 1.049 1.032 1.028 1.048 1.054
0.04 0.804 0.915 0.949 0.965 0.979 0.980 0.984 0.990 1.016 1.016
0.06 0.586 0.739 0.963 0.986 0.993 0.979 0.992 0.996 1.006 1.006
0.08 0.423 0.580 0.990 0.995 0.998 0.993 0.997 0.999 1.003 1.003
0.10 0.310 0.453 0.998 1.000 1.000 0.999 1.000 1.000 1.002 1.002
0.12 0.232 0.355 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
0.16 0.139 0.225 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.089 0.149 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Ref. code: 25645909320011YZA
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Table 4.12 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝜋 = 0.75 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

7 0.00 1.175 1.166 1.160 1.133 1.120 1.153 1.129 1.116 1.098 1.132
0.01 1.144 1.149 1.124 1.101 1.092 1.130 1.108 1.096 1.096 1.117
0.02 1.063 1.102 1.049 1.035 1.037 1.078 1.057 1.052 1.080 1.087
0.04 0.826 0.944 0.968 0.985 0.987 1.003 1.002 0.999 1.042 1.042
0.06 0.601 0.761 0.971 0.989 0.994 0.987 0.995 0.997 1.022 1.022
0.08 0.433 0.596 0.989 0.997 0.998 0.993 0.998 0.999 1.013 1.013
0.10 0.317 0.464 0.997 1.000 1.000 0.998 1.000 1.000 1.008 1.008
0.12 0.236 0.362 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006
0.16 0.143 0.232 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.20 0.091 0.153 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002

11 0.00 1.306 1.280 1.291 1.259 1.227 1.266 1.238 1.209 1.221 1.258
0.01 1.277 1.265 1.256 1.215 1.179 1.246 1.207 1.174 1.198 1.231
0.02 1.190 1.216 1.153 1.115 1.086 1.174 1.130 1.101 1.156 1.177
0.04 0.930 1.049 0.979 0.984 0.986 1.025 1.011 1.005 1.090 1.094
0.06 0.678 0.850 0.958 0.989 0.993 0.984 0.999 0.999 1.054 1.054
0.08 0.489 0.669 0.982 0.996 0.998 0.991 0.998 0.999 1.035 1.035
0.10 0.358 0.522 0.996 0.998 0.999 0.998 0.999 1.000 1.024 1.024
0.12 0.268 0.409 1.000 1.000 1.000 1.000 1.000 1.000 1.018 1.018
0.16 0.155 0.251 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.010
0.20 0.101 0.170 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006

15 0.00 1.390 1.362 1.358 1.307 1.273 1.334 1.289 1.256 1.307 1.341
0.01 1.352 1.340 1.315 1.260 1.225 1.307 1.256 1.220 1.286 1.310
0.02 1.256 1.284 1.203 1.153 1.130 1.227 1.172 1.144 1.235 1.248
0.04 0.980 1.104 1.008 1.013 1.015 1.057 1.041 1.033 1.139 1.141
0.06 0.717 0.895 0.970 0.983 0.989 0.998 0.996 0.998 1.082 1.082
0.08 0.519 0.705 0.979 0.995 0.998 0.990 0.998 0.999 1.051 1.051
0.10 0.381 0.552 0.993 0.999 1.000 0.996 1.000 1.000 1.034 1.034
0.12 0.285 0.433 1.000 1.001 1.000 1.000 1.001 1.000 1.023 1.023
0.16 0.170 0.274 1.000 1.000 1.000 1.000 1.000 1.000 1.012 1.012
0.20 0.110 0.184 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.006

Ref. code: 25645909320011YZA
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(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 4.15 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 2 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 4.16 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 4 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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Figure 4.17 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 6 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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Figure 4.18 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 10 at Δsim ≥ 0
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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Figure 4.19 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for

monomolecular model with 𝑝1 = 6 and 𝑝2 − 1 = 14 at Δsim ≥ 0
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From the RMSE results for the three nonlinear models of interest,

we conclude that the uncertainty of subspace information has severe implications for

RE and LS estimator but it had a smaller impact on estimators based on pretest and

shrinkage strategies. The use of the S+ estimator was safe for dealing with overfitting

in the presence of subspace information. However, the SP estimator was suggested to

apply when 𝑝2 < 3.

4.2.2 High-Dimensional Data Setting

For the Cobb-Douglas, exponential, and monomolecular nonlinear

regression models, we generated the response variable from Equations (4.30), (4.31),

and (4.32), respectively, with regression coefficient vectors β = (β⊤
𝑠 ,β

⊤
𝑤 ,β

⊤
𝑛 )⊤, hav-

ing strong, weak-to-moderate, and no signals. Each nonzero coefficient with weak-to-

moderate signals was randomly assigned to have either positive or negative signs.

We considered the sample sizes and the number of parameters with

strong, weak-to-moderate, and no signals were (𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) = (150, 5, 25, 170), which
satisfied the regular assumptions 𝑝𝑠 ≤ 𝑝𝑤 < 𝑛 and 𝑝𝑛 > 𝑛 (Ahmed and Yüzbaşı, 2016;

Yüzbaşı et al., 2017) with 2,000 simulations. We next consider nonlinear models of in-

terest in the context of the high-dimensional sparse regime in the following subsection.

4.2.2.1 Cobb-Douglas Model

In this part of the study, the regression coefficients of the Cobb-

Douglas model were set as β = (β⊤
𝑠 ,β

⊤
𝑤 ,β

⊤
𝑛 )⊤ = (1, 1, 0.75, 0.75, 0.75,κ⊤

𝑝𝑤 , 0
⊤
𝑝𝑛)

⊤. To

study what happens when very weak signal became moderate signals, the size of the

weak-to-moderate signals (𝜅) were set as 0.0100, 0.0125, 0.0150, 0.0175, and 0.0200.

In this simulation setting, we simulated 2,000 datasets consisting of 𝑛 = 150, 𝑘𝑠 = 4,

𝑘𝑤 = 25, and 𝑘𝑛 = 170.

We investigated the performance of LASSO and aLASSO as

variable selection criteria, and the percentages of predictors selected for each method

were displayed. For example, if the percentage of any one predictor was 100, then

this predictor was always selected for all simulation steps. Likewise, if the percentage

of anyone predictor was zero, then this predictor was never selected in the simulation

steps. The findings are summarized in Table 4.13 and Figure 4.20.

Ref. code: 25645909320011YZA
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Table 4.13 Selection percentages of predictors using LASSO and aLASSO strate-
gies in Cobb-Douglas model with strong, weak, and no signals for (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛) =
(150, 4, 25, 170)

𝜅
Strong Signal Weak Signal No Signal

LASSO aLASSO LASSO aLASSO LASSO aLASSO
0.0100 100.00 100.00 30.31 2.77 0.57 0.02
0.0125 100.00 100.00 54.64 8.65 1.58 0.09
0.0150 100.00 100.00 70.20 17.50 2.43 0.25
0.0175 100.00 100.00 80.36 27.40 3.09 0.50
0.0200 100.00 100.00 87.30 37.28 3.57 0.78

The results show that the LASSO and aLASSO methods pro-

duced different structural sparsities in parameter space. LASSO elected a larger number

of predictors than aLASSO, though unfortunately, LASSO also retained more predictors

with no signal than aLASSO, especially when 𝜅 was large. This indicates that variable

selection results using the aLASSO strategy presented a lower-dimensional model than

when using the LASSO strategy.

When we consider the size of the weak-to-moderate signal (𝜅),

if 𝜅 increased, the selection percentage of predictors using LASSO and aLASSO with

strong signals remained unchanged while the selection percentage of predictors with

weak or no signals increased. However, aLASSO outperformed LASSO well by delet-

ing the predictors with weak and no signals since their selection percentage was tiny.

Furthermore, as 𝜅 grew, the weak signal became more robust. LASSO showed strong

efficiency in picking predictors with both strong andweak signals, although it still stored

too many predictors with no signals.

Remarkably, the predictors with weak signals were of little sig-

nificance for predicting the response variable when 𝜅 was very small, and could be re-

moved from the model. In contrast, they become powerful and should be included in

the model for large values of 𝜅. We can see that, for small values of 𝜅, LASSO may

produce overfitting with too many trivially significant or insignificant predictors being

selected. On the other hand, aLASSO may build underfitting because it selects fewer

significant predictors as 𝜅 becomes large. For this reason, the most suitable variable se-

lection method cannot be identified for all cases, so neither of the two candidate models

from the variable selection results using the LASSO and aLASSO strategies may be the

best choice.

Ref. code: 25645909320011YZA
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(a) 𝜅 = 0.0100
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(b) 𝜅 = 0.0125
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(c) 𝜅 = 0.0150
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(d) 𝜅 = 0.0175
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(e) 𝜅 = 0.0200

Figure 4.20 Comparison of percentage of each predictor selected using LASSO
and aLASSO strategies in Cobb-Douglas model for each 𝜅 and (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛) =
(150, 4, 25, 170)
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Finally, the post-selection estimators based on LS, PT, SP, S,

and S+ strategies for parameter estimation were applied. The RMSE results of suggested

estimators for 𝛼 = 0.05 and 𝜋 = 0.5 are reported in Table 4.14. The findings can be

summarized as follows:

1. All estimators had the highest efficiency when 𝜅 = 0.0100, and their RMSEs fell

as 𝜅 increased.

2. For very small values of 𝜅, the RE confirmed that aLASSO produced a more ap-

propriate model. However, the RE became less effective than the other estimators

when 𝜅 increased, indicating that the LASSO model was more suitable. At the

same time, aLASSO led to underfitting when the null hypothesis was untrue.

3. As 𝜅 increased, the LS estimator outperformed SM, which was inferior to other

estimators. When 𝜅 was small, the performance of the LS estimator was better

than all other estimators except the RE.

4. The performance of both PT and SP estimators dropped below one as 𝜅 increased,

then they increased, becoming equal to the UE. The SP estimator also had a poorer

performance than the PT estimator only when 𝜅 was small.

5. The RMSE of the S+ estimator was superior to the shrinkage (S) estimator when

𝜅 was small and became equal as 𝜅 increased. Both S and S+ estimators also

outperformed RE and LS when the value of 𝜅 was large and still dominated PT

and SP for small values of 𝜅, which was similar to the simulation results in a

low-dimensional setting when the number of inactive parameters was large.

Table 4.14 RMSEs of estimators with respect to the UE in Cobb-Douglas model for a
high-dimensional setting where 𝛼 = 0.05 and 𝜋 = 0.5

𝜅
Estimators

RE LS PT SP S S+
0.0100 1.1040 1.0506 1.0027 1.0014 1.0168 1.0341
0.0125 1.0116 1.0076 1.0004 1.0002 1.0032 1.0044
0.0150 0.9952 1.0001 1.0000 1.0000 1.0004 1.0005
0.0175 0.9665 0.9861 0.9998 0.9999 0.9955 0.9955
0.0200 0.9478 0.9770 1.0000 1.0000 0.9935 0.9935

Ref. code: 25645909320011YZA
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These results verified that the proposed post-selection estima-

tors were robust even when the UF and OF models were unworthy, which made the UE

and RE impotent. Therefore, the suggested estimators were recommended for post-

selection parameter estimation in the high-dimensional sparse Cobb-Douglas model

when the accuracy of the results was unknown. These results were also consistent with

the theoretical and numerical results in the low-dimensional regime.

4.2.2.2 Exponential Model

The sparse exponential nonlinear regression was considered

and the regression coefficients were chosen to beβ = (β⊤
𝑠 ,β

⊤
𝑤 ,β

⊤
𝑛 )⊤ = (β⊤

𝑠 ,κ𝑝𝑤 , 0𝑝𝑛)⊤,
where β𝑠 = (1.2, 1.2, 1.2, 0.9, 0.9)⊤. In order to investigate the behavior of the estima-
tors from weak to moderate signals, we defined the values of 𝜅 as 0.005, 0.050, 0.100,

0.200, 0.300. We generated 2,000 replications of the exponential model with 150 sam-

ple sizes (𝑛), and we set the number of predictors with strong (𝑘𝑠), weak (𝑘𝑤), and no
signals (𝑘𝑛) as 4, 25, and 170, respectively.

For the variable selection step, the resulting percentages of se-

lected predictors using the LASSO and aLASSO methods with each signal are reported

in Table 4.15. In addition, the resulting percentages of each predictor chosen using

LASSO and aLASSO are graphically presented in Figure 4.21.

Table 4.15 Selection percentages of predictors using LASSO and aLASSO methods in
exponential model with strong, weak, and no signals for (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛) = (150, 4, 25, 170)

𝜅
Strong Signal Weak Signal No Signal

LASSO aLASSO LASSO aLASSO LASSO aLASSO
0.005 100.00 98.45 12.64 0.39 12.67 0.35
0.050 100.00 87.18 15.36 0.53 12.86 0.37
0.100 100.00 84.90 23.28 0.96 14.27 0.38
0.200 99.92 81.65 42.71 3.36 17.07 0.56
0.300 99.88 80.50 57.79 8.12 19.80 0.99

From Table 4.15 and Figure 4.21, we can see that the LASSO

strategy performed better in picking predictors with strong and weak signals than the

aLASSO strategy for all cases. This confirms that the two different variable selection

strategies built different candidate subsets of selected predictors for establishing the

model.
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(a) 𝜅 = 0.005
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(b) 𝜅 = 0.050
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(c) 𝜅 = 0.100
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(d) 𝜅 = 0.200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

12
7

13
0

13
3

13
6

13
9

14
2

14
5

14
8

15
1

15
4

15
7

16
0

16
3

16
6

16
9

17
2

17
5

17
8

18
1

18
4

18
7

19
0

19
3

19
6

19
9

LASSO

Predictors

P
er

ce
nt

ag
e

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

12
7

13
0

13
3

13
6

13
9

14
2

14
5

14
8

15
1

15
4

15
7

16
0

16
3

16
6

16
9

17
2

17
5

17
8

18
1

18
4

18
7

19
0

19
3

19
6

19
9

aLASSO

Predictors

P
er

ce
nt

ag
e

0

20

40

60

80

100

(e) 𝜅 = 0.300

Figure 4.21 Comparison of percentage of each predictor selected using LASSO and
aLASSO strategies in exponential model for each 𝜅 and (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛) = (150, 4, 25, 170)
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When 𝜅was small, the predictors with weak signals had little or

no influence on the response variable for the aLASSO strategy. However, as 𝜅 increased,

the predictors with these signals were significant, especially in the LASSO strategy,

which performed better than aLASSO in selecting predictors.

After using LASSO and aLASSO for variable selection, we

applied the proposed estimators such as LS, PT, SP, S, and S+ to the models from the

dimensional reduction step. The RMSE results of the proposed estimators are shown in

Tables 4.16.

Table 4.16 RMSEs of estimators with respect to the UE in exponential model for a high-
dimensional setting where 𝛼 = 0.05 and 𝜋 = 0.5

𝜅
Estimators

RE LS PT SP S S+
0.005 1.0565 1.0402 1.0199 1.0126 1.0365 1.0378
0.050 0.4716 0.8458 1.0000 1.0000 1.0126 1.0126
0.100 0.2614 0.6788 1.0000 1.0000 1.0111 1.0111
0.200 0.0163 0.0645 1.0000 1.0000 1.0107 1.0107
0.300 0.0053 0.0209 1.0000 1.0000 1.0011 1.0011

The results of the post-selection step show that all proposed

estimators achieved the maximum performance of 𝜅 = 0.005. Furthermore, the RE was

most efficient when 𝜅 = 0.005, but it was less efficient than all other estimators when

κ became large. Similarly, the performance of the LS estimator also decreased as 𝜅

increased. The RMSEs of both PT and SP estimators fell below one as 𝜅 became large.

The S+ estimator showed an improved version of the shrinkage estimator, both of which

were more efficient than UE in all cases. They dominated the other estimators when 𝜅

was large and the RE was underfitted.

When the correctness of two alternative subsets of selected pre-

dictors obtained from LASSO and aLASSO was unknown, our RMSE results were

strongly consistent with the theoretical and numerical results in the low-dimensional

setting of the exponential model.

Ref. code: 25645909320011YZA
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4.2.2.3 Monomolecular Model

For a high-dimensional sparse monomolecular model, the true

values of parameter β in the simulation were set to β = (β⊤
𝑠 ,β

⊤
𝑤 ,β

⊤
𝑛 )⊤, where β𝑠 =

(3, 3, 1.2, 1.2, 1.2)⊤, β𝑤 = κ𝑝𝑤 , and β𝑛 = 0𝑝𝑛 . We also set 𝜅 as 0.001, 0.025, 0.050,

0.075, and 0.100 to study the estimator’s behavior from a veryweak to amoderate signal.

In the dimensional reduction step, the performance of the se-

lecting variable methods was examined only for (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛) = (150, 3, 25, 170). Based

on 2,000 simulation repetitions, the percentages of predictors selected by the LASSO

and aLASSO strategies for each signal level are reported in Table 4.17 and the percent-

ages of selection of each predictor using LASSO and aLASSO strategies are graphically

represented in Figure 4.22.

Table 4.17 Selection percentages of predictors using LASSO and aLASSO meth-
ods in monomolecular model with strong, weak, and no signals for (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛) =
(150, 3, 25, 170)

𝜅
Strong Signal Weak Signal No Signal

LASSO aLASSO LASSO aLASSO LASSO aLASSO
0.001 100.00 100.00 7.71 0.47 7.54 0.49
0.025 100.00 100.00 10.67 1.01 8.08 0.67
0.050 100.00 99.95 22.49 3.37 10.66 0.98
0.075 100.00 99.95 38.02 8.49 13.73 1.57
0.100 100.00 99.93 53.58 16.37 17.54 2.30

The results show the LASSO strategy selected predictors with

strong signals for all values of 𝜅, while the performance of the aLASSO strategy de-

creased as 𝜅 increased. As 𝜅 increased, the performance in selecting predictors with

weak signals of both LASSO and aLASSO increased, but the performance in eliminat-

ing predictors with no signals decreased. As we can see in Figure 4.22, the LASSO

strategy selected too many predictors when 𝜅 was very small, which could produce an

overfittedmodel, whereas aLASSO selected fewer significant predictors for large values

of 𝜅, which may produce an underfitted model.

For the post-selection parameter estimation, we suggest param-

eter estimations based on LS, PT, SP, S, and S+. To evaluate the RMSEs of the estima-

tors, we determine 𝛼 = 0.05 and 𝜋 = 0.5, with the findings reported in Table 4.18.
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(a) 𝜅 = 0.001
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(b) 𝜅 = 0.025
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(c) 𝜅 = 0.050
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(d) 𝜅 = 0.075
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(e) 𝜅 = 0.100

Figure 4.22 Comparison of percentage of each predictor selected using LASSO
and aLASSO strategies in monomolecular model for each 𝜅 and (𝑛, 𝑘𝑠, 𝑘𝑤, 𝑘𝑛) =
(150, 3, 25, 170)
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Table 4.18 RMSEs of estimators with respect to the UE in monomolecular model for a
high-dimensional setting where 𝛼 = 0.05 and 𝜋 = 0.5

𝜅
Estimators

RE LS PT SP S S+
0.001 1.7209 1.5584 1.0939 1.0565 1.2975 1.2975
0.025 0.2697 0.8513 1.0510 1.0343 1.1388 1.1388
0.050 0.1811 0.6584 1.0000 1.0000 1.0718 1.0718
0.075 0.0425 0.1705 1.0000 1.0000 1.0658 1.0658
0.100 0.0026 0.0103 1.0000 1.0000 1.0581 1.0581

According to Table 4.18, all estimators had the best perfor-

mance when 𝜅 = 0.001, but their efficiency then decreased as 𝜅 increased. The RE had

the highest RMSE at 𝜅 = 0.001. This indicates that the subset of the relevant predictors

selected by aLASSO is the right subset, whereas, LASSO identified an overfitted model.

On the other hand, aLASSO produced an underfitted model when 𝜅 increased, and the

efficiency of the RE decreased.

The RMSEs of the post-selection proposed estimators were

powerfully consistent with the results in a low-dimensional setting. The efficiency of

the LS estimator decreased as 𝜅 increased. The performance of PT and SP estimators

fell and then became equal to the UE when 𝜅 grew. As well, the RMSEs of S and S+

estimators were the same values.

4.3 Application to Real Data

The suggested and penalized estimators were applied to the analysis of real

data examples. In real analysis, the variable selection method helps to evaluate the

UPI. We used variable selection procedures based on the Akaike information criterion

(AIC), Bayesian information criterion (BIC), and LASSO. We also used the subspace

information created by variable selection techniques in only the LS, PT, SP, S, and S+

estimation processes.

Since the actual parameter values in the real data were unknown, we evalu-

ated the performance of any estimator β̂∗
1 of β̂1 with respect to the benchmark estimator

β̂UE1 by using the simulated relative mean squares prediction error (RMSPE) in Equation

(3.45).

Ref. code: 25645909320011YZA
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4.3.1 Low-dimensional Data Setting

In low-dimensional data, we applied the proposed estimators such as

RE, LS, PT, SP, S, S+, and penalized estimators, i.e., LASSO, and aLASSO to analyze

a manufacturing industry dataset, a cost of living and property price index dataset, and

a cereal yield dataset for the Cobb-Douglas, exponential, and monomolecular models,

respectively.

