

PROTEOMICS PROFILING OF THAI PATIENTS WITH MULTIPLE MYELOMA

BY

CAPTAIN DOLLAPAK APIPONGRAT

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF THE DOCTOR OF PHILOSOPHY (BIOMEDICAL SCIENCES)

GRADUATE PROGRAM IN BIOMEDICAL SCIENCES FACULTY OF ALLIED HEALTH SCIENCES THAMMASAT UNIVERSITY ACADEMIC YEAR 2022

PROTEOMICS PROFILING OF THAI PATIENTS WITH MULTIPLE MYELOMA

BY

CAPTAIN DOLLAPAK APIPONGRAT

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR OF THE DOCTOR OF PHILOSOPHY (BIOMEDICAL SCIENCES)

GRADUATE PROGRAM IN BIOMEDICAL SCIENCES FACULTY OF ALLIED HEALTH SCIENCES THAMMASAT UNIVERSITY ACADEMIC YEAR 2022

THAMMASAT UNIVERSITY FACULTY OF ALLIED HEALTH SCIENCES

DISSERTATION

BY

CAPTAIN DOLLAPAK APIPONGRAT

ENTITLED

PROTEOMICS PROFILING OF THAI PATIENTS WITH MULTIPLE MYELOMA

was approved as partial fulfillment of the requirements for the degree of the Doctor of Philosophy (Biomedical Sciences)

on December 16, 2022

Chairman

(Assistant Professor Major General Chantrapa Sriswasdi, M.D.)

Member and Advisor

Member and Co-advisor

Member and Co-advisor

Member

Dean

Cylip Naly

(Professor Major General Oytip Nathalang, Ph.D.)

(Sittirak Roytrakul, Ph.D.)

Jarphon Hathamit

(Assistant Professor Kamphon Intharanut, Ph.D.)

awane

(Sawang Petvises, Ph.D.) grouge Suttam

(Associate Professor Plaiwan Suttanon, Ph.D.)

Dissertation Title	Proteomics profiling of Thai patients with
	multiple myeloma
Author	Captain Dollapak Apipongrat
Degree	Doctor of Philosophy (Ph.D.)
Major Field/Faculty/University	Biomedical Sciences
	Faculty of Allied Health Sciences
	Thammasat University
Dissertation Advisor	Professor Major General Oytip Nathalang (Ph.D.)
Dissertation Co-Advisor	Sittiruk Roytrakul (Ph.D.)
Academic Year	2022

ABSTRACT

Serum proteomic profiles could provide insight into disease pathogenesis and allow the discovery of reliable biomarkers for better diagnosis and prognosis for multiple myeloma (MM). This study aimed to characterize the serum proteomic profiles and identify potential serum prognostic biomarkers corresponding to MM disease activity and evaluate their impact on patient outcomes. Serum proteomic profiles of patients with MM and age-matched controls were performed using LC-MS/MS. In the verification and validation phases, the concentration of the candidate biomarkers was measured using an ELISA technique. In addition, the association of the proposed biomarkers with clinical outcomes was assessed. Among 465 serum samples obtained from 139 MM patients and 70 normal controls, 1,783 proteins were identified. Of these, 772, 581, 830, 1,425 and 1,301 proteins were identified in normal, patients with monoclonal gammopathy of unknown significance (MGUS), newly diagnosed MM (NDMM), MM with the response to treatment at least VGPR (RESP) and refractory/relapsed MM (RRMM) groups, respectively We identified 23 upregulated and 15 downregulated proteins differentially expressed in newly diagnosed and relapsed/refractory MM patients compared with MM patients who achieved at least a very good partial response to treatment (\geq VGPR). The top two candidate proteins, metastasis-associated protein-2 (MTA2) and argonaute-2 (AGO2), were selected for further verification and validation studies. Both MTA2 and AGO2 showed significantly higher levels in the disease-active states than in the remission states (p < 0.001). Regardless of the patient treatment profile, high MTA2 levels were associated with shorter progression-free survival (p = 0.044; HR = 2.48; 95% CI, 1.02 to 6.02). Conversely, high AGO2 levels were associated with IgG and kappa light-chains isotypes and an occurrence of bone involvement features (p < 0.05) and were associated with prolonged time to response (p = 0.045; HR = 3.00; 95% CI, 1.03 to 8.76). Moreover, the analytic results using a publicly available NCBI GEO dataset revealed that AGO2 overexpression was associated with shorter overall survival among patients with MM (p = 0.032, HR = 1.60, 95% CI, 1.04 to 2.46). In conclusion, this study demonstrated the proteomic approach for characterizing and identifying serum biomarkers among patients with MM. Interestingly, MTA2 and AGO2 proteins were first identified as potential biomarkers that reflect disease activity, provide prognostic values and could serve as non-invasive indicators for disease monitoring and outcome predicting among patients with MM.

Keywords: Multiple myeloma, Proteomics profilling, Biomarkers

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude and appreciation to my supervisor, Professor Major General Dr. Oytip Nathalang, for giving me the knowledge and opportunity to undertake this Ph.D. study and complete it satisfactorily. Thank you for your guidance, inspiration and patience, and for being my role model. The completion of this study could not have been possible without your support.

Secondly, I would like to thank my co-advisor, Dr. Sittiruk Roytrakul, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, the National Science and Technology Developmet Agency (NSTDA), Thailand, for providing insightful knowledge and supporting the facilities throughout this project. His professional advice and positive criticism allowed me to improve the scientific and academic values of