4.3.1.1 Manufacturing Industry Data

The manufacturing industry dataset was taken from the U.S.

National Bureau of Economic Research (2016). This dataset is a joint effort between the

National Bureau of Economic Research (NBER) and the U.S. Census Bureau’s Center

for Economic Studies (CES), and contains annual industry-level data from 1958 to 2011

with various variables. For evaluating the efficiency of the proposed estimators, we

applied the Cobb-Douglas model to the manufacturing industry dataset.

The data used in the analysis included a sample of 415 indus-

tries from 2009. It contained a dependent variable of 5-factor total factor productivity

(TFP) annual growth rate and 8 independent variables as shown in Table 4.19. The AIC,

BIC, and LASSO were used to select variables. We considered the submodel generated

from the AIC, BIC, or LASSO, only if it satisfied the condition 𝑝2 ≥ 3.

Table 4.19 List of variables for manufacturing industry data

Variable Description
Dependent Variable

Y 5-factor total factor productivity annual growth rate
Independent Variable
X1 Total employment (1,000s)
X2 End-of-year inventories (millions of dollars)
X3 Cost of electric & fuels (millions of dollars)
X4 Real structures capital stock (millions of dollars)
X5 Deflator for total value of shipments 1997 = 1.0
X6 Deflator for total cost of materials 1997 = 1.0
X7 Deflator for total capital expenditure 1997 = 1.0
X8 Deflator for cost of electric and fuels 1997 = 1.0

To investigate the performance of the estimators, we sampled

𝑚 = 100 bootstrap rows from the complete dataset with replacement 𝑁 = 1, 000 it-

Ref. code: 25645909320011YZA
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erations and set 𝛼 = 0.05 and 𝜋 = 0.50. As can be seen from Table 4.20, six, four,

and six predictors were active in the AIC, BIC, and LASSO submodels, respectively.

Since AIC and LASSO selection methods eliminated 2 predictors, we therefore consid-

ered only the BIC submodel for this case. Table 4.21 shows the RMSPE results for the

proposed estimators when 𝛼 = 0.05, and 𝜋 = 0.50.

Table 4.20 Variable selection results for manufacturing industry data

Method 𝑝1 𝑝2 Active Predictos
AIC 7 2 X2, X3, X4, X5, X6, X8
BIC 5 4 X2, X5, X6, X9

LASSO 7 2 X2, X3, X4, X5, X6, X8

Table 4.21 RMSPEs of estimators with respect to UE for manufacturing industry data

Method Estimator
RE LS PT SP S S+ LASSO aLASSO

BIC 3.9747 2.2966 2.9771 2.0068 1.8489 2.1838 1.1224 1.1248

The RE estimator had the largest RMSPE since this estimator

assumes that the subspace information is accurate. The PT strategy dominated all other

estimators, while the performance of LASSO was lower than that of the other estima-

tors. The RMSPE of the RE estimator was superior to that of LASSO and aLASSO

estimators, indicating that the LASSO and aLASSO methods eliminated too many sig-

nificant predictors.

4.3.1.2 Cost of Living and Property Prices Indices Data

Numbeo is the world's largest database for cost of living and

worldwide housing (real estate) prices. Numbeo is also a crowd-sourced global database

of quality of life information, including perceived crime rates and healthcare quality

among many other pieces of information.

We next applied the proposed estimators to a real dataset for

an exponential regression model. The data used was a cost of living and property prices

index dataset from mid-year 2020 (Numbeo, 2020), and 14 indices and 204 global cities

were selected. Table 4.22 displays a dependent variable, the cost of living index, and 13

independent variables.
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Table 4.22 List of variables for cost of living and property price indices data

Variable Description
Dependent Variable

Y Cost of Living Index
Independent Variable
X1 Price to Income Ratio
X2 Gross Rental Yield City Centre
X3 Price to Rent Ratio City Centre
X4 Mortgage as a Percentage of Income
X5 Affordability Index
X6 Purchasing Power Index
X7 Traffic Commute Time Index
X8 Pollution Index
X9 Climate Index
X10 Crime Index
X11 Health Care Index
X12 Inefficiency Index
X13 CO2 Emission Index

The choice of model and efficient parameter estimation and

prediction is important. In real analysis, the variable selection method helps to evaluate

the UPI. We applied variable selection procedures based on the AIC, BIC, and LASSO.

Table 4.23 shows the independent variables that are significantly influential on the re-

sponse variable.

Table 4.23 Variable selection results for cost of living and property price indices data

Method 𝑝1 𝑝2 Active predictors
AIC 8 6 X1, X3, X4, X6, X7, X8, X9
BIC 7 7 X1, X3, X4, X6, X7, X8

LASSO 13 1 X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12

Since the LASSO method gets rid of only one independent

variable from the model, in this case, we are also interested only in AIC and BIC sub-

models, for which 𝑝2 ≥ 3. We drew 𝑚 = 100 bootstrap rows from the dataset with

replacement and 𝑁 = 1, 000 replications. Here, 𝛼 was set to 0.05 and 𝜋 to 0.50.

The results in Table 4.24 demonstrate that the RE of both the

AIC and BIC variable selection methods was the most efficient estimator. All estima-

tors were superior to the UE. The RMSPE of the PT estimator was also greater than

the RMSPE of all other estimators. Both S and S+ estimators outperformed the LS,
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Table 4.24 RMSPEs of estimators with respect to UE for cost of living and property
price indices data

Method Estimator
RE LS PT SP S S+ LASSO aLASSO

AIC 3.8004 2.1817 3.2666 2.0408 2.3377 2.7715 1.0003 1.0003
BIC 4.0882 2.2932 3.2476 2.0683 2.4652 2.9044 1.0006 1.0006

SP, LASSO, and aLASSO estimators. The performance of both penalty estimators was

equal and was inferior to all other estimators.

4.3.1.3 Cereal Yield Data

The Food and Agriculture Organization (2020) or FAO is a

specialized agency of the United Nations (UN) that leads international efforts to defeat

hunger. The statistical activities of the FAO cover the areas of agriculture, forestry and

fisheries, land and water resources and uses, climate, environment, population, gender,

nutrition, poverty, rural development, education, health, and many more. Also, they

provide the world’s largest database of food and agriculture statistics, and this is publicly

available. In this section, we applied the proposed estimators to the real data for the

monomolecular model with the cereal yield dataset.

The data that we used comprised 117 countries in 2016. From

nine available variables in Table 4.25, the cereal yield was selected as the response vari-

able and the others were regressors. Variable selection procedures based on AIC, BIC,

and LASSO were applied, and the variable selection results for establishing candidate

submodels are shown in Table 4.26. The RMSPE results with assumed 𝛼 = 0.05 and

𝜋 = 0.50 using 100 resampled bootstrap samples that we iterated 1000 times are dis-

played in Table 4.27.

The results from Table 4.27 show that all of the variable selec-

tion methods provided the correct subspace information because the RE had the highest

RMSPE. Aside from the RE, all other estimators outperformed the UE, except both pe-

nalized estimators in the BIC method. The LASSO and aLASSO estimators performed

well in AIC and LASSO variable selections, but poorly in BIC. These results are con-

sistent with simulation results when Δsim is equal or close to zero.
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Table 4.25 List of variables for cereal yield data

Variable Description
Dependent Variable

Y Cereal yield (hg/ha)
Independent Variable
X1 Area harvested (ha)
X2 Gross Production Index
X3 Import Value (1,000 US$)
X4 Export Value (1,000 US$)
X5 Nitrogen (kg/ha)
X6 Phosphate (kg/ha)
X7 Potash (kg/ha)
X8 Pesticides (kg/ha)

Table 4.26 Variable selection results for cereal yield data

Method 𝑝1 𝑝2 Active Predictors
AIC 7 3 X1, X3, X4, X5, X7
BIC 6 4 X1, X3, X4, X5

LASSO 5 5 X4, X5, X7

Table 4.27 RMSPEs of estimators with respect to UE for cereal yield data

Method Estimator
RE LS PT SP S S+ LASSO aLASSO

AIC 1.0982 1.0676 1.0784 1.0531 1.0311 1.0373 1.0266 1.0274
BIC 1.0621 1.0429 1.0560 1.0387 1.0199 1.0354 0.9894 0.9884

LASSO 1.1517 1.1027 1.1224 1.0817 1.0617 1.0955 1.0725 1.0742

4.3.2 High-dimensional Data Setting

In high-dimensional data examples, we applied the penalized estima-

tors for the variable selection step. In addition, the suggested estimators, such as the RE,

LS, PT, SP, S, and S+ estimators, were applied in practice to examine three datasets: an

economic dataset, a dataset on communities and crime, and a dataset on rice yield for

the Cobb-Douglas, exponential, and monomolecular models, respectively.

4.3.2.1 Economic Data

TheWorld Bank compiles published statistics on global devel-

opment, called World Development Indicators (WDI), drawing from officially recog-

nized sources and including national, regional, and global estimates. The WDI that we

used in this section is economic data, which contains the topics of growth, economic

Ref. code: 25645909320011YZA



141

structure, income and savings, trade, and labor productivity (World Bank, 2018). This

study aims to examine the economic factors associated with GDP per capita growth

using a Cobb-Douglas sparse regression model in a high-dimensional regime. A total

of 64 countries with all measurements on 101 economic factors for the year 2018 are

recorded in this dataset.

The numbers of selected variables by LASSO and aLASSO

for the economic data set are eleven and four variables, respectively, so that 𝑘1 = 4 and

𝑘2 = 7. The number of parameters in overfitted and underfitted models was 𝑝1 + 𝑝2 =

12 and 𝑝1 = 5. After the dimension reduction step, the list of the response variable

and explanatory variables selected by the penalized method (LASSO and aLASSO) are

shown in Tables 4.28 and 4.29.

Table 4.28 List of variables for economic data

Variable Description
Dependent Variable
GDP.PCAP GDP per capita growth (annual %)
Independent Variable
ADJ.DRES Adjusted savings: natural resources depletion (% of GNI)
AGR.TOTL Agriculture, forestry, and fishing, value added (annual% growth)
CAB.XOKA Current account balance (% of GDP)
IND.EMPL Employment in industry, male (% of male employment)
GNP.PCAP GNI per capita growth (annual %)
CON.PRVT Households and NPISHs Final consumption per expenditure

capita growth (annual%)
IND.TOTL Industry (including construction), value added (annual% growth)
TLF.CACT Labor force participation rate, male (% of male population ages 15+)
TDS.DPPG Public and publicly guaranteed debt service (% of exports of goods,

services and primary income)
SRV.TOTL Services, value added (annual% growth)
EMP.WORK Wage and salaried workers, female (% of female employment)

Table 4.29 Variable selection results for economic data

Model Method Number of Selected Predictors as ActiveParameters
OF LASSO 12 ADJ.DRES, AGR.TOTL, CAB.XOKA,

IND.EMPL, GNP.PCAP, CON.PRVT,
IND.TOTL, TLF.CACT, TDS.DPPG,
SRV.TOTL, EMP.WORK

UF aLASSO 5 ADJ.DRES, GNP.PCAP, IND.TOTL,
SRV.TOTL
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We drew bootstrap samples of size 𝑚 = 50 rows with replace-

ment from the data by 𝑁 = 1, 000 times to examine the relative efficiencies of the

proposed estimators. We assumed 𝛼 = 0.05 and 𝜋 = 0.50. The RMSPE results are

reported in Table 4.30.

Table 4.30 RMSPEs of estimators with respect to UE from post-selection for economic
data

Estimators
RE LS PT SP S S+

RMSPE 18.9631 3.5600 1.0000 1.0000 1.2195 1.2195

As can be seen, all the estimators dominated the UE except the

PT and SP which were equivalent to the UE. The performance of the RE was the best,

followed by the LS estimator and both shrinkage estimators, indicating that the infor-

mation β = 0 was still correct. This means that aLASSO provided a more accurate

subset of selected independent variables, whereas LASSO chose too many no-influence

variables.

4.3.2.2 Communities and Crime Data

The communities and crime dataset within the United States

consists of socio-economic data from the 1990 US Census, law enforcement data from

the 1990 US Law Enforcement Management and Admin Stats (LEMAS) survey, and

crime data from the 1995 FBI UCR (UCI Machine Learning Repository, n.d.). After

we excluded missing values, the data consisted of 111 instances or crimes reported from

across the country and 124 predictive features. Moreover, the potential feature of interest

to predict was the total number of violent crimes per 100K population. We then analyzed

the data using a high-dimensional exponential sparse regression model.

The LASSO and aLASSO were put to practical use to reduce

the predictor dimension. As a result, the LASSO obtained a model that contained 11

(𝑘1 + 𝑘2 = 11) significant predictors and aLASSO selected seven (𝑘1 = 7) significant

features into the model (in Table 4.32). Therefore, the overfitted and underfitted models

consisted of 𝑝1 + 𝑝2 = 12 and 𝑝1 = 8 parameters. After variable selection, the list of

variables that we considered is shown in Table 4.31.
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Table 4.31 List of variables for communities and crime data

Variable Description
Dependent Variable
ViolentCrimesPerPop Total number of violent crimes per 100K popuation
Independent Variable
pctUrban Percentage of people living in areas classified as urban
FemalePctDiv Percentage of females who are divorced
PctKids2Par Percentage of kids in family housing with two parents
PctTeen2Par Percentage of kids age 12-17 in two parent households
PctKidsBornNeverMar Percentage of kids born to never married
PctHousOccup Percentage of housing occupied
MedRentPctHousInc Median gross rent as a percentage of household income
PctForeignBorn Percentage of people foreign born
PctSameHouse85 Percentage of people living in the same house as in 1985
NumKindsDrugsSeiz Number of different kinds of drugs seized
LemasPctOfficDrugUn Percentage of officers assigned to drug units

Table 4.32 Variable selection results for communities and crime data

Model Method Number of Selected Predictors as ActiveParameters
OF LASSO 12 pctUrban, FemalePctDiv, PctKids2Par,

PctTeen2Par, PctKidsBornNeverMar,
PctHousOccup, MedRentPctHousInc,
PctForeignBorn, PctSameHouse85,
NumKindsDrugsSeiz, LemasPctOfficDrugUn

UF aLASSO 8 pctUrban, FemalePctDiv, PctKids2Par,
PctTeen2Par, PctKidsBornNeverMar,
PctHousOccup, MedRentPctHousInc

Table 4.33 RMSPEs of estimators with respect to UE from post-selection for communi-
ties and crime data

Estimators
RE LS PT SP S S+

RMSPE 1.2498 5.2741 1.2498 5.2741 6.0502 7.1406

Table 4.33 shows the RMSPEs results where 𝛼 was set to 0.05

and 𝜋 was also set to 0.05 with 100 bootstrap rows and 1,000 iterations. All the proposed

estimators were superior to the UE, which means that LASSO provided the poorest set

or selected too many irrelevant predictors in the OF model. The shrinkage estimators

performed best, especially in the positive-part version. The RMSPEs of the RE and PT
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estimator had equal values since the information of RE was correct for all iterations.

Similarly, the performance of the LS and SP estimators was also equivalent too. This

indicates that the test statistic lay in an acceptance region (H0 : β = 0) for all iterations.

4.3.2.3 Rice Yield Data

Data on the cultivation of the sample farmer households in the

benefit areas of Kwae Noy Dam, Thailand for the 2014/2015 planting year was obtained

from the socio-economic situation monitoring and evaluation projects of the Royal Irri-

gation Department of Thailand, under His Majesty the King of Thailand’s initiation, in

the 2015 budget year (Chaowagul et al., 2015). Our study aimed to establish a model to

predict the average rice yield (kg/0.16 ha). The predictors contained 140 variables and
comprised 105 sample households which planted rice twice a year. The monomolecular

sparse regression model in a high-dimensional setting was used.

After applying the LASSO and aLASSO strategies for variable

selection, five predictors (𝑘1 + 𝑘2 = 5) were selected as significant by LASSO, and two

relevant predictors (𝑘1 = 2) by aLASSO, containing 𝑝1+ 𝑝2 = 7 and 𝑝1 = 4 parameters,

respectively. The list of variables and the variable selection results are displayed in

Tables 4.34 and 4.35. We report the RMSPEs of the suggested estimators for 𝛼 = 0.05

and 𝜋 = 0.50 with 𝑚 = 100 and 𝑁 = 1000 in Table 4.36.

From Table 4.36, we can see that variable selection based on

aLASSO provided the correct set of RE as it had the highest RMSPE. The performance

of the PT estimator was superior to that of the LS, SP, S, and S+ estimators. The effi-

ciency of the S+ estimator was also better than the shrinkage estimator.

Table 4.34 List of variables for rice yield data

Variable Description
Dependent Variable
farmh Average yield of rice harvested (kg/0.16 ha)
Independent Variable
chemrg2p Average price (Thai baht) of herbicides in powder or tablet form
chemrw2q Average amount of liquid pesticide used (L/0.16 ha)
chemrw2ex Average cost of liquid pesticides (Thai baht/0.16 ha)
labr13p Average labor rate for fertilizing rice (Thai baht)
machin2 Number (units) of available rice spray seeding machines in 2014
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Table 4.35 Variable selection results for rice yield data

Model Method Number of Parameters Selected Predictors as Active
OF LASSO 7 chemrg2p, chemrw2q, chemrw2ex,

labr13p, machin2
UF aLASSO 4 chemrw2q, chemrw2ex

Table 4.36 RMSPEs of estimators with respect to UE from post-selection for rice yield
data

Estimators
RE LS PT SP S S+

RMSPE 1.0264 1.0175 1.0205 1.0134 1.0066 1.0101

These results of these three real data examples were consistent

with the simulation results, which confirmed that the positive-part shrinkage estimator

was robust when the correctness of two alternative models obtained from LASSO and

adaptive LASSO (aLASSO) variable selection methods was unknown.
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CHAPTER 5

PARAMETER ESTIMATION IN THE COX PROPORTIONAL

HAZARD REGRESSION MODEL UNDER UNCERTAINTY OF

PRIOR INFORMATION

This chapter represents the estimation problem in the Cox proportional haz-

ards regression model when the regression coefficient may be restricted to a subspace in

both low- and high-dimensional settings. The classical, preliminary test, and shrinkage

estimation strategies are considered, and the large sample properties of these estima-

tors in terms of asymptotic distributional quadratic bias and risk are presented. We also

examine two penalized estimators—LASSO and adaptive LASSO—and compare their

relative performance numericallywith the suggested estimators. The properties of all the

estimators are compared through simulated relative mean squared error using a Monte

Carlo simulation. Finally, real data examples are applied to illustrate the usefulness of

the suggested estimators in practice.

5.1 Introduction

Data that measure lifetime or the length of time until the occurrence of an

event are called lifetime, failure time, or survival data. This is an essential topic in

many areas, including medicine, engineering, and social sciences. Lifetime data can be

defined broadly as the time to the occurrence of a given event. For example, this event

can be developing a disease, response to treatment, relapse, or death. Therefore, lifetime

data can be the time from the start of treatment to response, time to death, the length of

time a person stays on a job, etc.

The statistics used for analyzing lifetime data are called survival analysis.

Unfortunately, this analysis is usually a difficult process due to censoring (right cen-

soring is the most common type), which means that participants drop out of the study

before the occurrence of the event, leaving incomplete information about the survival

time when the study ends. This problem results in a lack of information such that ordi-

nary linear regression models for survival cannot be applied (Baek et al., 2021). Hence,
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the Cox proportional hazards (PH) regression model, is the most commonly used hazard

model in the medical field since it deals with censoring.

In this study, we consider the estimation problem for the Cox PH regression

model when there are many potential predictors, some of which may or may not be

relevant to the lifetime of patients. If the irrelevant predictors can be removed from

the model, the analysis will be more precise. In this case, we can use the advantage

of available information derived from the researcher’s experience, previous studies, or

variable selection approaches to identify the related predictors. Such information is

usually called prior information or subspace information.

There are two types of competitors to consider when using available infor-

mation, which is usually of unknown correctness or uncertain prior information (UPI):

the full model (unrestricted model), which includes all predictors, and the candidate

submodel (restricted model), which contains the influencing predictors. From this in-

formation, the parameter vector can be partitioned into two subvectors, β = (β⊤
1 ,β

⊤
2 )

⊤,

where one parameter subvector corresponds to active predictors and other to inactive

predictors. In this study, our point of interest is on the estimation of active parameters

(β1) when information suggests that the inactive parameters (β2) are close to zero.

Under UPI, the full model considers all predictors, which leads to an over-

fitting problem, as too many inactive parameters are included. If the UPI is correct, the

submodel excludes non-significant predictors and contains only active predictors, which

can address an overfitting problem. However, we may encounter an underfitting prob-

lem if the UPI is incorrect. Therefore, employing either the unrestricted or restricted

estimator as the estimator for an active parameter is not a good decision when informa-

tion accuracy is unknown. Consequently, we introduce preliminary test and shrinkage

strategies to address this problem. In addition, a family of penalized approaches for the

Cox PH regression model was considered, including the least absolute shrinkage and

selection operation (LASSO) and adaptive LASSO (aLASSO) methods.

Many studies have examined the use of preliminary test and shrinkage esti-

mation strategies under UPI in regression models with censored or time-to-event data.

The shrinkage and positive-part shrinkage estimators were proposed in Ahmed and

Saleh (1999), and a preliminary test estimator was proposed in Khan (2002) for an ex-

ponential model with censoring. Hossain and Ahmed (2014) studied the shrinkage and
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positive-part shrinkage estimation strategies in the Cox proportional hazards regression

model. In addition, the two penalized estimators (LASSO and aLASSO) were also con-

sidered. Ahmed et al. (2012), Hossain and Howlader (2017), and Hossain and Khan

(2020) addressed the problem of estimating parameters in Weibull regression, lognor-

mal regression, and exponentiated Weibull regression models, respectively, for time-

to-event data (censored data). The shrinkage and positive-part shrinkage estimation

methods were introduced in their study. Moreover, the LASSO estimation strategy was

suggested in Ahmed et al. (2012), and both LASSO and aLASSO estimation methods

were suggested in Hossain and Howlader (2017).

Therefore, this chapter aims to diagnose the issues related to parameter es-

timation for the Cox PH regression model when a candidate submodel is available. This

model implements preliminary test, shrinkage, and penalized estimation methods for

low-dimensional data and extends the work to high-dimensional data.

The rest of the chapter is organized as follows: The Cox proportional haz-

ards regression model is introduced in Section 5.2. The suggested and penalized estima-

tion strategies is displayed in Section 5.3. The asymptotic properties of the suggested

estimators and their asymptotic distributional quadratic biases and risks are represented

in Section 5.4. The results of a Monte Carlo simulations study are given in Section

5.5. An application to real datasets is displayed in Section 5.6. Finally, the concluding

remarks are given in Section 5.7.

5.2 Cox Proportional Hazards Model and Maximum Partial Likelihood

Estimation

Models in which covariates have a multiplicative effect on the hazard func-

tion play an important role in analyzing lifetime (or survival) data. Therefore, the pri-

mary approach to regression modeling for lifetimes typically examines the relationship

of the hazard function to covariates. The most common model of this approach is the

proportional hazards (PH) model.

Survival analysis is a commonly used method for analyzing failure time,

where failure or death is referred to as an event. This analysis tries to model time-

to-event data, which is usually censored due to a study’s termination. We consider a
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situation such that lifetimes 𝑇𝑖 may be subject to a fixed censoring, and we suppose

that there is a lifetime and a censoring time for each individual. Assuming that each

individual has a fixed potential censoring time 𝐶𝑖 > 0 and we have a sample size of 𝑛,

the data therefore consists of the triple (𝑡𝑖, 𝑑𝑖,x𝑖) for 𝑖 = 1, 2, ..., 𝑛. Here, 𝑡𝑖 = 𝑚𝑖𝑛(𝑇𝑖, 𝐶𝑖)
is the time in the study for the 𝑖th individual and 𝑑𝑖 is the event indicator of individual

𝑖, where 𝑑𝑖 = 1 if the event has occurred (𝑇𝑖 ≤ 𝐶𝑖) and 𝑑𝑖 = 0 if the lifetime is right-

censored (𝑇𝑖 > 𝐶𝑖). This indicates that 𝑡𝑖 is the lifetime or censoring time according to

whether 𝑑𝑖 = 1 or 0, respectively. In addition, x𝑖 = {𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑝}⊤ is a 𝑝 × 1 vector

of fixed covariates for the 𝑖th individual.

The general form of the hazard function of 𝑇 depends on the covariate x𝑖
for an individual, is written as:

ℎ(𝑡 |x𝑖,β) = ℎ0(𝑡)𝑟 (x𝑖,β), (5.1)

where β = (𝛽1, 𝛽2, ..., 𝛽𝑝)⊤ is a 𝑝 × 1 vector of regression coefficients. Here, ℎ0(𝑡) and
𝑟 (x𝑖,β) are positive-value functions. The function ℎ0(𝑡) is usually called the baseline
hazard function and is the hazard function for an individual whose covariate vector x𝑖
is such that 𝑟 (x𝑖,β) = 1. The function 𝑟 (x𝑖,β) characterizes how the hazard function

changes with covariates, in which case ℎ0(𝑡) is the hazard function when x𝑖 = 0.

In contrast, Cox (1972) introduced the proportional hazards model which

leaves the baseline hazard function ℎ0(𝑡) unspecified, and a typical specification for

𝑟 (x𝑖,β) is exp(β⊤x𝑖). Consequently, the hazard function for 𝑇 given x𝑖 takes the form

ℎ(𝑡 |x𝑖,β) = ℎ0(𝑡)exp(β⊤x𝑖)

= ℎ0(𝑡)exp
(
𝑝∑
𝑗=1

𝛽 𝑗𝑥𝑖 𝑗

)
= ℎ0(𝑡)exp(𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + · · · + 𝛽𝑝𝑥𝑖𝑝), (5.2)

known as the Cox model or Cox PH model. This model is semi-parametric because the

baseline hazard function can take any form and must be estimated nonparametrically.

At the same time, the covariates enter the model linearly with no intercept term and

estimate β parametrically.

The name “proportional hazards” comes from the fact that any two individu-

als have hazard functions that are constant multiples of one another. Consider two cases
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𝑖 and 𝑖′ that differ in their 𝑥-values, x𝑖 and x𝑖′, with the corresponding linear predictors

β⊤x𝑖 = 𝛽1x𝑖1 + 𝛽2x𝑖2 + · · · + 𝛽𝑝x𝑖𝑝

and

β⊤x𝑖′ = 𝛽1x𝑖′1 + 𝛽2x𝑖′2 + · · · + 𝛽𝑝x𝑖′𝑝 .

The hazard ratio for these two cases is as follows:

ℎ(𝑡 |x𝑖,β)
ℎ(𝑡 |x𝑖′,β)

=
ℎ0(𝑡) exp(β⊤x𝑖)
ℎ0(𝑡) exp(β⊤x𝑖′)

=
exp(β⊤x𝑖)
exp(β⊤x𝑖′)

,

= exp
[
β⊤(x𝑖 − x𝑖′)

]
, (5.3)

which is independent of time. Therefore, the Coxmodel is a proportional hazardsmodel.

See Cox and Oakes (1984, p. 91), Klein and Moeschberger (2003, pp. 243–245), Law-

less (2003, p. 341), Lee and Wang (2003, pp. 298–301), among others, for more details

on Cox proportional hazards model.

5.2.1 Partial Likelihoods

Suppose that a censored random sample (𝑡𝑖, 𝑑𝑖), 𝑖 = 1, 2, ..., 𝑛, yields

𝑘 distinct observed lifetimes and 𝑛 − 𝑘 censoring times. For simplicity, assume that we
have an absolutely continuous failure distribution. Let 𝑡(1) < 𝑡(2) < · · · < 𝑡(𝑘) denote

the ordered event times and x(𝑖) be the covariate associated with the individual whose

failure time is 𝑡(𝑖) or who dies at time 𝑡(𝑖) . Let 𝑅(𝑡(𝑖)) be the set of individuals who are
still under study at a time (alive) and uncensored just prior to time 𝑡(𝑖) , and this is referred

to as the risk set at 𝑡(𝑖); since it consists of those individuals who could be observed to

die at 𝑡(𝑖) , given what has occurred up to that time.

Therefore, Cox’s partial likelihood function (Cox, 1972), based on

the hazard function as specified by Equation (5.2), for estimating β is expressed by

L(β) =
𝑘∏
𝑖=1

exp
(
β⊤x(𝑖)

)∑
𝑗∈𝑅(𝑡 (𝑖) )

exp
(
β⊤x 𝑗

) . (5.4)

This is retained as an ordinary likelihood, and inference is carried out by a usual method.

Note that the numerator of the likelihood depends only on information from the indi-

vidual who experiences the event. In contrast, the denominator uses information about
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all individuals who have not yet experienced the event, including those who will be

censored later.

Let ℓ(β) = ln [L(β)], the log partial likelihood function from Equa-

tion (5.4) can be written as follows:

ℓ(β) =
𝑘∑
𝑖=1

β⊤x(𝑖) −
𝑘∑
𝑖=1

ln


∑

𝑗∈𝑅(𝑡 (𝑖) )
exp

(
β⊤x 𝑗

) . (5.5)

The score equations are found by taking partial derivatives of ℓ(β) with respect to the
β’s as follows:

𝜕ℓ(β)
𝜕β

=
𝑘∑
𝑖=1

x(𝑖) −
𝑘∑
𝑖=1

∑
𝑗∈𝑅(𝑡 (𝑖) )

x 𝑗exp
(
β⊤x 𝑗

)
∑

𝑗∈𝑅(𝑡 (𝑖) )
exp

(
β⊤x 𝑗

) . (5.6)

The maximum (partial) likelihood estimates are obtained by solving the set of 𝑝 nonlin-

ear score equations 𝜕ℓ(β)𝜕β = 0. Unfortunately, it cannot be solved since it is nonlinear in

β. Therefore, this can be done numerically using a Newton-Raphson iteration or some

other iterative method. Note that Equation (5.5) does not depend upon the baseline haz-

ard ratio, so inferences may be made on the effects of the covariates without knowing

the baseline hazard ratio.

The second derivative of the log partial likelihood function in Equa-

tion (5.5) with respect to β is the following expression:

𝜕2ℓ(β)
𝜕β𝜕β⊤ = −

𝑘∑
𝑖=1

∑
𝑗∈𝑅(𝑡 (𝑖) )

x 𝑗x
⊤
𝑗 exp(β⊤x 𝑗 )∑

𝑗∈𝑅(𝑡 (𝑖) )
exp(β⊤x 𝑗 )

+
𝑘∑
𝑖=1

∑
𝑗∈𝑅(𝑡 (𝑖) )

x 𝑗 exp(β⊤x 𝑗 )∑
𝑗∈𝑅(𝑡 (𝑖) )

exp(β⊤x 𝑗 )

∑
𝑗∈𝑅(𝑡 (𝑖) )

x⊤
𝑗 exp(β⊤x 𝑗 )∑

𝑗∈𝑅(𝑡 (𝑖) )
exp(β⊤x 𝑗 )

. (5.7)

The negative of the second derivative of the log partial likelihood in Equation (5.7)

containing more than one covariate is called the information matrix, and can be denoted

as

I(β) = − 𝜕
2ℓ(β)
𝜕β𝜕β⊤ . (5.8)

Therefore, the estimator of the variance of the estimated coefficient is the inverse of

Equation (5.8) evaluated at β̂ and is

Var(β̂) = V(β̂) = I(β̂)−1. (5.9)
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More details of the partial likelihood function and Newton-Raphson technique can be

found in Hosmer and Lemeshow (1998, pp. 95-97), Klein and Moeschberger (2003,

pp. 253–254), Lawless (2003, pp. 342–343), Lee and Wang (2003, pp. 301–302), etc.

5.2.2 Maximum Partial Likelihood Estimation Strategy

In this study, the proportional hazards (PH) regression model was

considered when the lifetime of individuals may be related to several potential covari-

ates, some of which may be irrelevant. The Cox PH regression model that we consider

is of the form

ℎ(𝑡) = ℎ0(𝑡) exp (𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + · · · + 𝛽𝑝𝑥𝑖𝑝), 𝑡 ≥ 0. (5.10)

The parameter vector β can be partitioned into two sub-vectors as

β = (β⊤
1 ,β

⊤
1 )⊤, where β1 and β2 are supposed to have dimensions 𝑝1 × 1 and 𝑝2 × 1,

respectively, such that 𝑝 = 𝑝1 + 𝑝2. For inference purposes, when there is censoring,
the information matrix, may be partitioned as

I(β) =

I11 I12
I21 I22

 , (5.11)

which has a 𝑝 × 𝑝 dimension. We also assumeG = lim
𝑛→∞

1
𝑛I(β) as 𝑛→ ∞, then we get

a finite positive-definite matrix as

G =


G11 G12

G21 G22

 , (5.12)

whereG𝑖 𝑗 = lim
𝑛→∞

1
𝑛I𝑖 𝑗 and 𝑖, 𝑗 = 1, 2.

5.2.2.1 Unrestricted Estimator

The unrestricted estimator (UE) of β, denoted as β̂UE, is the

final maximum partial likelihood estimator and is obtained by solving the nonlinear

score equation using the Newton-Raphson iterative algorithm or other methods.

Theorem 5.2.1. Under the usual regularity conditions, as 𝑛→ ∞,

β̂UE 𝐷−→ N𝑝

(
β,

1

𝑛
G−1

)
, (5.13)
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where G−1 is a 𝑝 × 𝑝 asymptotic variance-covariance matrix and 𝐷−→ implies conver-

gence in distribution. Here, G = lim
𝑛→∞

1
𝑛I(β), where I(β) is the information matrix,

which is the negative of the second derivative of the log partial likelihood in Equation

(5.7):

I(β) =
𝑘∑
𝑖=1

∑
𝑗∈𝑅(𝑡 (𝑖) )

x 𝑗x
⊤
𝑗 exp(β⊤x 𝑗 )∑

𝑗∈𝑅(𝑡 (𝑖) )
exp(β⊤x 𝑗 )

−
𝑘∑
𝑖=1

∑
𝑗∈𝑅(𝑡 (𝑖) )

x 𝑗 exp(β⊤x 𝑗 )∑
𝑗∈𝑅(𝑡 (𝑖) )

exp(β⊤x 𝑗 )

∑
𝑗∈𝑅(𝑡 (𝑖) )

x⊤
𝑗 exp(β⊤x 𝑗 )∑

𝑗∈𝑅(𝑡 (𝑖) )
exp(β⊤x 𝑗 )

. (5.14)

Proof. See Andersen and Gill (1982) for detailed proof. □

Sincewe set the vector of regression coefficients asβ = (β⊤
1 ,β

⊤
2 )⊤,

then the unrestricted estimator is given by

β̂UE = (𝛽UE1 , 𝛽UE2 , ..., 𝛽UE𝑝1︸                ︷︷                ︸
𝑝1

, 𝛽UE𝑝1+1, 𝛽
UE
𝑝1+2, ..., 𝛽

UE
𝑝2︸                    ︷︷                    ︸

𝑝2

)

=
(
(β̂UE1 )⊤, (β̂UE2 )⊤

)⊤
, (5.15)

where 𝑝 = 𝑝1 + 𝑝2.

Theorem 5.2.2. If the usual regularity conditions and Theorem 5.2.1 hold, as 𝑛 → ∞,

themarginal distribution of β̂UE
1

𝐷−→ N𝑝1

(
β1,

1
𝑛G

−1
11.2

)
and of β̂UE

2

𝐷−→ N𝑝2

(
β2,

1
𝑛G

−1
22.1

)
.

Here,G−1
11.2 = (Q11 −G12G

−1
22G21)−1,G−1

22.1 = (G22 −G21G
−1
11G12)−1, and

𝐷−→means

convergence in distribution.

Proof. See Ravishanker and Dey (2001, p. 155) for detailed proof. □

5.2.2.2 Restricted Estimator

The restricted estimator (RE) of β, denoted by β̂RE, can be

obtained by maximizing the log partial likelihood function in (5.5) under the linear re-

strictionRβ − r = 0. Using the Lagrange multiplier technique, the RE would be

β̂RE = β̂UE − I(β)−1R⊤(RI(β)−1R⊤)−1(Rβ̂UE − r). (5.16)

If there is reason to believe that β2 is close to zero, as a special

case we can consider 𝑅 = [0𝑝2×𝑝1 , I𝑝2] and r = 0𝑝2×1. Thus, the null hypotheses
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Rβ = 0 become β2 = 0. From Lawless & Singhal (1978), it can be shown that the RE

of β1 or β̂RE1 is as follows:

β̂RE1 = β̂UE1 − (−I−1
11 I12β̂UE2 )

= β̂UE1 − ω𝑛β̂UE2 . (5.17)

Here, ω𝑛 = −I−1
11 I12 and we assume that ω𝑛

𝑃−→ ω = −G−1
11G12 as 𝑛 → ∞, where 𝑃−→

indicates convergence in probability. In the simulation, β̂RE1 can also be obtained using

the Newton-Raphson iterative or other method under the restriction β2 = 0.

5.2.2.3 Large Sample Test Statistic

In order to test H0 : β2 = 0 versus H1 : β2 ≠ 0, the likelihood

ratio test statistic is defined by

ℒ𝑛 = −2 ln
[
L(𝛽RE)
L(𝛽UE)

]
= 2

[
ℓ(β̂UE) − ℓ(β̂RE)

]
, (5.18)

where ℓ(β̂UE) and ℓ(β̂RE) are the values of the log-likelihood of the UE and RE, re-

spectively. Here,ℒ𝑛 is approximately 𝜒2𝑝2 under the null hypothesis for large 𝑛.

5.3 Various Estimation Strategies

In this section a variety of estimation strategies for parameter vector β1 are

explored.

5.3.1 Strategy 1: Linear Shrinkage Estimator

The linear shrinkage (LS) estimator derived by taking a linear com-

bination of the competing UE and RE is defined by

β̂LS1 = β̂UE1 − 𝜋(β̂UE1 − β̂RE1 ), (5.19)

where 𝜋 is a coefficient reflecting the degree of distrust in the prior information and

𝜋 ∈ (0, 1).
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5.3.2 Strategy 2: Preliminary Test Estimator

The preliminary test (PT) estimator is obtained by substituting 𝜋 with

𝐼 (ℒ𝑛 ≤ 𝑙𝛼) in the LS estimator to give a random weighting. Therefore, the result is

β̂PT1 = β̂UE1 − (β̂UE1 − β̂RE1 )𝐼 (ℒ𝑛 ≤ 𝜆𝛼), (5.20)

where 𝜆𝛼 is the 𝛼-level critical value for the test statistic ℒ𝑛 and 𝐼 (·) is an indicator
function.

5.3.3 Strategy 3: Shrinkage Preliminary Test Estimator

To improve the PT estimator in terms of 𝛼, replacing the RE with the

LS estimator in the PT estimator is called the shrinkage preliminary test (SP) estimator:

β̂SP1 = β̂UE1 − (β̂UE1 − β̂LS1 )𝐼 (ℒ𝑛 ≤ 𝜆𝛼). (5.21)

The performance of this strategy is much better than that of the PT strategy in a large

portion of the parameter space.

5.3.4 Strategy 4: Stein-Type Shrinkage Estimator

The Stein-type shrinkage or shrinkage (S) estimator optimally com-

bines the UE and RE to outperform the UE, which is given as

β̂S1 = β̂RE1 +
(
1 − 𝑐

ℒ𝑛

)
(β̂UE1 − β̂RE1 ), (5.22)

where 𝑐 = 𝑝2 − 2 is the shrinkage constant and 𝑝2 ≥ 3. The Stein-type shrinkage

estimator tends to over-shrink the UE towards the RE when the test statisticℒ𝑛 is very

small compared to 𝑐. Therefore, the truncated version suggested below is applied to

avoid this behavior.

5.3.5 Strategy 5: Positive-Part Stein-Type Shrinkage Estimator

The positive-part Stein-type shrinkage or positive-part shrinkage (S+)

estimator is obtained from the shrinkage estimator by changing the factor 1 − 𝑐ℒ−1
𝑛 to

0 wheneverℒ𝑛 ≤ 𝑐, which is

β̂S
+

1 = β̂RE1 +
(
1 − 𝑐

ℒ𝑛

)+
(β̂UE1 − β̂RE1 ), (5.23)

where 𝑎+ = max(0, 𝑎) is a positive-part function. Thus, the S+ is peculiarly essential to
manage the over-shrinking inherent in the shrinkage estimator.
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5.3.6 Strategy 6: Least Absolute Shrinkage and Selection Operator

Estimator

The least absolute shrinkage and selection operator (LASSO) method

minimizes the negative partial log-likelihood under the 𝐿1 constraint. It can be assigned

as follows:

β̂LASSO = argmin
β

{
−ℓ(β) + 𝜏

𝑝∑
𝑗=1

|𝛽 𝑗 |
}
, (5.24)

where 𝜏 is a tuning parameter that controls the amount of shrinkage and is greater than

zero. The LASSO shrinks some coefficients to zero, which means that it simultaneously

performs variable selection and parameter estimation.

5.3.7 Strategy 7: Adaptive Least Absolute Shrinkage and Selection

Operator Estimator

The adaptive least absolute shrinkage and selection operator (aLASSO)

method is based on a penalized partial likelihood with adaptively weighted 𝐿1 penalties

on regression coefficients. Therefore, the aLASSO objective function becomes

β̂aLASSO = argmin
β

{
−ℓ(β) + 𝜏

𝑝∑
𝑗=1

|𝛽 𝑗 |
|𝛽 𝑗 |𝛾

}
, (5.25)

where 𝛽 𝑗 is an initial maximum partial likelihood estimator. The tuning parameter 𝜏

produces a balance between the goodness of fit and sparsity, and the weights 1/|𝛽 𝑗 |𝛾,
𝛾 > 0, allowing for a precise tuning parameter of the penalization.

5.4 Asymptotic Properties and Results

The main asymptotic results of this chapter are derived from thinking along

the same lines as described in the previous chapter. The asymptotic distribution of the

UE and RE and their joint distribution to facilitate a derivation of the asymptotic proper-

ties of the proposed estimators are first presented. We next derive their asymptotic dis-

tributional quadratic bias (ADQB) and asymptotic distributional quadratic risk (ADQR)

and compare the asymptotic results of the proposed estimators. However, the penalty

estimators are not derived since these do not consider the subspace β2 ≠ 0.
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To obtain the expressions for the asymptotic properties of the suggested

estimators, we first let δ = (𝛿1, 𝛿2, ..., 𝛿𝑝2)⊤ ∈ R𝑝2 and consider the following sequence
of local alternatives:

{𝐾𝑛} : β2 =
δ
√
𝑛
. (5.26)

Next, we present the following lemmas about the asymptotic distributions under {𝐾𝑛}.

Lemma 1. Under the sequence of local alternatives, the usual regularity conditions of

maximum partial likelihood estimation, and as 𝑛→ ∞, we obtain

J𝑛 =
√
𝑛(β̂UE

1 − β1)
𝐷−→ J ∼ N𝑝1 (0,G−1

11.2),

L𝑛 =
√
𝑛(β̂UE

2 − β2)
𝐷−→ L ∼ N𝑝2 (0,G−1

22.1),

M𝑛 =
√
𝑛(β̂RE

1 − β1)
𝐷−→M ∼ N𝑝1 (−ωδ,G−1

11 ),

O𝑛 =
√
𝑛(β̂UE

1 − β̂RE
1 ) 𝐷−→ O ∼ N𝑝1 (ωδ,𝛀),[

J𝑛
O𝑛

]
𝐷−→

[
J
O

]
∼ N2𝑝1

( [
0
ωδ

]
,
[
G−1

11.2 𝚽
𝚽 𝚽

] )
,[

M𝑛
O𝑛

]
𝐷−→

[
M
O

]
∼ N2𝑝1

( [ −ωδ
ωδ

]
,
[
G−1

11 0
0 𝚽

] )
,

where ω = −G−1
11G12, 𝚽 = G−1

11G12G
−1
22.1G21G

−1
11 , and

D→ implies converge in distri-

bution.

Lemma 2. Under usual regularity conditions and the sequence of local alternatives

{𝐾𝑛}, as 𝑛→ ∞,

O∗
𝑛 =

√
𝑛𝚽

− 1
2

𝑛 (β̂UE
1 − β̂RE

1 ) 𝐷−→ O∗ ∼ N𝑝1 (𝚽− 1
2ωδ, I𝑝1),

where 𝚽𝑛 = I−1
11 I12I−1

22.1I21I−1
11 and 𝚽𝑛

𝑃−→ 𝚽.

The asymptotic distribution of O𝑛 has covariance matrix 𝚽, while O∗
𝑛 also

has covariance matrix I𝑝1 . The relation betweenO andO∗ is as follows:

O = 𝚽
1
2O∗ = 𝚽

1
2O∗. (5.27)

The following lemmas facilitate the computation of ADQB and ADQR under local al-

ternatives {𝐾𝑛}.

Lemma 3. Under local alternatives and usual regularity conditions, as 𝑛 → ∞, the

test statisticℒ𝑛 converges to a non-central chi-squared distribution with 𝑝2 degrees of

freedom and non-centrality parameter Δ = δ⊤G22.1δ.
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Lemma 4. Let x = (𝑥1, 𝑥2, ..., 𝑥𝑘 )⊤ be a 𝑘-dimensional normal vector distributed as

N(µx,𝚺x). Then, for any measurable function 𝜙, we have

E
[
x𝜙

(
x⊤x

) ]
= µxE

[
𝜙

(
𝜒2𝑘+2(Δ)

)]
, (5.28)

E
[
xx⊤𝜙

(
x⊤x

) ]
= 𝚺xE

[
𝜙

(
𝜒2𝑘+2(Δ)

)]
+ µxµ

⊤
xE

[
𝜙

(
𝜒2𝑘+4(Δ)

)]
. (5.29)

5.4.1 Asymptotic Distributional Bias

To compare the suggested estimator’s performance in terms of esti-

mation bias, we calculated the asymptotic distributional bias (ADB) in the following

Equation and used Lemmas 3 and 4.

ADB(β̂*1) = lim
𝑛→∞
E

[
𝑛

1
2 (β̂*1 − β1)

]
, (5.30)

where β̂*1 can be any estimator of β̂
UE
1 , β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂

S+
1 . Therefore,

the ADBs of the estimators are given in the following Theorem.

Theorem 5.4.1. Under the sequence {𝐾𝑛} and usual regularity condition, as 𝑛 → ∞,

the ADBs of the suggested estimators are

ADB(β̂UE
1 ) = 0,

ADB(β̂RE
1 ) = G−1

11G12δ,

ADB(β̂LS
1 ) = 𝜋G−1

11G12δ,

ADB(β̂PT
1 ) = G−1

11G12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ),

ADB(β̂SP
1 ) = 𝜋G−1

11G12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ),

ADB(β̂S
1) = 𝑐G−1

11G12δE[𝜒−2𝑝2+2(Δ)],

ADB(β̂S+
1 ) = G−1

11G12δ{𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) > 𝑐)]},

where 𝑐 = 𝑝2 − 2, 𝑝2 > 2, 𝐻𝜈 (· ;Δ) is a CDF of non-central chi-square with 𝜈 degrees

of freedom and non-centrality parameter Δ, and E
[
𝜒
−2 𝑗
𝜈 (Δ)

]
=

∞∫
0

𝑥−2 𝑗𝑑𝜙𝜈 (𝑥;Δ).

Proof. Under the usual regularity conditions, a sequence of local alternatives, and using
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Lemma 1, 2, and 4, the ADB of the estimators is obtained as follows:

ADB(β̂UE1 ) = lim
𝑛→∞
E[𝑛 1

2 (β̂UE1 − β1)]

= E(J ) = 0.

ADB(β̂RE1 ) = lim
𝑛→∞
E[𝑛 1

2 (β̂RE1 − β1)]

= E(M ) = −ωδ = G−1
11G12δ.

ADB(β̂LS1 ) = lim
𝑛→∞
E[𝑛 1

2 (β̂LS1 − β1)]

= lim
𝑛→∞
E[𝑛 1

2 (𝜋β̂RE1 + (1 − 𝜋)β̂UE1 − β1)]

= E(J ) − 𝜋E(O) = −𝜋ωδ = 𝜋G−1
11G12δ.

ADB(β̂SP1 ) = lim
𝑛→∞
E[𝑛 1

2 (β̂SP1 − β1)]

= lim
𝑛→∞
E[𝑛 1

2 (β̂UE1 − 𝜋(β̂UE1 − β̂RE1 )𝐼 (ℒ𝑛 ≤ 𝜆𝛼) − β1)]

= E(J ) − 𝜋E[O𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= −𝜋E[𝚽 1
2O∗𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)] ∵ by (5.27)

= −𝜋𝚽 1
2𝚽− 1

2ωδE[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)] ∵ by (5.28)

= 𝜋G−1
11G12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ).

For 𝜋 = 1, we obtain ADB(β̂PT1 ) = G−1
11G12δ𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ). Next, we consider the

ADBs of the shrinkage and positive-part shrinkage estimators.

ADB(β̂S1) = lim
𝑛→∞
E[𝑛 1

2 (β̂S1 − β1)]

= lim
𝑛→∞
E[𝑛 1

2 (β̂RE1 + (1 − 𝑐ℒ−1
𝑛 )(β̂UE1 − β̂RE1 ) − β1)]

= lim
𝑛→∞
E[𝑛 1

2 (β̂UE1 − β1) − 𝑐ℒ−1
𝑛 𝑛

1
2 (β̂UE1 − β̂RE1 )]

= E(J ) − 𝑐E(O𝜒−2𝑝2 (Δ))

= −𝑐E[𝚽 1
2O∗𝜒−2𝑝2 (Δ)] ∵ by (5.27)

= −𝑐𝚽 1
2𝚽− 1

2ωδE[𝜒−2𝑝2+2(Δ)] ∵ by (5.28)

= 𝑐G−1
11G12δE[𝜒−2𝑝2+2(Δ)] .
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ADB(β̂S+1 ) = lim
𝑛→∞

E[𝑛 1
2 (β̂S+1 − β1)]

= lim
𝑛→∞
E[𝑛 1

2 (β̂RE1 + (1 − 𝑐ℒ−1
𝑛 )+(β̂UE1 − β̂RE1 ) − β1)]

= lim
𝑛→∞
E

𝑛
1
2
©«

β̂RE1 + (1 − 𝑐ℒ−1
𝑛 ) (β̂UE1 − β̂RE1 )

−(1 − 𝑐ℒ−1
𝑛 ) (β̂UE1 − β̂RE1 )𝐼 (ℒ𝑛 ≤ 𝑐) − β1

ª®¬


= lim
𝑛→∞
E[𝑛 1

2 (β̂S1 − (1 − 𝑐ℒ−1
𝑛 ) (β̂UE1 − β̂RE1 )𝐼 (ℒ𝑛 ≤ 𝑐) − β1)]

= lim
𝑛→∞
E[𝑛 1

2 (β̂S1 − β1) − (1 − 𝑐ℒ−1
𝑛 )𝑛 1

2 (β̂UE1 − β̂RE1 )𝐼 (ℒ𝑛 ≤ 𝑐)]

= ADB(β̂S1) − E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝚽
1
2O∗𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)] ∵ by (5.27)

= ADB(β̂S1) −


𝚽
1
2𝚽− 1

2ωδ

E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)]

 ∵ by (5.28)

= G−1
11G12δ

[
𝑐E[𝜒−2𝑝2+2(Δ)] + E[(1 − 𝑐𝜒

−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

]
= G−1

11G12δ{𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒
2
𝑝2+2(Δ) > 𝑐)]}.

□

We can see that all the estimators are unbiased in the particular case

that δ = 0 or under the null hypothesis. Therefore, the ADBs of all estimators are

equivalent. We limit ourselves to the case in which δ ≠ 0. In this case, β̂UE1 is the

only unbiased estimator of β1 because it does not rely on UPI. The ADB of β̂PT1 con-

verges to that of β̂RE1 , and the ADB of β̂SP1 converges to that of β̂LS1 , as 𝛼 → 0 and

𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) → 1. When 𝛼 → 1, the ADBs of both β̂PT1 and β̂SP1 converge to that

of β̂UE1 .

We transform the ADB to the scalar form of the asymptotic distri-

butional quadratic bias (ADQB) to make the comparison clearer and more meaningful.

Therefore, the ADQB of the estimator β̂*1 is defined as

ADQB(β̂*1) =
[
ADB(β̂*1)

]⊤
G11.2

[
ADB(β̂*1)

]
. (5.31)

The following theorem expresses the ADQBs of the suggested esti-

mators:
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Theorem 5.4.2. Suppose that the conditions of Theorem 5.4.1 hold. The ADQBs of the

suggested estimators are

ADQB(β̂UE
1 ) = 0,

ADQB(β̂RE
1 ) = Δ∗,

ADQB(β̂LS
1 ) = 𝜋2Δ∗,

ADQB(β̂PT
1 ) = Δ∗ [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]

2
,

ADQB(β̂SP
1 ) = 𝜋2Δ∗ [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)]

2
,

ADQB(β̂S
1) = 𝑐2Δ∗{E[𝜒−2𝑝2+2(Δ)]}

2
,

ADQB(β̂S+
1 ) = Δ∗{𝐻𝑝2+2(𝑐;Δ) + 𝑐E[𝜒−2𝑝2+2(Δ)𝐼 (𝜒

2
𝑝2+2(Δ) > 𝑐)]}

2,

where 𝑐 = 𝑝2 − 2, 𝑝2 > 2, Δ∗ = δ⊤G∗δ andG∗ = G21G
−1
11G11.2G

−1
11G12.

Proof. The proof of this theorem is straightforward and can be easily derived by using

the above ADB and Equation (5.31). □

For the choice of 𝛼 = 0.01 and 0.05, and 𝜋 = 0.25, 0.50, and 0.75,

Figures 5.1 and 5.2 shows the ADQBs behaviour of the suggested estimators for 𝑝1 = 3,

and 𝑝2 = 3 and 7. We can see that the ADQBs of all estimators except the UE are

functions of Δ∗. Therefore, we investigate the behavior of the ADQB of the suggested

estimators in terms of Δ∗. The ADQB(β̂RE1 ) and ADQB(β̂LS1 ) are unbounded functions
of Δ∗ and tend to ∞ when Δ∗ → ∞. The ADQBs of β̂PT1 and β̂SP1 are functions of Δ∗

and 𝛼. The ADQBs of both estimators start from the initial value 0, increase to a certain

point, then gradually decrease to zero. Moreover, ADQB(β̂SP1 ) = 𝜋ADQB(β̂PT1 ) <
ADQB(β̂PT1 ) for 𝜋 ∈ [0, 1), so β̂SP1 has asymptotically less bias than β̂PT1 depending

upon the value of 𝜋. Thus, one can think of 𝜋 as a bias reduction factor in the pretest

estimation. The ADQBs of β̂S1 and β̂
S+
1 start from 0 at Δ∗ = 0 and elevate to a point,

and after that go to zero, since E[𝜒−2𝑝2+2(Δ)] is a decreasing log-convex function of Δ.
However, the curve of ADQB(β̂S+1 ) stays below the curve of ADQB(β̂S1) for all values
of Δ∗.

5.4.2 Asymptotic Distributional Risk

For the local alternatives {𝐾𝑛}, the suggested estimators may not be
asymptotically unbiased estimators ofβ1. With that in mind, we introduce the following
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(e) 𝜋 = 0.75, 𝛼 = 0.01
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(f) 𝜋 = 0.75, 𝛼 = 0.05

Figure 5.1 ADQB curves of the suggested estimators for Cox PH regression model with
𝑝1 = 3 and 𝑝2 = 3
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(e) 𝜋 = 0.75, 𝛼 = 0.01
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(f) 𝜋 = 0.75, 𝛼 = 0.05

Figure 5.2 ADQB curves of the suggested estimators for Cox PH regression model with
𝑝1 = 3 and 𝑝2 = 7
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loss function:

L(β̂∗
1,β1;W ) =

√
𝑛(β̂∗

1 − β1)
⊤
W

√
𝑛(β̂∗

1 − β1), (5.32)

where W is a positive semi-definite weight matrix. A generic choice for W is the

identity matrix so that L(β̂∗
1,β1;W ) is the un-weighted quadratic loss. The asymptotic

mean squared error matrix (AMSEM) formula of an estimator under the quadratic loss

function would be as follows:

𝚪∗(β̂∗
1) = lim

𝑛→∞
E

[
𝑛

1
2 (β̂∗

1 − β1)𝑛
1
2 (β̂∗

1 − β1)
⊤]
. (5.33)

We first derive the AMSEM of the suggested estimators and then use them to compute

the asymptotic distributional quadratic risk (ADQR). The results of 𝚪∗(β̂∗
1) are given in

the following Theorem.

Theorem 5.4.3. Under the sequence of local alternative {𝐾𝑛} and usual regularity con-
ditions, as 𝑛→ ∞ the AMSEMs of the suggested estimators are given as follows:

𝚪∗(β̂UE
1 ) = G−1

11.2,

𝚪∗(β̂RE
1 ) = G−1

11 +G−1
11G12δδ

⊤G21G
−1
11 ,

𝚪∗(β̂LS
1 ) = G−1

11.2 − 𝜋(2 − 𝜋)G−1
11G12G

−1
22.1G21G

−1
11 + 𝜋2G−1

11G12δδ
⊤G21G

−1
11 ,

𝚪∗(β̂PT
1 ) = G−1

11.2 −G−1
11G12G

−1
22.1Q21G

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+G−1
11G12δδ

⊤G21G
−1
11 [2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

𝚪∗(β̂SP
1 ) = G−1

11.2 − 𝜋(2 − 𝜋)G−1
11G12G

−1
22.1G21G

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+G−1
11G12δδ

⊤G21G
−1
11 [2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

𝚪∗(β̂S
1) = G−1

11.2 − 𝑐G−1
11G12G

−1
22.1G21G

−1
11 (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

+ 𝑐G−1
11G12δδ

⊤G21G
−1
11 (2E[𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒

−4
𝑝2+4(Δ)]),

𝚪∗(β̂S+
1 ) = 𝚪(β̂S

1) −G−1
11G12G

−1
22.1G21G

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

−G−1
11G12δδ

⊤G21G
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))

2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

+ 2Q−1
11Q12δδ

⊤Q21Q
−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)] .

where 𝑐 = 𝑝2 − 2 and 𝑝2 > 2.

Ref. code: 25645909320011YZA



166

Proof. By the above Lemmas, the asymptotic mean squared error matrix of an estimator

β∗
1 is derived as follows:

𝚪∗(β̂LS1 ) = lim
𝑛→∞
E

[
𝑛

1
2 (β̂LS1 − β1)𝑛

1
2 (β̂LS1 − β1)

⊤]
= E[(J − 𝜋O) (J − 𝜋O)⊤]

= E[JJ⊤]︸    ︷︷    ︸
𝚪∗ (β̂UE

1 )

−2𝜋 E[JO⊤]︸    ︷︷    ︸
A1

+𝜋2 E[OO⊤]︸     ︷︷     ︸
A2

, (5.34)

where

A2 = V(O) + E(O)E(Z⊤) = G−1
11G12G

−1
22.1G21G

−1
11 +G−1

11G12δδ
⊤G21G

−1
11 .

By the law of conditional expectation of a multivariate normal distribution, we may

write A1 as

A1 = E[E(JO⊤ |O)] = E[E(J |O)O⊤]

= E[{E(J ) + 𝐶𝑜𝑣(J ,O) [V(O)]−1(O − E(O)}O⊤]

= E(OO⊤)︸     ︷︷     ︸
A2

+G−1
11G12δE(O⊤) = G−1

11G12G
−1
22.1G21G

−1
11 .

Therefore, Equation (5.34) becomes

𝚪∗(β̂LS1 ) = G−1
11.2 − 𝜋(2 − 𝜋)G−1

11G12G
−1
22.1G21G

−1
11

+ 𝜋2G−1
11G12δδ

⊤G21G
−1
11 . (5.35)

For 𝜋 = 0, Equation (5.35) reduces to

𝚪∗(β̂UE1 ) = G−1
11.2.

When 𝜋 = 1, Equation (5.35) becomes

𝚪∗(β̂RE1 ) = G−1
11.2 −G−1

11G12G
−1
22.1G21G

−1
11 +G−1

11G12δδ
⊤G21G

−1
11

= G−1
11 +G−1

11G12δδ
⊤G21G

−1
11 .
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Next, the AMSEM of β̂SP1 can be written as

𝚪∗(β̂SP1 ) = lim
𝑛→∞
E

[
𝑛

1
2 (β̂SP1 − β1)𝑛

1
2 (β̂SP1 − β1)

⊤]
= E lim

𝑛→∞
[(J𝑛 − 𝜋O𝑛𝐼 (ℒ𝑛 ≤ 𝜆𝛼)) (J𝑛 − 𝜋O𝑛𝐼 (ℒ𝑛 ≤ 𝜆𝛼))⊤]

= E[(J − 𝜋O𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)) (J − 𝜋O𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼))
⊤]

= E[JJ⊤]︸    ︷︷    ︸
𝚪∗ (β̂UE

1 )

−2𝜋 E[JO⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]︸                              ︷︷                              ︸
A3

+𝜋2 E[OO⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]︸                               ︷︷                               ︸
A4

.

Using Equations (5.27) and (5.29), we have

A4 = E[𝚽
1
2O∗(𝚽 1

2O∗)⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= 𝚽
1
2


I𝑝2E[𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝜒2𝑝2,𝛼)]

+𝚽− 1
2ωδ(𝚽− 1

2ωδ)⊤E[𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝜒2𝑝2,𝛼)]

 (𝚽
1
2 )⊤

= G−1
11G12G

−1
22.1G21G

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) +G

−1
11G12δδ

⊤G21G
−1
11𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ).

Using the rule of conditional expectation along with Equation (5.28), A3 becomes

A3 = E[E(JO⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼) |O)] = E[E(J |O)O⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[{E(J ) + 𝐶𝑜𝑣(J ,O) [V(O)]−1(O − E(O)}O⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= E[OO⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]︸                               ︷︷                               ︸
A4

−(−G−1
11G12δ)E[O⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝜒2𝑝2,𝛼)]

= G−1
11G12G

−1
22.1G21G

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) +G

−1
11G12δδ

⊤G21G
−1
11𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

− (−G−1
11G12δ) (−G−1

11G12δ)
⊤
𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

= G−1
11G12G

−1
22.1G21G

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

−G−1
11G12δδ

⊤G21G
−1
11 [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)] .

Substitute A3 and A4 into 𝚪∗(β̂SP1 ), then we obtain

𝚪∗(β̂SP1 ) = G−1
11.2 − 2𝜋G−1

11G12G
−1
22.1G21G

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ 2𝜋G−1
11G12δδ

⊤G21G
−1
11 [𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)]

+ 𝜋2G−1
11G12G

−1
22.1G21G

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ 𝜋2G−1
11G12δδ

⊤G21G
−1
11𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)

= G−1
11.2 − 𝜋(2 − 𝜋)G−1

11G12G
−1
22.1G21G

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+G−1
11G12δδ

⊤G21G
−1
11 [2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)] .
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For 𝜋 = 1, 𝚪∗(β̂SP1 ) reduces to

𝚪∗(β̂PT1 ) = G−1
11.2 −G−1

11G12G
−1
22.1G21G

−1
11𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+G−1
11G12δδ

⊤G21G
−1
11 [2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)] .

Let us consider 𝚪∗(β̂S1). This yields

𝚪∗(β̂S1) = lim
𝑛→∞
E

[
𝑛

1
2 (β̂S1 − β1)𝑛

1
2 (β̂S1 − β1)

⊤]
= E lim

𝑛→∞
[(J𝑛 − 𝑐O𝑛ℒ

−1
𝑛 )(J𝑛 − 𝑐O𝑛ℒ

−1
𝑛 )⊤]

= E[JJ⊤]︸    ︷︷    ︸
𝚪∗ (β̂UE

1 )

−2𝑐 E[JO⊤𝜒−2𝑝2 (Δ)]︸              ︷︷              ︸
A5

+𝑐2 E[OO⊤𝜒−4𝑝2 (Δ)]︸               ︷︷               ︸
A6

.

Applying Equations (5.27) and (5.29) to A6, we get

A6 = E[𝚽
1
2O∗(𝚽 1

2O∗)⊤𝜒−4𝑝2 (Δ)]

= 𝚽
1
2

[
I𝑝2E[𝜒−4𝑝2+2(Δ)] +𝚽− 1

2ωδ(𝚽− 1
2ωδ)⊤E[𝜒−4𝑝2+4(Δ)]

]
(𝚽 1

2 )⊤

= G−1
11G12G

−1
22.1G21G

−1
11E[𝜒−4𝑝2+2(Δ)] +G

−1
11G12δδ

⊤G21G
−1
11E[𝜒−4𝑝2+4(Δ)] .

Using conditional expectation and Equations (5.28) and (5.27), therefore, A5 becomes,

A5 = E[E(JO⊤𝜒−2𝑝2 (Δ) |O)] = E[E(J |O)O⊤𝜒−2𝑝2 (Δ)]

= E[(O − (−G−1
11G12δ))O⊤𝜒−2𝑝2 (Δ)]

= E[OO⊤𝜒−2𝑝2 (Δ)] − (−G−1
11G12δ)E[O⊤𝜒−2𝑝2 (Δ)]

= G−1
11G12G

−1
22.1G21G

−1
11E[𝜒−2𝑝2+2(Δ)] +G

−1
11G12δδ

⊤G21G
−1
11E[𝜒−2𝑝2+4(Δ)]

−G−1
11G12δδ

⊤G21G
−1
11E[𝜒−2𝑝2+2(Δ)] .

Then, the AMSEM of β̂S1 is given by

𝚪(β̂S1) = G−1
11.2 − 2𝑐G−1

11G12G
−1
22.1G21G

−1
11E[𝜒−2𝑝2+2(Δ)]

+ 2𝑐G−1
11G12δδ

⊤G21G
−1
11 (E[𝜒−2𝑝2+2(Δ)] − E[𝜒

−2
𝑝2+4(Δ)])

+ 𝑐2G−1
11G12G

−1
22.1G21G

−1
11E[𝜒−4𝑝2+2(Δ)] + 𝑐

2G−1
11G12δδ

⊤G21G
−1
11E[𝜒−4𝑝2+4(Δ)]

= G−1
11.2 − 𝑐G−1

11G12G
−1
22.1G21G

−1
11 (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

+ 𝑐G−1
11G12δδ

⊤G21G
−1
11 (2E[𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒

−4
𝑝2+4(Δ)]).
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Finally, we derive the AMSEM of β̂S+1 , which is

𝚪∗(β̂S+1 ) = lim
𝑛→∞
E

[
𝑛

1
2 (β̂S+1 − β1)𝑛

1
2 (β̂S+1 − β1)

⊤]
= E lim

𝑛→∞


{J𝑛 − 𝑐O𝑛Λ−1

𝑛 −O𝑛𝐼 (Λ𝑛 ≤ 𝑐) + 𝑐O𝑛Λ−1
𝑛 𝐼 (Λ𝑛 ≤ 𝑐)}

{J𝑛 − 𝑐O𝑛Λ−1
𝑛 −O𝑛𝐼 (Λ𝑛 ≤ 𝑐) + 𝑐O𝑛Λ−1

𝑛 𝐼 (Λ𝑛 ≤ 𝑐)}
⊤


= E[(J − 𝑐O𝜒−2𝑝2 (Δ))(J − 𝑐O)⊤𝜒−2𝑝2 (Δ)]︸                                               ︷︷                                               ︸

𝚪∗ (β̂S
1)

− 2E[(J − 𝑐O𝜒−2𝑝2 (Δ)) (1 − 𝑐𝜒
−2
𝑝2 (Δ))O

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

+ E[(1 − 𝑐𝜒−2𝑝2 (Δ))
2
OO⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= 𝚪∗(β̂S1) − 2E[(1 − 𝑐𝜒−2𝑝2 (Δ))JO
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]︸                                             ︷︷                                             ︸

A7

+ 2E[𝑐𝜒−2𝑝2 (Δ)(1 − 𝑐𝜒
−2
𝑝2 (Δ))OO

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]︸                                                         ︷︷                                                         ︸
A8

+ E[(1 − 𝑐𝜒−2𝑝2 (Δ))
2OO⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]︸                                               ︷︷                                               ︸
A9

.

Using conditional expectation and Lemma 4, A7 becomes

A7 = E[(1 − 𝑐𝜒−2𝑝2 (Δ))E(JO
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐) |O)]

= E[(1 − 𝑐𝜒−2𝑝2 (Δ))OO
⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

− (−G−1
11G12δ)E[(1 − 𝑐𝜒−2𝑝2 (Δ))O

⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= G−1
11G12G

−1
22.1G21G

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+G−1
11G12δδ

⊤G21G
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)]

−G−1
11G12δδ

⊤G21G
−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)] .

Using Equation (5.29), we can write A8 and A9 as

A8 = E[𝑐𝜒−2𝑝2 (Δ) (1 − 𝑐𝜒
−2
𝑝2 (Δ))𝚽

1
2O∗(𝚽 1

2O∗)⊤𝐼 (𝜒2𝑝2 (Δ) ≤ 𝑐)]

= G−1
11G12G

−1
22.1G21G

−1
11E[𝑐𝜒−2𝑝2+2(Δ)(1 − 𝑐𝜒

−2
𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)]

+G−1
11G12δδ

⊤G21G
−1
11E[𝑐𝜒−2𝑝2+4(Δ) (1 − 𝑐𝜒

−2
𝑝2+4(Δ))𝐼 (𝜒

2
𝑝2+4(Δ) ≤ 𝑐)],
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and

A9 = E[(1 − 𝑐𝜒−2𝑝2 (Δ))
2𝚽

1
2O∗(𝚽 1

2O∗)⊤𝐼 (𝜒2𝑝2 ≤ 𝑐)]

= G−1
11G12G

−1
22.1G21G

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

+G−1
11G12δδ

⊤G21G
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))

2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)] .

Substituting A7, A8, and A9 into 𝚪∗(β̂S+1 ) and rearranging the terms, so we have

𝚪∗(β̂S+1 ) = 𝚪∗(β̂S1) −G−1
11G12G

−1
22.1G21G

−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

−G−1
11G12δδ

⊤G21G
−1
11E[(1 − 𝑐𝜒−2𝑝2+4(Δ))

2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

+ 2G−1
11G12δδ

⊤G21G
−1
11E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒

2
𝑝2+2(Δ) ≤ 𝑐)] .

□

The results for ADQR of the suggested estimators are derived by us-

ing the AMSEM results in Theorem 5.4.3 and the following Equation.

ADQR(β̂∗
1) = tr[W𝚪∗(β̂∗

1)] . (5.36)

The ADQR expressions are given as follows:

Theorem 5.4.4. Under the assumed regularity condition and local alternative {𝐾𝑛}, as
𝑛→ ∞, the ADQRs of the estimators are given by

ADQR(β̂UE
1 ) = tr[WG−1

11.2],

ADQR(β̂RE
1 ) = ADQR(β̂UE

1 ) − tr[G◦G−1
22.1] + δ⊤G◦δ,

ADQR(β̂LS
1 ) = ADQR(β̂UE

1 ) − 𝜋(2 − 𝜋)tr[G◦G−1
22.1] + 𝜋2δ⊤G◦δ,

ADQR(β̂PT
1 ) = ADQR(β̂UE

1 ) − tr[G◦G−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ δ⊤G◦δ[2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

ADQR(β̂SP
1 ) = ADQR(β̂UE

1 ) − 𝜋(2 − 𝜋)tr[G◦G−1
22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ δ⊤G◦δ[2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

ADQR(β̂S
1) = ADQR(β̂UE

1 ) − 𝑐tr[G◦G−1
22.1] (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒

−4
𝑝2+2(Δ)])

+ 𝑐δ⊤G◦δ(2𝐸 [𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒
−4
𝑝2+4(Δ)]),

ADQR(β̂S+
1 ) = ADQR(β̂S

1) − tr[G◦G−1
22.1]E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

− δ⊤G◦δE[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

+ 2δ⊤G◦δE[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)],
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where 𝑐 = 𝑝2 − 2, 𝑝2 > 2, andG◦ = G21G
−1
11WG−1

11G12.

Proof. The proof of ADQR of the estimators can be derived from Equation (5.36) using

the above asymptotic covariance matrix. □

The ADQR expressions given above depend on the weight matrixW

and if we select a suitable choice ofW , then these ADQR simplify, and the results are

presented in the following corollary.

Corollary 3. WhenW = G11.2, the ADQRs of the estimators simplify to

ADQR(β̂UE
1 ) = 𝑝1,

ADQR(β̂RE
1 ) = 𝑝1 − tr[G∗G−1

22.1] + Δ∗,

ADQR(β̂LS
1 ) = 𝑝1 − 𝜋(2 − 𝜋)tr[G∗G−1

22.1] + 𝜋2Δ∗,

ADQR(β̂PT
1 ) = 𝑝1 − tr[G∗G−1

22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ Δ∗ [2𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

ADQR(β̂SP
1 ) = 𝑝1 − 𝜋(2 − 𝜋)tr[G∗G−1

22.1]𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ)

+ Δ∗ [2𝜋𝐻𝑝2+2(𝜒2𝑝2,𝛼;Δ) − 𝜋(2 − 𝜋)𝐻𝑝2+4(𝜒2𝑝2,𝛼;Δ)],

ADQR(β̂S
1) = 𝑝1 − 𝑐tr[G∗G−1

22.1] (2E[𝜒−2𝑝2+2(Δ)] − 𝑐E[𝜒
−4
𝑝2+2(Δ)])

+ 𝑐Δ∗(2𝐸 [𝜒−2𝑝2+2(Δ)] − 2E[𝜒−2𝑝2+4(Δ)] + 𝑐E[𝜒
−4
𝑝2+4(Δ)]),

ADQR(β̂S+
1 ) = ADQR(β̂S

1) − tr[G∗G−1
22.1]E[(1 − 𝑐𝜒−2𝑝2+2(Δ))

2
𝐼 (𝜒2𝑝2+2(Δ) ≤ 𝑐)]

− Δ∗E[(1 − 𝑐𝜒−2𝑝2+4(Δ))
2
𝐼 (𝜒2𝑝2+4(Δ) ≤ 𝑐)]

+ 2Δ∗E[(1 − 𝑐𝜒−2𝑝2+2(Δ))𝐼 (𝜒
2
𝑝2+2(Δ) ≤ 𝑐)] .

where 𝑐 = 𝑝2 − 2, 𝑝2 > 2, Δ∗ = δ⊤G∗δ andG∗ = G21G
−1
11G11.2G

−1
11G12.

There were similar ADQR analyses for comparison of the suggested

estimators in the previous chapter, and as such they are not reported here. However,

we have plotted the ADQRs of the suggested estimators in Corollary 3 for 𝑝1 = 3 and

𝑝2 = 5 and 11 here. Figures 5.3 and 5.4 represent the ADQR curves with 𝛼 = 0.01 and

0.05, and 𝜋 = 0.25, 0.50, and 0.75.

The results show that the ADQRs of β̂RE1 and β̂LS1 are an unbounded

function of Δ∗. When Δ∗ was equal or close to zero, the ADQRs of all suggested estima-

tors were smaller than ADQR(β̂UE1 ), which means they were superior in performance
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to β̂UE1 . For all 𝛼, the ADQRs of β̂PT1 and β̂SP1 approached the ADQR of β̂UE1 when

Δ∗ → ∞. The ADQR of β̂PT1 depends on 𝛼 and decreased as 𝛼 increased, while the

ADQR of β̂SP1 depended on 𝛼 and 𝜋. For fixed 𝛼, there was an increase in 𝜋 associated

with larger variation in ADQR(β̂SP1 ). In contrast, for fixed 𝜋, the small 𝛼 tended to

have larger variation in ADQR(β̂SP1 ). Moreover, the ADQR of β̂S+1 was always greater

or equivalent to that of β̂S1 .

5.5 Simulation Results

We assumed that the Cox PHmodel has 𝑝 available predictors with a sample

size of 𝑛. The survival times were generated from the following:

ℎ(𝑡) = ℎ0(𝑡)exp(𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + · · · + 𝛽𝑝𝑥𝑖𝑝). (5.37)

The values of independent variable 𝑥𝑖 𝑗 were generated from a standard normal distribu-

tion for 𝑖 = 1, 2, ...𝑛. Here 𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑝 were independent and identically distributed.

The proportion of observations specified by the censor was randomly and uniformly

selected to be right-censored. The censoring times were generated from a uniform dis-

tribution in the interval (0, 𝑐), where 𝑐 was chosen to obtain the desired censoring rate.
We used two different types of censoring percentages or proportions of censoring (𝑝𝑐),
i.e., 20% and 30%. The baseline hazard function was generated using the flexible-hazard

method described in Harden and Kropko (2019). We used the sim.survdata function

in the coxed package for generating data in the Cox PH model in Equation (5.37) and

ran all the simulated data and calculations on the statistical software R.

In this section, the Monte Carlo simulation was used to examine the perfor-

mance of the suggested estimators by comparing them with the UE via the simulated

relative mean square error (RMSE). The RMSE is a ratio of the simulated mean square

error (MSE) of the suggested estimators and the simulated MSE of the UE. Therefore,

the RMSE of any estimator β̂∗
1 is

RMSE(β̂UE1 , β̂∗
1) =

MSE(β̂UE1 )
MSE(β̂∗

1)
,

where

MSE(β̂∗
1) =

1

𝑛
(β1 − β̂∗

1)⊤(β1 − β̂∗
1).
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(b) 𝜋 = 0.25, 𝛼 = 0.05
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(c) 𝜋 = 0.50, 𝛼 = 0.01
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(d) 𝜋 = 0.50, 𝛼 = 0.05
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(e) 𝜋 = 0.75, 𝛼 = 0.01
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(f) 𝜋 = 0.75, 𝛼 = 0.05

Figure 5.3 ADQR curves of the suggested estimators for Cox PH regression model with
𝑝1 = 3 and 𝑝2 = 5
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(b) 𝜋 = 0.25, 𝛼 = 0.05
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(c) 𝜋 = 0.50, 𝛼 = 0.01
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(d) 𝜋 = 0.50, 𝛼 = 0.05
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(e) 𝜋 = 0.75, 𝛼 = 0.01
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(f) 𝜋 = 0.75, 𝛼 = 0.05

Figure 5.4 ADQR curves of the suggested estimators for Cox PH regression model with
𝑝1 = 3 and 𝑝2 = 11
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A RMSE larger than one indicates the degree of superiority of the estimator β̂∗
1 over

β̂UE1 .

5.5.1 Low-Dimensional Data

In the Cox PH regression model under a low-dimensional setting, the

number of covariates is less than the sample size. We assumed that the 𝑝 parameters

contained 𝑝1 active parameters and 𝑝2 inactive parameters, such that 𝑝1 + 𝑝2 = 𝑝.

To assess the behavior of the suggested estimators, we defined the degrees of model

misspecification Δsim for representing the divergence between the simulation model and

the restricted model under the null hypothesis H0 : β2 = 0 by

Δsim =
β − βH0

 .
Here, β is the coefficient vector of the true parameter for the simulation model and βH0

is the coefficient vector for the restricted model under the null hypothesis.

For a realistic situation, the regression coefficients β were assumed

to scatter and we rearranged them to be active (β1) and inactive (β2) groups. Therefore,
the coefficient vectors for the simulation model are in the following forms:

β = (β⊤
1 ,β

⊤
2 )

⊤ = (𝛽1, 𝛽2, ..., 𝛽𝑝1︸           ︷︷           ︸
𝑝1

,Δsim, 0, ..., 0︸        ︷︷        ︸
𝑝2

)⊤,

and the coefficient vectors of the restricted model are βH0 = (β⊤
1 , 0

⊤
𝑝2)

⊤. If Δsim = 0,

β = βH0 , it indicates that the restricted model was correct. If Δsim > 0, it means that

the restricted model was incorrect.

Moreover, the choice of significance level (𝛼) was fixed to 0.01, 0.05,
and 0.1, while the shrinkage intensity (𝜋) was set to 0.25, 0.50, and 0.75. In this study,
we set the sample size (𝑛) as 250, and the number of simulations (𝑁) was 5,000 itera-
tions, which was adequate to produce stable results.

For this simulation, we considered two cases for assessing the behav-

ior of the proposed estimators when the size of Δsim is changed; one for the case when

the null hypothesis was assumed to be true and other for when it may not be true.
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5.5.1.1 Correct Subspace Information (𝚫sim = 0)
In this case, we set the true value of the regression coefficients

for the simulationmodel asβ = (β⊤
1 ,β

⊤
2 )⊤ = ((0.16,−0.54, 0.23, 0.75,−0.39)⊤, 0⊤𝑝2)

⊤,

with 𝑝1 = 5 and 𝑝2 = 3, 5, 7, 11, and 15. For comparing the performance of the suggested

estimators and two penalized estimators, the RMSEs results of the estimators for each

censoring percentage are presented in Tables 5.1 to 5.2.

Table 5.1 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for Cox PH model with 𝑝𝑐 = 20% and 𝑝1 = 5 at Δsim = 0

Estimator Number of Inactive Parameters (𝑝2)
3 5 7 11 15

RE 1.059 1.105 1.165 1.313 1.491
LS 𝜋 = 0.25 1.021 1.037 1.056 1.097 1.140

𝜋 = 0.50 1.038 1.068 1.104 1.187 1.279
𝜋 = 0.75 1.050 1.091 1.141 1.262 1.403

PT 𝛼 = 0.01 1.054 1.097 1.154 1.279 1.446
𝛼 = 0.05 1.046 1.075 1.124 1.216 1.332
𝛼 = 0.10 1.037 1.062 1.103 1.175 1.257

SP 𝜋 = 0.25 𝛼 = 0.01 1.019 1.034 1.052 1.088 1.128
𝛼 = 0.05 1.016 1.027 1.042 1.070 1.099
𝛼 = 0.10 1.013 1.022 1.035 1.057 1.079

𝜋 = 0.50 𝛼 = 0.01 1.035 1.062 1.096 1.168 1.254
𝛼 = 0.05 1.029 1.049 1.078 1.132 1.193
𝛼 = 0.10 1.023 1.040 1.065 1.108 1.152

𝜋 = 0.75 𝛼 = 0.01 1.047 1.084 1.131 1.234 1.365
𝛼 = 0.05 1.040 1.065 1.106 1.182 1.274
𝛼 = 0.10 1.032 1.054 1.087 1.148 1.213

S 1.012 1.046 1.092 1.201 1.343
S+ 1.017 1.053 1.100 1.209 1.348

LASSO 0.877 0.880 0.889 0.941 1.022
aLASSO 0.943 0.986 1.033 1.153 1.293

From Tables 5.1 and 5.2, we can summarize the results under

the null hypothesis as follows:

1. All suggested estimators dominated the UE for all 𝑝2 and censoring percentages,

while the penalized estimators were inferior to the UE when 𝑝2 was small for all

𝑝𝑐.

2. The RMSEs of all estimators increased when 𝑝2 increased and their RMSEs also

increased when 𝑝𝑐 increased.
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Table 5.2 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , β̂
S+
1 , β̂LASSO1 , and β̂aLASSO1 with respect

to β̂UE1 for Cox PH model with 𝑝𝑐 = 30% and 𝑝1 = 5 at Δsim = 0

Estimator Number of Inactive Parameters (𝑝2)
3 5 7 11 15

RE 1.065 1.112 1.177 1.320 1.513
LS 𝜋 = 0.25 1.022 1.039 1.059 1.099 1.144

𝜋 = 0.50 1.041 1.071 1.110 1.192 1.289
𝜋 = 0.75 1.055 1.096 1.150 1.269 1.419

PT 𝛼 = 0.01 1.061 1.106 1.164 1.295 1.458
𝛼 = 0.05 1.049 1.083 1.135 1.233 1.347
𝛼 = 0.10 1.039 1.067 1.112 1.181 1.264

SP 𝜋 = 0.25 𝛼 = 0.01 1.021 1.037 1.054 1.091 1.130
𝛼 = 0.05 1.017 1.029 1.045 1.074 1.102
𝛼 = 0.10 1.013 1.024 1.038 1.059 1.081

𝜋 = 0.50 𝛼 = 0.01 1.038 1.067 1.102 1.176 1.259
𝛼 = 0.05 1.031 1.053 1.084 1.140 1.200
𝛼 = 0.10 1.025 1.043 1.070 1.110 1.155

𝜋 = 0.75 𝛼 = 0.01 1.052 1.091 1.139 1.246 1.374
𝛼 = 0.05 1.042 1.071 1.114 1.195 1.284
𝛼 = 0.10 1.033 1.058 1.095 1.152 1.218

S 1.013 1.048 1.098 1.211 1.353
S+ 1.019 1.057 1.107 1.217 1.357

LASSO 0.921 0.928 0.952 1.020 1.111
aLASSO 0.953 1.005 1.052 1.180 1.327

3. As expected, the RMSEs of the RE were highest for all cases of 𝑝𝑐, which indi-

cates that the RE outperformed all the other estimators.

4. For fixed 𝑝𝑐 and 𝑝2, the RMSEs of the LS estimator increased to be equal to

that of the RE when 𝜋 increased to 1. Moreover, the RMSEs of the PT estimator

increased as 𝛼 decreased.

5. The SP estimator combines the LS and PT estimators, so it depends on 𝜋 and 𝛼,

and its performance was similar to the LS and PT estimators. For fixed 𝑝𝑐, the

RMSEs of the SP estimator increased when 𝜋 increased but decreased when 𝛼

increased.

6. At the same level of 𝛼, the performance of the PT estimator was always superior

to that of the SP estimator because the PT estimator is a particular case of the SP

estimator when 𝜋 = 1.
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7. When we fixed 𝑝𝑐, the RMSEs of the PT estimator at 𝛼 = 0.01 was superior

to that of the S and S+ estimators for all 𝑝2. While the performance of the PT

estimator at 𝛼 = 0.05 and 0.10 outperformed the S and S+ estimators when 𝑝2
was small.

8. The S+ estimator performed better than the shrinkage estimator for all 𝑝2 for fixed

𝑝𝑐.

9. Furthermore, the two penalized estimators were comparable to the suggested es-

timators when 𝑝2 was large.

5.5.1.2 Uncertain Subspace Information (𝚫sim ≥ 0)
In this part of the study, the behavior of the proposed estimators

was examined when (Δsim≥ 0). The regression coefficient vector for the simulation

model was set as β = (β⊤
1 ,β

⊤
2 )⊤ = ((−0.85, 0.27, 0.52)⊤, (Δsim, 0𝑝2−1)⊤)⊤, where

Δsim ∈ [0, 0.8] with (𝑝1, 𝑝2) = (3, 3), (3, 5), (3, 7), (3, 11), and (3, 15).
In this case, the both LASSO and aLASSO estimators were not

considered here because they do not take advantage of the fact that β is partitioned into

active parameter vector β1 and inactive parameter vector β2, in which β2 = 0. The

RMSE results for 𝑝𝑐 = 20% are reported in Tables 5.3 to 5.5 and for 𝑝𝑐 = 30% are

displayed in Tables 5.6 to 5.8. The RMSEs are represented in Figures 5.5 to 5.9 for

𝑝𝑐 = 20% and in Figures 5.10 to 5.14 for 𝑝𝑐 = 30%.

Table 5.3 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝜋 = 0.25 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.0 1.037 1.014 1.035 1.027 1.024 1.013 1.010 1.009 1.012 1.014
0.1 1.029 1.016 1.022 1.016 1.014 1.012 1.009 1.007 1.010 1.011
0.2 0.988 1.023 0.988 0.992 0.994 1.005 1.001 1.000 1.007 1.007
0.3 0.868 1.027 0.977 0.993 0.997 0.998 0.999 0.999 1.006 1.006
0.4 0.684 1.020 0.996 1.000 1.000 0.999 1.000 1.000 1.005 1.005
0.5 0.507 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.6 0.371 0.962 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.7 0.277 0.912 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002
0.8 0.217 0.862 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
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Table 5.3 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝜋 = 0.25 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

5 0.0 1.068 1.025 1.064 1.054 1.043 1.024 1.020 1.016 1.038 1.040
0.1 1.058 1.028 1.046 1.032 1.025 1.023 1.016 1.012 1.031 1.034
0.2 1.004 1.035 0.988 0.991 0.991 1.011 1.005 1.002 1.024 1.025
0.3 0.869 1.040 0.964 0.987 0.994 0.998 0.999 0.999 1.020 1.020
0.4 0.679 1.033 0.991 0.998 0.999 0.999 1.000 1.000 1.016 1.016
0.5 0.500 1.012 1.000 1.000 1.000 1.000 1.000 1.000 1.013 1.013
0.6 0.366 0.975 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.010
0.7 0.274 0.924 1.000 1.000 1.000 1.000 1.000 1.000 1.007 1.007
0.8 0.215 0.878 1.000 1.000 1.000 1.000 1.000 1.000 1.005 1.005

7 0.0 1.112 1.040 1.105 1.092 1.077 1.038 1.033 1.028 1.075 1.077
0.1 1.102 1.045 1.082 1.060 1.046 1.036 1.027 1.021 1.064 1.068
0.2 1.054 1.056 1.017 1.006 1.003 1.024 1.012 1.007 1.055 1.056
0.3 0.915 1.066 0.963 0.983 0.993 1.002 0.999 1.000 1.045 1.045
0.4 0.716 1.067 0.987 0.997 1.000 0.999 1.000 1.000 1.038 1.038
0.5 0.526 1.052 0.999 1.000 1.000 1.000 1.000 1.000 1.032 1.032
0.6 0.382 1.019 1.000 1.000 1.000 1.000 1.000 1.000 1.026 1.026
0.7 0.285 0.971 1.000 1.000 1.000 1.000 1.000 1.000 1.021 1.021
0.8 0.220 0.913 1.000 1.000 1.000 1.000 1.000 1.000 1.015 1.015

11 0.0 1.202 1.070 1.186 1.155 1.131 1.065 1.056 1.048 1.153 1.155
0.1 1.185 1.073 1.159 1.120 1.096 1.064 1.049 1.039 1.137 1.140
0.2 1.136 1.089 1.070 1.036 1.022 1.050 1.027 1.018 1.122 1.123
0.3 0.992 1.106 0.974 0.988 0.993 1.016 1.005 1.002 1.104 1.104
0.4 0.779 1.116 0.977 0.992 0.997 1.000 0.999 1.000 1.090 1.090
0.5 0.574 1.110 0.995 1.000 1.000 0.999 1.000 1.000 1.077 1.077
0.6 0.417 1.084 1.000 1.000 1.000 1.000 1.000 1.000 1.065 1.065
0.7 0.309 1.040 1.000 1.000 1.000 1.000 1.000 1.000 1.053 1.053
0.8 0.238 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.042 1.042

15 0.0 1.315 1.105 1.290 1.241 1.203 1.098 1.083 1.071 1.251 1.255
0.1 1.307 1.113 1.261 1.193 1.151 1.098 1.075 1.060 1.236 1.241
0.2 1.240 1.132 1.137 1.065 1.038 1.080 1.043 1.028 1.209 1.212
0.3 1.073 1.155 0.986 0.989 0.993 1.029 1.011 1.006 1.182 1.182
0.4 0.837 1.174 0.969 0.990 0.995 1.003 1.001 1.000 1.161 1.161
0.5 0.613 1.179 0.990 0.998 0.998 0.999 1.000 1.000 1.142 1.142
0.6 0.445 1.165 0.998 1.000 1.000 1.000 1.000 1.000 1.124 1.124
0.7 0.329 1.128 1.000 1.000 1.000 1.000 1.000 1.000 1.107 1.107
0.8 0.252 1.073 1.000 1.000 1.000 1.000 1.000 1.000 1.089 1.089
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Table 5.4 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝜋 = 0.50 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.0 1.037 1.025 1.035 1.027 1.024 1.023 1.019 1.016 1.012 1.014
0.1 1.029 1.027 1.022 1.016 1.014 1.020 1.014 1.011 1.010 1.011
0.2 0.988 1.029 0.988 0.992 0.994 1.005 1.000 1.000 1.007 1.007
0.3 0.868 1.010 0.977 0.993 0.997 0.993 0.998 0.999 1.006 1.006
0.4 0.684 0.952 0.996 1.000 1.000 0.998 1.000 1.000 1.005 1.005
0.5 0.507 0.860 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.6 0.371 0.749 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.7 0.277 0.639 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002
0.8 0.217 0.551 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001

5 0.0 1.068 1.045 1.064 1.054 1.043 1.043 1.036 1.029 1.038 1.040
0.1 1.058 1.048 1.046 1.032 1.025 1.039 1.027 1.021 1.031 1.034
0.2 1.004 1.048 0.988 0.991 0.991 1.013 1.005 1.001 1.024 1.025
0.3 0.869 1.027 0.964 0.987 0.994 0.991 0.996 0.998 1.020 1.020
0.4 0.679 0.966 0.991 0.998 0.999 0.997 0.999 1.000 1.016 1.016
0.5 0.500 0.869 1.000 1.000 1.000 1.000 1.000 1.000 1.013 1.013
0.6 0.366 0.756 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.010
0.7 0.274 0.644 1.000 1.000 1.000 1.000 1.000 1.000 1.007 1.007
0.8 0.215 0.558 1.000 1.000 1.000 1.000 1.000 1.000 1.005 1.005

7 0.0 1.112 1.073 1.105 1.092 1.077 1.069 1.060 1.050 1.075 1.077
0.1 1.102 1.078 1.082 1.060 1.046 1.063 1.046 1.035 1.064 1.068
0.2 1.054 1.085 1.017 1.006 1.003 1.035 1.017 1.010 1.055 1.056
0.3 0.915 1.071 0.963 0.983 0.993 0.996 0.996 0.999 1.045 1.045
0.4 0.716 1.018 0.987 0.997 1.000 0.997 0.999 1.000 1.038 1.038
0.5 0.526 0.922 0.999 1.000 1.000 1.000 1.000 1.000 1.032 1.032
0.6 0.382 0.803 1.000 1.000 1.000 1.000 1.000 1.000 1.026 1.026
0.7 0.285 0.686 1.000 1.000 1.000 1.000 1.000 1.000 1.021 1.021
0.8 0.220 0.582 1.000 1.000 1.000 1.000 1.000 1.000 1.015 1.015

11 0.0 1.202 1.131 1.186 1.155 1.131 1.121 1.102 1.087 1.153 1.155
0.1 1.185 1.132 1.159 1.120 1.096 1.114 1.087 1.070 1.137 1.140
0.2 1.136 1.149 1.070 1.036 1.022 1.080 1.043 1.028 1.122 1.123
0.3 0.992 1.145 0.974 0.988 0.993 1.017 1.004 1.002 1.104 1.104
0.4 0.779 1.100 0.977 0.992 0.997 0.996 0.998 0.999 1.090 1.090
0.5 0.574 1.008 0.995 1.000 1.000 0.998 1.000 1.000 1.077 1.077
0.6 0.417 0.886 1.000 1.000 1.000 1.000 1.000 1.000 1.065 1.065
0.7 0.309 0.757 1.000 1.000 1.000 1.000 1.000 1.000 1.053 1.053
0.8 0.238 0.644 1.000 1.000 1.000 1.000 1.000 1.000 1.042 1.042
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Table 5.4 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝜋 = 0.50 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

15 0.0 1.315 1.200 1.290 1.241 1.203 1.185 1.156 1.132 1.251 1.255
0.1 1.307 1.211 1.261 1.193 1.151 1.181 1.137 1.108 1.236 1.241
0.2 1.240 1.230 1.137 1.065 1.038 1.135 1.070 1.044 1.209 1.212
0.3 1.073 1.234 0.986 0.989 0.993 1.037 1.013 1.007 1.182 1.182
0.4 0.837 1.198 0.969 0.990 0.995 0.999 0.999 0.999 1.161 1.161
0.5 0.613 1.108 0.990 0.998 0.998 0.997 0.999 0.999 1.142 1.142
0.6 0.445 0.981 0.998 1.000 1.000 0.999 1.000 1.000 1.124 1.124
0.7 0.329 0.841 1.000 1.000 1.000 1.000 1.000 1.000 1.107 1.107
0.8 0.252 0.712 1.000 1.000 1.000 1.000 1.000 1.000 1.089 1.089

Table 5.5 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝜋 = 0.75 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.0 1.037 1.032 1.035 1.027 1.024 1.031 1.024 1.021 1.012 1.014
0.1 1.029 1.031 1.022 1.016 1.014 1.023 1.017 1.013 1.010 1.011
0.2 0.988 1.017 0.988 0.992 0.994 0.999 0.997 0.997 1.007 1.007
0.3 0.868 0.953 0.977 0.993 0.997 0.986 0.996 0.998 1.006 1.006
0.4 0.684 0.826 0.996 1.000 1.000 0.997 1.000 1.000 1.005 1.005
0.5 0.507 0.672 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.6 0.371 0.530 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.7 0.277 0.416 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002
0.8 0.217 0.338 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001

5 0.0 1.068 1.059 1.064 1.054 1.043 1.056 1.048 1.038 1.038 1.040
0.1 1.058 1.059 1.046 1.032 1.025 1.046 1.033 1.025 1.031 1.034
0.2 1.004 1.037 0.988 0.991 0.991 1.005 1.000 0.997 1.024 1.025
0.3 0.869 0.964 0.964 0.987 0.994 0.980 0.993 0.996 1.020 1.020
0.4 0.679 0.831 0.991 0.998 0.999 0.994 0.998 0.999 1.016 1.016
0.5 0.500 0.672 1.000 1.000 1.000 1.000 1.000 1.000 1.013 1.013
0.6 0.366 0.529 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.010
0.7 0.274 0.415 1.000 1.000 1.000 1.000 1.000 1.000 1.007 1.007
0.8 0.215 0.338 1.000 1.000 1.000 1.000 1.000 1.000 1.005 1.005
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Table 5.5 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝜋 = 0.75 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

7 0.0 1.112 1.097 1.105 1.092 1.077 1.091 1.080 1.067 1.075 1.077
0.1 1.102 1.098 1.082 1.060 1.046 1.078 1.057 1.044 1.064 1.068
0.2 1.054 1.085 1.017 1.006 1.003 1.033 1.015 1.008 1.055 1.056
0.3 0.915 1.016 0.963 0.983 0.993 0.983 0.991 0.996 1.045 1.045
0.4 0.716 0.881 0.987 0.997 1.000 0.993 0.998 1.000 1.038 1.038
0.5 0.526 0.714 0.999 1.000 1.000 0.999 1.000 1.000 1.032 1.032
0.6 0.382 0.559 1.000 1.000 1.000 1.000 1.000 1.000 1.026 1.026
0.7 0.285 0.438 1.000 1.000 1.000 1.000 1.000 1.000 1.021 1.021
0.8 0.220 0.349 1.000 1.000 1.000 1.000 1.000 1.000 1.015 1.015

11 0.0 1.202 1.176 1.186 1.155 1.131 1.162 1.136 1.116 1.153 1.155
0.1 1.185 1.171 1.159 1.120 1.096 1.147 1.111 1.089 1.137 1.140
0.2 1.136 1.165 1.070 1.036 1.022 1.087 1.046 1.029 1.122 1.123
0.3 0.992 1.102 0.974 0.988 0.993 1.002 0.999 0.999 1.104 1.104
0.4 0.779 0.963 0.977 0.992 0.997 0.988 0.996 0.998 1.090 1.090
0.5 0.574 0.786 0.995 1.000 1.000 0.997 1.000 1.000 1.077 1.077
0.6 0.417 0.617 1.000 1.000 1.000 1.000 1.000 1.000 1.065 1.065
0.7 0.309 0.481 1.000 1.000 1.000 1.000 1.000 1.000 1.053 1.053
0.8 0.238 0.382 1.000 1.000 1.000 1.000 1.000 1.000 1.042 1.042

15 0.0 1.315 1.273 1.290 1.241 1.203 1.252 1.211 1.177 1.251 1.255
0.1 1.307 1.280 1.261 1.193 1.151 1.239 1.178 1.140 1.236 1.241
0.2 1.240 1.271 1.137 1.065 1.038 1.155 1.077 1.047 1.209 1.212
0.3 1.073 1.202 0.986 0.989 0.993 1.022 1.005 1.002 1.182 1.182
0.4 0.837 1.054 0.969 0.990 0.995 0.987 0.996 0.998 1.161 1.161
0.5 0.613 0.860 0.990 0.998 0.998 0.994 0.999 0.999 1.142 1.142
0.6 0.445 0.675 0.998 1.000 1.000 0.998 1.000 1.000 1.124 1.124
0.7 0.329 0.524 1.000 1.000 1.000 1.000 1.000 1.000 1.107 1.107
0.8 0.252 0.414 1.000 1.000 1.000 1.000 1.000 1.000 1.089 1.089
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(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 5.5 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 2 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 5.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 4 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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(h) 𝜋 = 0.75, 𝛼 = 0.05
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Figure 5.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 6 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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(h) 𝜋 = 0.75, 𝛼 = 0.05
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Figure 5.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 10 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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Figure 5.9 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 20%, 𝑝1 = 3, and 𝑝2 − 1 = 14 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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Table 5.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝜋 = 0.25 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.0 1.042 1.015 1.039 1.032 1.026 1.014 1.011 1.009 1.014 1.015
0.1 1.038 1.018 1.029 1.019 1.013 1.014 1.009 1.006 1.010 1.012
0.2 1.005 1.025 0.987 0.995 0.995 1.005 1.003 1.001 1.008 1.008
0.3 0.900 1.030 0.977 0.990 0.994 0.999 0.999 0.999 1.007 1.007
0.4 0.730 1.026 0.989 0.998 0.999 0.998 1.000 1.000 1.006 1.006
0.5 0.553 1.008 0.998 1.000 1.000 1.000 1.000 1.000 1.005 1.005
0.6 0.412 0.977 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.7 0.311 0.934 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.8 0.243 0.883 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001

5 0.0 1.077 1.027 1.071 1.060 1.051 1.025 1.021 1.018 1.045 1.046
0.1 1.066 1.029 1.055 1.040 1.029 1.024 1.018 1.013 1.035 1.037
0.2 1.028 1.038 1.004 1.000 0.996 1.015 1.007 1.003 1.029 1.029
0.3 0.915 1.046 0.967 0.986 0.993 1.001 0.999 1.000 1.024 1.024
0.4 0.738 1.046 0.983 0.997 0.999 0.998 1.000 1.000 1.021 1.021
0.5 0.555 1.031 0.998 1.000 1.000 1.000 1.000 1.000 1.017 1.017
0.6 0.412 1.002 1.000 1.000 1.000 1.000 1.000 1.000 1.014 1.014
0.7 0.312 0.961 1.000 1.000 1.000 1.000 1.000 1.000 1.011 1.011
0.8 0.242 0.908 1.000 1.000 1.000 1.000 1.000 1.000 1.007 1.007

7 0.0 1.112 1.040 1.105 1.092 1.077 1.038 1.033 1.028 1.075 1.077
0.1 1.101 1.042 1.086 1.069 1.054 1.036 1.028 1.022 1.068 1.070
0.2 1.058 1.052 1.024 1.010 1.008 1.027 1.014 1.009 1.055 1.056
0.3 0.937 1.062 0.965 0.982 0.989 1.005 1.000 1.000 1.045 1.045
0.4 0.752 1.064 0.974 0.995 0.997 0.998 1.000 1.000 1.037 1.037
0.5 0.566 1.051 0.995 0.999 1.000 0.999 1.000 1.000 1.031 1.031
0.6 0.419 1.023 1.000 1.000 1.000 1.000 1.000 1.000 1.025 1.025
0.7 0.316 0.981 1.000 1.000 1.000 1.000 1.000 1.000 1.019 1.019
0.8 0.246 0.931 1.000 1.000 1.000 1.000 1.000 1.000 1.013 1.013

11 0.0 1.205 1.072 1.188 1.157 1.134 1.066 1.056 1.048 1.155 1.158
0.1 1.192 1.073 1.169 1.128 1.100 1.064 1.050 1.040 1.144 1.146
0.2 1.145 1.086 1.085 1.046 1.033 1.053 1.031 1.022 1.125 1.126
0.3 1.017 1.102 0.986 0.988 0.995 1.022 1.008 1.005 1.106 1.106
0.4 0.818 1.112 0.966 0.989 0.995 1.002 1.000 1.000 1.090 1.090
0.5 0.616 1.108 0.987 0.998 1.000 0.999 1.000 1.000 1.077 1.077
0.6 0.456 1.086 0.999 1.000 1.000 1.000 1.000 1.000 1.065 1.065
0.7 0.342 1.048 1.000 1.000 1.000 1.000 1.000 1.000 1.053 1.053
0.8 0.265 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.041 1.041

Ref. code: 25645909320011YZA
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Table 5.6 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝜋 = 0.25 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

15 0.0 1.322 1.106 1.293 1.252 1.206 1.098 1.085 1.071 1.254 1.257
0.1 1.312 1.112 1.268 1.205 1.153 1.098 1.077 1.060 1.242 1.245
0.2 1.251 1.127 1.163 1.090 1.061 1.085 1.050 1.035 1.212 1.216
0.3 1.104 1.148 1.009 0.996 0.995 1.042 1.016 1.009 1.184 1.185
0.4 0.885 1.166 0.958 0.982 0.993 1.006 1.001 1.000 1.161 1.161
0.5 0.664 1.172 0.979 0.995 0.998 0.999 1.000 1.000 1.141 1.141
0.6 0.491 1.161 0.995 0.999 0.999 0.999 1.000 1.000 1.122 1.122
0.7 0.367 1.130 0.999 1.000 1.000 1.000 1.000 1.000 1.103 1.103
0.8 0.284 1.083 1.000 1.000 1.000 1.000 1.000 1.000 1.086 1.086

Table 5.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝜋 = 0.50 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.0 1.042 1.027 1.039 1.032 1.026 1.025 1.021 1.017 1.014 1.015
0.1 1.038 1.030 1.029 1.019 1.013 1.023 1.015 1.011 1.010 1.012
0.2 1.005 1.035 0.987 0.995 0.995 1.005 1.003 1.000 1.008 1.008
0.3 0.900 1.020 0.977 0.990 0.994 0.994 0.996 0.998 1.007 1.007
0.4 0.730 0.973 0.989 0.998 0.999 0.996 0.999 1.000 1.006 1.006
0.5 0.553 0.890 0.998 1.000 1.000 0.999 1.000 1.000 1.005 1.005
0.6 0.412 0.788 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.7 0.311 0.683 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.8 0.243 0.589 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001

5 0.0 1.077 1.049 1.071 1.060 1.051 1.045 1.038 1.033 1.045 1.046
0.1 1.066 1.050 1.055 1.040 1.029 1.042 1.031 1.022 1.035 1.037
0.2 1.028 1.056 1.004 1.000 0.996 1.021 1.010 1.004 1.029 1.029
0.3 0.915 1.045 0.967 0.986 0.993 0.996 0.997 0.998 1.024 1.024
0.4 0.738 0.999 0.983 0.997 0.999 0.995 0.999 1.000 1.021 1.021
0.5 0.555 0.914 0.998 1.000 1.000 0.999 1.000 1.000 1.017 1.017
0.6 0.412 0.810 1.000 1.000 1.000 1.000 1.000 1.000 1.014 1.014
0.7 0.312 0.703 1.000 1.000 1.000 1.000 1.000 1.000 1.011 1.011
0.8 0.242 0.603 1.000 1.000 1.000 1.000 1.000 1.000 1.007 1.007

7 0.0 1.112 1.073 1.105 1.092 1.077 1.069 1.060 1.050 1.075 1.077
0.1 1.101 1.075 1.086 1.069 1.054 1.063 1.050 1.039 1.068 1.070
0.2 1.058 1.081 1.024 1.010 1.008 1.040 1.020 1.014 1.055 1.056
0.3 0.937 1.071 0.965 0.982 0.989 1.001 0.997 0.998 1.045 1.045
0.4 0.752 1.026 0.974 0.995 0.997 0.992 0.999 0.999 1.037 1.037

Ref. code: 25645909320011YZA
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Table 5.7 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝜋 = 0.50 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

7 0.5 0.566 0.941 0.995 0.999 1.000 0.998 1.000 1.000 1.031 1.031
0.6 0.419 0.832 1.000 1.000 1.000 1.000 1.000 1.000 1.025 1.025
0.7 0.316 0.722 1.000 1.000 1.000 1.000 1.000 1.000 1.019 1.019
0.8 0.246 0.622 1.000 1.000 1.000 1.000 1.000 1.000 1.013 1.013

11 0.0 1.205 1.133 1.188 1.157 1.134 1.122 1.103 1.089 1.155 1.158
0.1 1.192 1.133 1.169 1.128 1.100 1.117 1.090 1.071 1.144 1.146
0.2 1.145 1.146 1.085 1.046 1.033 1.087 1.049 1.035 1.125 1.126
0.3 1.017 1.144 0.986 0.988 0.995 1.028 1.008 1.005 1.106 1.106
0.4 0.818 1.107 0.966 0.989 0.995 0.997 0.998 0.999 1.090 1.090
0.5 0.616 1.026 0.987 0.998 1.000 0.996 0.999 1.000 1.077 1.077
0.6 0.456 0.915 0.999 1.000 1.000 1.000 1.000 1.000 1.065 1.065
0.7 0.342 0.794 1.000 1.000 1.000 1.000 1.000 1.000 1.053 1.053
0.8 0.265 0.684 1.000 1.000 1.000 1.000 1.000 1.000 1.041 1.041

15 0.0 1.322 1.202 1.293 1.252 1.206 1.185 1.160 1.133 1.254 1.257
0.1 1.312 1.210 1.268 1.205 1.153 1.182 1.141 1.108 1.242 1.245
0.2 1.251 1.225 1.163 1.090 1.061 1.147 1.084 1.058 1.212 1.216
0.3 1.104 1.231 1.009 0.996 0.995 1.058 1.020 1.011 1.184 1.185
0.4 0.885 1.202 0.958 0.982 0.993 1.001 0.998 0.999 1.161 1.161
0.5 0.664 1.125 0.979 0.995 0.998 0.995 0.998 0.999 1.141 1.141
0.6 0.491 1.012 0.995 0.999 0.999 0.999 1.000 1.000 1.122 1.122
0.7 0.367 0.882 0.999 1.000 1.000 1.000 1.000 1.000 1.103 1.103
0.8 0.284 0.759 1.000 1.000 1.000 1.000 1.000 1.000 1.086 1.086

Table 5.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝜋 = 0.75 at Δsim ≥ 0

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

3 0.0 1.042 1.036 1.039 1.032 1.026 1.034 1.027 1.022 1.014 1.015
0.1 1.038 1.037 1.029 1.019 1.013 1.028 1.019 1.013 1.010 1.012
0.2 1.005 1.028 0.987 0.995 0.995 0.999 1.000 0.998 1.008 1.008
0.3 0.900 0.974 0.977 0.990 0.994 0.987 0.994 0.996 1.007 1.007
0.4 0.730 0.862 0.989 0.998 0.999 0.993 0.998 0.999 1.006 1.006
0.5 0.553 0.716 0.998 1.000 1.000 0.999 1.000 1.000 1.005 1.005
0.6 0.412 0.576 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004
0.7 0.311 0.459 1.000 1.000 1.000 1.000 1.000 1.000 1.003 1.003
0.8 0.243 0.371 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001

Ref. code: 25645909320011YZA
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Table 5.8 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox PH

model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝜋 = 0.75 at Δsim ≥ 0 (Cont.)

𝑝2 Δsim RE LS

PT SP

S S+

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

𝛼
=
0
.0
1

𝛼
=
0
.0
5

𝛼
=
0
.1
0

5 0.0 1.077 1.066 1.071 1.060 1.051 1.061 1.051 1.044 1.045 1.046
0.1 1.066 1.063 1.055 1.040 1.029 1.053 1.038 1.028 1.035 1.037
0.2 1.028 1.053 1.004 1.000 0.996 1.017 1.008 1.001 1.029 1.029
0.3 0.915 0.998 0.967 0.986 0.993 0.984 0.993 0.996 1.024 1.024
0.4 0.738 0.882 0.983 0.997 0.999 0.990 0.998 1.000 1.021 1.021
0.5 0.555 0.729 0.998 1.000 1.000 0.998 1.000 1.000 1.017 1.017
0.6 0.412 0.585 1.000 1.000 1.000 1.000 1.000 1.000 1.014 1.014
0.7 0.312 0.466 1.000 1.000 1.000 1.000 1.000 1.000 1.011 1.011
0.8 0.242 0.375 1.000 1.000 1.000 1.000 1.000 1.000 1.007 1.007

7 0.0 1.112 1.097 1.105 1.092 1.077 1.091 1.080 1.067 1.075 1.077
0.1 1.101 1.095 1.086 1.069 1.054 1.080 1.063 1.050 1.068 1.070
0.2 1.058 1.083 1.024 1.010 1.008 1.039 1.019 1.014 1.055 1.056
0.3 0.937 1.025 0.965 0.982 0.989 0.987 0.991 0.994 1.045 1.045
0.4 0.752 0.905 0.974 0.995 0.997 0.984 0.997 0.998 1.037 1.037
0.5 0.566 0.749 0.995 0.999 1.000 0.997 0.999 1.000 1.031 1.031
0.6 0.419 0.598 1.000 1.000 1.000 1.000 1.000 1.000 1.025 1.025
0.7 0.316 0.476 1.000 1.000 1.000 1.000 1.000 1.000 1.019 1.019
0.8 0.246 0.384 1.000 1.000 1.000 1.000 1.000 1.000 1.013 1.013

11 0.0 1.205 1.179 1.188 1.157 1.134 1.164 1.138 1.118 1.155 1.158
0.1 1.192 1.175 1.169 1.128 1.100 1.153 1.117 1.092 1.144 1.146
0.2 1.145 1.167 1.085 1.046 1.033 1.098 1.054 1.039 1.125 1.126
0.3 1.017 1.112 0.986 0.988 0.995 1.015 1.002 1.002 1.106 1.106
0.4 0.818 0.989 0.966 0.989 0.995 0.984 0.995 0.997 1.090 1.090
0.5 0.616 0.823 0.987 0.998 1.000 0.992 0.999 1.000 1.077 1.077
0.6 0.456 0.659 0.999 1.000 1.000 0.999 1.000 1.000 1.065 1.065
0.7 0.342 0.522 1.000 1.000 1.000 1.000 1.000 1.000 1.053 1.053
0.8 0.265 0.419 1.000 1.000 1.000 1.000 1.000 1.000 1.041 1.041

15 0.0 1.322 1.278 1.293 1.252 1.206 1.253 1.218 1.180 1.254 1.257
0.1 1.312 1.281 1.268 1.205 1.153 1.242 1.186 1.140 1.242 1.245
0.2 1.251 1.271 1.163 1.090 1.061 1.174 1.098 1.066 1.212 1.216
0.3 1.104 1.214 1.009 0.996 0.995 1.047 1.014 1.006 1.184 1.185
0.4 0.885 1.084 0.958 0.982 0.993 0.985 0.992 0.997 1.161 1.161
0.5 0.664 0.904 0.979 0.995 0.998 0.988 0.997 0.999 1.141 1.141
0.6 0.491 0.725 0.995 0.999 0.999 0.997 0.999 1.000 1.122 1.122
0.7 0.367 0.573 0.999 1.000 1.000 0.999 1.000 1.000 1.103 1.103
0.8 0.284 0.458 1.000 1.000 1.000 1.000 1.000 1.000 1.086 1.086

Ref. code: 25645909320011YZA
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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(c) 𝜋 = 0.25, 𝛼 = 0.10
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(d) 𝜋 = 0.50, 𝛼 = 0.01
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(f) 𝜋 = 0.50, 𝛼 = 0.10
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(g) 𝜋 = 0.75, 𝛼 = 0.01
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(h) 𝜋 = 0.75, 𝛼 = 0.05
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(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 5.10 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 2 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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(b) 𝜋 = 0.25, 𝛼 = 0.05
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(c) 𝜋 = 0.25, 𝛼 = 0.10
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(f) 𝜋 = 0.50, 𝛼 = 0.10
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(g) 𝜋 = 0.75, 𝛼 = 0.01
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(h) 𝜋 = 0.75, 𝛼 = 0.05
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(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 5.11 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 4 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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(c) 𝜋 = 0.25, 𝛼 = 0.10
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(d) 𝜋 = 0.50, 𝛼 = 0.01
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(f) 𝜋 = 0.50, 𝛼 = 0.10
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(g) 𝜋 = 0.75, 𝛼 = 0.01
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(h) 𝜋 = 0.75, 𝛼 = 0.05

0.0 0.2 0.4 0.6 0.8

1.
00

1.
05

1.
10

∆sim

R
M

S
E

RE
LS
PT
SP
S
S+

(i) 𝜋 = 0.75, 𝛼 = 0.10

Figure 5.12 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 6 at Δsim ≥ 0

Ref. code: 25645909320011YZA
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(a) 𝜋 = 0.25, 𝛼 = 0.01
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(b) 𝜋 = 0.25, 𝛼 = 0.05
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(c) 𝜋 = 0.25, 𝛼 = 0.10
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(d) 𝜋 = 0.50, 𝛼 = 0.01
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(e) 𝜋 = 0.50, 𝛼 = 0.05
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(f) 𝜋 = 0.50, 𝛼 = 0.10
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Figure 5.13 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 10 at Δsim ≥ 0
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Figure 5.14 RMSEs of β̂RE1 , β̂LS1 , β̂PT1 , β̂SP1 , β̂S1 , and β̂
S+
1 with respect to β̂UE1 for Cox

PH model with 𝑝𝑐 = 30%, 𝑝1 = 3, and 𝑝2 − 1 = 14 at Δsim ≥ 0
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For each censoring percentage, we obtained similar results for

the suggested estimators. Therefore, as can be seen in Tables 5.3 to 5.8 and Figures 5.5

to 5.14, the simulation analysis findings can be summarized as follows:

1. The RE was superior to all the other estimators when the subspace information

was correct or nearly correct, which means Δsim was at zero or near zero. How-

ever, when Δsim moved away from zero, the RMSE of the RE decreased and con-

verged on zero.

2. The LS estimator is a linear combination of the UE and RE, which depends on 𝜋.

Its performance was similar to that of the RE in that the RMSEs decreased slowly,

converging on zero as Δsim increased. However, the LS estimator outperformed

all the other estimators in some portion of Δsim ≥ 0.

3. When Δsim increased slightly from zero, the RMSEs of the PT and SP estimators

first fell. In this phase, the PT estimator outperformed the SP estimator. However,

as Δsim increased further, the SP estimator dominated the PT estimator. Finally,

if Δsim increased far from zero, the RMSEs of both estimators converged to one.

4. When Δsim was at or near zero, the performance of the PT estimator was superior

to that of the S and S+ estimators at 𝛼 = 0.01. Still, its performance was inferior

to that of the S and S+ estimators at 𝛼 = 0.05, 0.10, and large 𝑝2. However, the

performance of the PT estimator was lower than the S and S+ estimators in some

areas of Δsim ≥ 0.

5. The SP estimator depended on values of 𝛼 and 𝜋, and its performance was similar

to the PT estimator. Under the null hypothesis, the SP estimator dominated the S

and S+ estimators when 𝛼 was small and 𝜋 was large. In contrast, for fixed 𝑝2,

the SP estimator was inferior to the S and S+ estimators when 𝜋 was small.

6. For all 𝑝2, the S+ estimator dominated the shrinkage estimator when Δsim was at

or near zero, but their performance was equivalent when Δsim was far from zero.

Furthermore, the performance of both these estimators was also superior to all

other estimators in some parts of Δsim > 0.

Ref. code: 25645909320011YZA
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5.5.2 High-Dimensional Data

We extended the estimation problem to the high-dimensional Cox PH

regression model in which 𝑝 > 𝑛. The response variable was generated using the for-

mula in Equation (5.37) with the following regression coefficient vector under the three

effect size such as strong, weak-to-moderate, and no effect,

β = (2.45, 1.51,−0.34,−1.38, 0.75︸                                ︷︷                                ︸
𝑝𝑠

, 𝜅, 𝜅, ..., 𝜅︸    ︷︷    ︸
𝑝𝑤

, 0, 0, ..., 0︸    ︷︷    ︸
𝑝𝑛

)⊤, (5.38)

where 𝜅 denotes weak to moderate signals. We generated the dataset with values of 𝜅 as

0.01, 0.05, 0.10, and 0.15 to examine the performance of the estimators in the presence of

the weak signals. We randomly assigned all nonzero coefficients with weak to moderate

signals to have either positive or negative signs.

To satisfy the usual assumptions 𝑝𝑠 ≤ 𝑝𝑤 < 𝑛 and 𝑝𝑛 ≥ 𝑛, we

considered the case (𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) = (250, 5, 25, 270) and (250, 5, 45, 300). Here, the
significance level (𝛼) was set as 0.05, the value of shrinkage intensity (𝜋) was set as
0.50, and the censoring percentages (𝑝𝑐) were set as 20% and 30%. To assess the

performance of the post-selection estimators, we used the RMSE criterion with each

design repeated 500 times.

Moreover, we also applied two steps, i.e., dimensional reduction and

post-selection parameter estimation steps, to improve estimation for the high-dimensional

sparse Cox PH regression model. This is demonstrated next.

5.5.2.1 Dimensional Reduction Step

To effectively eliminate irrelevant or select influential predic-

tors in high-dimensional data, the two most widely used penalized estimations, namely

LASSO and aLASSO, are used to produce two models with different subsets of relevant

predictors.

For checking the behavior and comparing the subset selection

of the LASSO and aLASSO, Figures 5.15 to 5.18 display the percentage of each pre-

dictor variable selected by LASSO and aLASSO for 𝑝𝑐 = 20% and 𝑝𝑐 = 30% with

(𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) = (250, 5, 25, 270) and (250, 5, 45, 300). Table 5.9 reports the selection
percentage of the predictors for each signal, censoring percentage, and (𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛).

Ref. code: 25645909320011YZA
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Table 5.9 Selection percentage of predictors using LASSO and aLASSO methods in
Cox PH regression model with strong, weak, and no signals

(𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) 𝑝𝑐 𝜅
Strong signal Weak signal No signal

LASSO aLASSO LASSO aLASSO LASSO aLASSO
(250,5,25,270) 20% 0.01 95.16 88.84 4.54 1.23 4.48 1.21

0.05 94.36 87.44 5.80 1.82 4.57 1.25
0.10 93.12 86.68 11.07 3.75 4.62 1.29
0.15 91.84 85.80 17.65 7.83 5.18 1.75

30% 0.01 92.52 86.00 4.55 1.16 4.47 1.25
0.05 91.92 85.24 6.09 1.85 4.60 1.29
0.10 91.76 84.72 9.79 3.23 4.63 1.30
0.15 91.20 83.92 15.63 5.80 5.46 1.69

(250,5,45,300) 20% 0.01 95.32 88.20 4.02 1.00 4.10 1.09
0.05 94.28 87.20 5.78 1.50 4.27 1.11
0.10 93.28 86.16 10.93 3.63 5.22 1.40
0.15 91.04 84.68 17.24 7.24 5.80 2.08

30% 0.01 93.52 85.88 4.55 1.26 4.80 1.32
0.05 93.12 84.56 6.36 1.85 5.18 1.43
0.10 91.76 83.84 10.67 3.39 5.60 1.65
0.15 89.92 81.84 14.87 6.02 5.78 2.05

Table 5.9 shows that the LASSO method was more capable

than the aLASSO method in choosing predictors that had strong and weak signals.

However, it also stored many nuisance (no signal) predictors. Therefore, two differ-

ent submodels were obtained from LASSO and aLASSO strategies, and LASSO picked

more predictors than aLASSO. Moreover, we can see that the performance in choosing

the predictors with strong signals and in eliminating the predictors with no influence

of LASSO and aLASSO decreased when 𝜅 increased. In contrast, the performance in

selecting the predictors with weak signals increased.

For small 𝜅, predictors with weak signals may have little or

no effect on predicting the response variable, and they should be removed from the

model. On the other hand, the predictors with weak signals were essential and were

selected in the model when 𝜅 was large. Furthermore, the LASSO performed better

than aLASSO in choosing predictors with weak signals. However, the LASSO could

not remove all the predictors with no signal, unlike aLASSO, which could eliminate

most nuisance predictors. In addition, when the censoring percentage (𝑝𝑐) was at 30%,
the performance in selecting predictors with strong signals worsened.

Ref. code: 25645909320011YZA
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(c) 𝜅 = 0.10
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(d) 𝜅 = 0.15

Figure 5.15 Selection percentage of predictors using LASSO and aLASSO methods in
Cox PH model with 𝑝𝑐 = 20% for strong, weak, and no signals and (𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) =
(250, 5, 25, 270)
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(b) 𝜅 = 0.05
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(c) 𝜅 = 0.10
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(d) 𝜅 = 0.15

Figure 5.16 Selection percentage of predictors using LASSO and aLASSO methods in
Cox PH model with 𝑝𝑐 = 30% for strong, weak, and no signals and (𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) =
(250, 5, 25, 270)

Ref. code: 25645909320011YZA
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(a) 𝜅 = 0.01
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(c) 𝜅 = 0.10
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(d) 𝜅 = 0.15

Figure 5.17 Selection percentage of predictors using LASSO and aLASSO methods in
Cox PH model with 𝑝𝑐 = 20% for strong, weak, and no signals and (𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) =
(250, 5, 45, 300)

Ref. code: 25645909320011YZA
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(a) 𝜅 = 0.01
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(c) 𝜅 = 0.10
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(d) 𝜅 = 0.15

Figure 5.18 Selection percentage of predictors using LASSO and aLASSO methods in
Cox PH model with 𝑝𝑐 = 30% for strong, weak, and no signals and (𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) =
(250, 5, 45, 300)

Ref. code: 25645909320011YZA
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From the above results, when 𝜅 was small, the LASSO selected

too many predictors with weak and no signals. Therefore, it may build an overfitted

(OF) model. In contrast, when 𝜅 was large, the aLASSO may produce an underfitted

(UF) model, which gives a poor performance in picking the predictors with strong and

weak signals and selects fewer significant predictors than LASSO. These twomodels led

to the consideration of the overfitted and underfitted problems. Therefore, we applied

post-selection suggested estimation strategies such as the LS, PT, SP, S, and S+ to man-

age this issue and compared them with the penalized estimators (LASSO and aLASSO).

5.5.2.2 Post-Selection Parameter Estimation Step

From the previous step, the LASSO and aLASSO methods re-

duced the variable dimension to a low-dimensional (LD) model. So, we assumed that

the subset of predictors using the LASSO and aLASSO strategies contains 𝑝1 + 𝑝2 and
𝑝1 relevant predictors, where 𝑝1 + 𝑝2 < 𝑝 in this step.

After dimensional reduction of the variables, we applied the

estimation strategies in Sections 5.3.1 to 5.3.5 to parameter estimation β = (β⊤
1 ,β

⊤
2 )

⊤

when it was plausible that β2 was a zero vector. This means that the regression coef-

ficients were divided into β1 = (𝛽1, 𝛽2, ..., 𝛽𝑝1)⊤ and β2 = (𝛽𝑝1+1, 𝛽𝑝1+2, ..., 𝛽𝑝1+𝑝2)⊤

subsets, which are coefficients from the OF with 𝑝1 + 𝑝2 parameters and the UF with

𝑝1 parameters, respectively.

To provide parameter estimation after performing variable se-

lection, the UE and RE were the maximum partial likelihood estimators from the OF

(LASSO) and UF (aLASSO) models, respectively. For testing H0 : β2 = 0𝑝2 , we set

β2 as the coefficient of the 𝑝2 predictors as existing in the OF model, but not in the UF

model. The RMSE criterion was used to compare the performance of the post-selection

parameter estimation, and the results of the estimators for each 𝑝𝑐 and (𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛)
are displayed in Table 5.10.

The simulation results show that when 𝜅 increased, the RE was

inferior to all other estimators since the aLASSO method was poorer than the LASSO

method in selecting the predictors with strong and weak signals. This means that the

LASSO method may be produced an appropriate model, in contrast to the aLASSO

method, which built an underfitted model.

Ref. code: 25645909320011YZA
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Table 5.10 RMSEs of estimators with respect to the UE in Cox PH model for a high-
dimensional setting where 𝛼 = 0.05 and 𝜋 = 0.5

(𝑛, 𝑝𝑠, 𝑝𝑤, 𝑝𝑛) 𝑝𝑐 𝜅
Estimators

RE LS PT SP S S+ LASSO aLASSO
(250,5,25,270) 20% 0.01 1.3007 1.2570 1.0009 1.0005 1.1322 1.1556 0.2872 0.3627

0.05 1.0241 1.1120 1.0000 1.0000 1.0833 1.1081 0.2911 0.3709
0.10 0.9332 1.0647 1.0000 1.0000 1.0716 1.0760 0.3280 0.4004
0.15 0.9095 1.0404 1.0000 1.0000 1.0663 1.0733 0.4117 0.4823

30% 0.01 1.1150 1.1562 1.0003 1.0002 1.1047 1.1165 0.2640 0.3400
0.05 0.9882 1.0825 1.0000 1.0000 1.0738 1.0848 0.3207 0.4066
0.10 0.8488 0.9969 1.0000 1.0000 1.0424 1.0460 0.3824 0.4620
0.15 0.8220 0.9765 1.0000 1.0000 1.0382 1.0382 0.5058 0.5786

(250,5,45,300) 20% 0.01 1.3376 1.2917 1.0013 1.0007 1.1495 1.2426 0.3274 0.4048
0.05 1.1265 1.1991 1.0000 1.0000 1.1175 1.1828 0.3811 0.4723
0.10 0.9153 1.0914 1.0000 1.0000 1.0991 1.1262 0.4114 0.5064
0.15 0.8931 1.0357 1.0000 1.0000 1.0681 1.0694 0.4756 0.5590

30% 0.01 1.2795 1.2771 1.0001 1.0001 1.1507 1.1941 0.3370 0.4219
0.05 1.1466 1.2161 1.0000 1.0000 1.1366 1.1788 0.3757 0.4635
0.10 0.9064 1.0561 1.0000 1.0000 1.0801 1.0993 0.4510 0.5436
0.15 0.8594 1.0011 1.0000 1.0000 1.0476 1.0589 0.5614 0.6372

The behavior of the RE fell below one when 𝜅 increased. The

behavior of the LS estimator was similar to the RE, but it was still more outstanding than

the RE. The RMSEs of the PT and SP estimators converged to one when 𝜅 increased.

The S+ estimator outperformed the shrinkage (S) estimator, and the RMSEs of both

estimators were close to the same value when 𝜅 was large. Moreover, when 𝜅 increased,

the performance of the S+ was still superior to all estimators, especially two penalized

estimators.

Since the coefficients with weak and no signals in the post-

selection model grew as 𝜅 increased, the penalized estimators were estimated and shrank

the coefficients with no signal to zero in the post-selection model. This may explain why

the behavior of both post-selection penalized estimators increased as 𝜅 increased. The

aLASSO estimator outperformed the LASSO estimator for all 𝜅 values. However, both

penalized estimators performed worse than all other estimators.

Based on these simulation results, we can conclude that high-

dimensional sparse Cox PH regression model results were consistent with the low-

dimensional regime.
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5.6 Application to Real Data

To examine our approach’s practical use, the proposed and penalized es-

timators were applied to real datasets. We do not know the subspace information on

which the predictors affect the response variable in real situations. Still, we can use the

variable selection methods to identify the predictors that influence the response variable.

We selected significant variables in low- and high-dimensional data examples using the

Bayesian information criterion (BIC) and penalized approaches (LASSO and aLASSO),

respectively. Moreover, we applied the resampling bootstrap approach to estimate the

regression coefficients.

Since the Cox model is a type of hazard model, it cannot directly predict

the survival time. To do this, the survival analysis in the Cox model converts the hazard

ratio to survival times through distributions. However, since the user must manually

pre-select the distribution in the Cox model, it is problematic that a specific distribu-

tion is chosen to generate survival time (Baek et al., 2021). As this result, we evaluated

the model’s performance for the Cox PH model by the predictive risk score (Chen et

al., 2012; Moncada-Torres et al., 2021), which indicates the chance of premature death,

instead of using the prediction error of the survival time. Therefore, the suggested es-

timators’ performance can be assessed using the MSE of risk scores (MSER) for each

bootstrap replication. To facilitate the comparison, we also calculated the RMSE of risk

scores (RMSER) of the estimators with respect to the UE, defined as follows:

RMSER(β̂UE1 , β̂∗
1) =

MSER(β̂UE1 )
MSER(β̂∗

1)
, (5.39)

where

MSER(β̂∗
1) =

1

𝑚
(𝑒xβ̂

∗
1(true) − 𝑒xβ̂

∗
1(simulated) )

⊤
(𝑒xβ̂

∗
1(true) − 𝑒xβ̂

∗
1(simulated) ).

Here β̂∗
1 is the suggested estimators and 𝑒

xβ̂∗
1(true) and 𝑒xβ̂

∗
1(simulated) are the predictive risk

scores from the suggested estimators of the true model and of the simulated model,

respectively.

In the Cox PH model, we applied the estimators used in this study, i.e., RE,

LS, PT, SP, S, S+, LASSO, and aLASSO estimators, to analyze real datasets. Further-

more, we applied them to a breast cancer dataset in the low-dimensional setting and a
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diffuse large-B-cell lymphoma dataset in the high-dimensional regime. The data analy-

sis and results are described in the following sections.

5.6.1 Breast Cancer Data

The breast cancer data set utilized in Royston and Altman (2013) in-

cludes patient records from 720 patients with node-positive breast cancer who partici-

pated in a study undertaken by the German Breast Cancer Study Group (GBSG) between

1984 and 1989.

This dataset contains 686 patients with complete data for the prog-

nostic variables. The median of follow-up was 1084 days overall (1,443 days for lives

and 646 days for deaths). Approximately 44% (387) of patients died during this time,

and the censoring rate was around 56%. The dataset was available in the survival

package in the R program. The list of covariates related with this dataset is given in

Table 5.11.

Table 5.11 List of variables for breast cancer data

Variable Description
Time Days to first of recurrence, death, or last follow-up
Status 0 = alive without recurrence (censored), 1 = recurrence or death
X1 Age (years)
X2 Menopausal status (0 = premenopausal, 1 = postmenopausal)
X3 Tumor size (mm)
X4 Tumor grade
X5 Number of positive lymph nodes
X6 Progesterone receptors (fmol/l)
X7 Estrogen receptors (fmol/l)
X8 Hormonal therapy (0 = no, 1 = yes)

Since subspace information was unavailable, we applied variable se-

lection technique via the BIC method to identify the influence predictors. The variable

selection result for establishing the submodel are given in Table 5.12.

Table 5.12 Variable selection results for breast cancer data

Method Number of active Number of inactive Active predictorsparameters (𝑝1) parameters (𝑝2)
BIC 4 4 X4, X5, X6, X8
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We used resampling bootstrap simulations of size 𝑚 = 250 from the

dataset with replacement and 𝑁 = 1, 000 times. The RMSER results with 𝛼 = 0.05 and

𝜋 = 0.50 are presented in Table 5.13.

Table 5.13 RMSERs of estimators with respect to UE for breast cancer data

Estimator
RE LS PT SP S S+ LASSO aLASSO

8.2542 3.5072 8.2542 3.5072 2.1615 2.1615 1.0763 1.7895

According to the results in Table 5.13, all estimators were more ef-

ficient than the UE. The RE estimator performed better than all other estimators. The

performance of the RE and PT estimators was equivalent since their RMSERs were

equal. Likewise, the RMSERs of the LS and SP also had equal values. This indicates

that the test statistic lay in an acceptance region (H0 : β = 0) for all iterations. The S
and S+ estimators had the same performance, and the aLASSO estimator was superior

to the LASSO estimator. In addition, the performance of the suggested estimators was

superior to both the LASSO and aLASSO estimators.

5.6.2 Diffuse Large-B-Cell Lymphoma Data

The diffuse large-B-cell lymphoma (DLBCL) dataset in Rosenwald

et al. (2002) was acquired from tumor-biopsy specimens and clinical data of retrospec-

tive patients to examine gene expressionwith the use of DNAmicroarrays and to analyze

genomic abnormalities.

This dataset includes 240 patients with untreated diffuse large-B-cell

lymphomawho had no previous history of lymphoma, but only 235 patients with follow-

up times were non-zero. From 235 patients, 133 (57%) patient deaths were found during

the follow-up period, the median of follow-up was 2.8 years overall (7.3 years for sur-

vivors and 1.1 years for deaths), and the censoring percentage was approximate 43%.

From the available gene expression measurements data, there were 5,674 genes for anal-

ysis. However, there were many missing gene expression values in the dataset, and only

398 genes had no missing values, so we used only this complete data in the analysis.

Applying the LASSO and aLASSO strategies for variable selection

in the high-dimensional Cox PH regression model, the LASSO selected 11 influential

predictors (𝑝1+𝑝2 = 11). In addition, the aLASSO picked 6 relevant predictors (𝑝1 = 6)
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Table 5.14 List of variables for diffuse large-B-cell lymphoma data

Variable Description
Time Follow-up (years)
Status Status at follow-up (0 = alive, 1 = death)

GenBank ID
LC_29447
M27364 Eukaryotic translation elongation factor 1 alpha 1
LC_24432
V00568 V-myc myelocytomatosis viral oncogene homolog (avian)
D32050 Alanyl-tRNA synthetase
U72511 Repressor of estrogen receptor activity
X90858 Uridine phosphorylase
X00452 Major histocompatibility complex, class II, DQ alpha 1
M20430 Major histocompatibility complex, class II, DR beta 5
X89984 B-cell CLL/lymphoma 7A
X62055 Protein tyrosine phosphatase, non-receptor type 6

Table 5.15 Variable selection results for diffuse large-B-cell lymphoma data

Method Number of parameters Selected predictors as active
LASSO 11 LC_29447, M27364, LC_24432, V00568,

D32050, U72511, X90858, X00452,
M20430, X89984, X62055,

aLASSO 6 M27364, LC_24432, V00568, U72511,
X00452, M20430,

that were a subset of LASSO. The set of selected predictors using LASSO and aLASSO

methods is shown in Table 5.14, and no description was provided for genes LC_29447

and LC_24432 in Rosenwald et al. (2002). The variable selection results that provided

overfitted and underfitted models are represented in Table 5.15.

Later, we applied the post-selection suggested estimators to two dif-

ferent models with the subspace informationβ2 = (𝛽𝐿𝐶29447, 𝛽𝐷32050, 𝛽𝑋90858, 𝛽𝑋89984,
𝛽𝑋62055) = (0, 0, 0, 0, 0), in which its correctness was unknown. Finally, to examine the
performance of the proposed estimators for 𝛼 = 0.05 and 𝜋 = 0.50, the RMSERs were

computed using 𝑚 = 175 bootstrap samples with data replacement 𝑁 = 1, 000 times.

The findings are reported in Table 5.16.

The results in Table 5.16 show that the RE was inferior to the UE.

This result indicated that the submodel provided by aLASSO was unreliable since the

performance of the RE was poor. The LS, S, and S+ were superior to the UE, except for
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Table 5.16 RMSERs of estimators with respect to UE from post-selection for diffuse
large-B-cell lymphoma data

Estimators
RE LS PT SP S S+ LASSO aLASSO

0.9473 1.0638 1.0000 1.0000 1.0834 1.0834 0.6165 0.6211

the PT and SP estimators, which were equivalent to the UE. The RMSER of the S+ esti-

mator was equal to that of the shrinkage estimator, and both estimators also performed

better than all other estimators, especially with the LASSO and aLASSO estimators.

Moreover, the aLASSO estimator outperformed the LASSO estimator, and the two pe-

nalized estimators were inferior to all post-selection suggested estimators.

5.7 Concluding Remarks

In this chapter, we have regarded the partial maximum likelihood, and the

suggested and penalized estimators in the Cox proportional hazards regression model

under the restriction of parameters in the context of low- and high-dimensional settings.

We established the asymptotic properties of the suggested estimators via asymptotic dis-

tributional quadratic bias and risk. We also evaluated the performance of the suggested

and penalized estimators in terms of the Monte Carlo simulations. Furthermore, the

proposed estimators’ performance was studied using real data examples.

The results from the variable selection step showed that the LASSO strategy

was able to screen a greater number of significant predictors than the aLASSO strategy.

When there were many predictors with very weak signals, LASSO caused an overfitting

problem, while aLASSO introduced an underfitting problem when very weak signals

became moderate. As a result, the partial maximum likelihood estimators may produce

overfitting when the model was LASSO-based and underfitting when the model was

aLASSO-based. They both performed poorly when their subsets were incorrect.

For the post-selection parameter estimation step, the use of the suggested es-

timators was suitable when the accuracy of the variable selection results was unknown

because each estimator has a particular region in which its performance is superior. Fur-

thermore, in a large portion of the parameter space, the positive-part shrinkage estimator

gave better estimates than other estimators.
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CONCLUSIONS AND FUTURE RESEARCHWORK

For parameter estimation in nonlinear and Cox PH regression models us-

ing preliminary test and shrinkage strategies, this summary is divided into two parts:

conclusions and future research work.

6.1 Conclusions

In this dissertation, the regression parameter estimation problem for nonlin-

ear regressionmodels (Cobb-Douglas, exponential, andmonomolecularmodels) and the

Cox proportional hazards regression model (special chapter) was regarded in the pres-

ence of overfitting and uncertain prior information (UPI). Estimation based on linear

shrinkage (LS), preliminary test (PT), shrinkage preliminary test (SP), and two shrink-

age strategies, i.e., shrinkage (S) and positive-part shrinkage (S+), were proposed which

efficiently combine the unrestricted and restricted estimators. We derived the asymp-

totic properties of the proposed estimators and mathematically compared them using

asymptotic distributional quadratic bias and risk under local alternatives. We usedMonte

Carlo simulations to examine the risk performance of the estimators and compare them

with the unrestricted estimator (UE) when subspace information misspecification ex-

isted, which was measured in terms of relative mean square error (RMSE) in low-

dimensional (𝑘 < 𝑛) and high-dimensional (𝑘 > 𝑛) settings. Two penalized estimators,

i.e., the least absolute shrinkage and selection operator (LASSO) and adaptive LASSO

(aLASSO), were also compared numerically in a low-dimensional regime and both es-

timators were used for dimensional reduction in a high-dimensional case.

For statisticalmodels in regression parameter estimation in low-dimensional

data, the full model will produce overfitting when the prior information is uncertain or

some of the variables in the full model have a strong influence on the response vari-

able and some have no influence. This can be directly addressed by using the restricted

model or submodel if it is a priori known that some regressors do not significantly con-

tribute to the prediction of the dependent variable or that the UPI is correct. However,

if the UPI is incorrect, the submodel may encounter underfitting. This indicates that the
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cause of the poor performance of the unrestricted and restricted model is the uncertainty

of the information.

For dimensional reduction in the high-dimensional data, the results con-

firmed that the LASSO and aLASSOmethods may not be diagnosing the optimal subset

of significant predictors in all situations. The LASSO strategy contained many predic-

tors with very weak signals that provided overfitting, and the model with the picked

predictors from LASSO was set as the overfitted model. However, the aLASSO strat-

egy eliminated many significant predictors when very weak signals became moderate

signals, resulting in underfitting. Since aLASSO selected a smaller number of predictors

than LASSO, the model with the chosen predictors from aLASSOwas determined as the

underfitted model. Consequently, inappropriate screening variables resulted in the clas-

sical estimators (unrestricted and restricted) based on these screening results becoming

unreliable and ineffective.

For parameter estimation and considering the behaviour of the suggested

estimators, these estimators were applied to estimate the regression coefficients to solve

the overfitting and underfitting problems caused by information uncertainty in both low-

and high-dimensional settings. We found that the RE dominated all other estimators

when the subspace information was true or nearly true. Then its risk rapidly increased

and became greater than the risk of all other estimators when the information misspec-

ification increased. The LS estimator was also impacted by incorrect UPI similarly to

but less than the RE, as the LS estimator was controlled by the degree of trust in the

null hypothesis. For the PT strategy, at the same level, the performance of the SP esti-

mator was better than the PT estimator when the subspace information was untrue. The

performance of the PT and SP estimators was superior to that of the UE and the two

shrinkage estimators only when the subspace information was true or nearly true. The

two shrinkage estimators had higher efficiency than the UE estimator, especially when

the number of inactive parameters was large, and the S+ estimator performed uniformly

better than other estimators in the largest parameter space. Moreover, the aLASSO es-

timator was superior to the LASSO estimator when the number of inactive parameters

increased. Both penalty estimators were comparable to the proposed estimators when

the number of inactive parameters was large.

To assert the benefit of the proposed estimators, these estimators were ap-
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plied to real datasets and their performance was compared. When the restricted model or

submodel was dependable, the RE, LS, PT, and SP estimators performed well. When the

submodel was unreliable, their performance was worse. The two shrinkage estimators

consistently outperformed the FM estimator and were regarded as robust irrespective of

the uncertainty of prior information. These results strongly asserted the theoretical and

simulation findings.

We can conclude that when there exists overfitting and UPI is untrue, the S+

estimator can be safely used for estimating regression parameters of models of interest

of low- and high-dimensional data. Still, its use is limited to the number of the inactive

parameters (𝑝2) whichmust be greater than or equal to three. The use of the SP estimator

is recommended for 𝑝2 < 3.

6.2 Future Research Work

The work represented in this dissertation can be extended in following areas

for future research.

6.2.1 In this work, we considered two penalty estimation strategies, i.e.

LASSO and adaptive LASSO. There are many other penalties that exist, including

smoothly clipped absolute deviation (SCAD), and elastic net (ENET), which are in-

teresting estimators for the future study of nonlinear models. These may be used as

variable selection methods in high-dimensional sparse data analysis.

6.2.2 We suggest extending the ridge estimation strategy for constructing

the preliminary test and shrinkage strategies in nonlinear models to the problem of pa-

rameter estimation when models are assumed to be sparse and multicollinear.

6.2.3We suggest extending high-dimensional data analysis in censored data

(time to event data) with parametric models (i.e., Weibull and lognormal, etc.) and

applying pretest and shrinkage strategies.
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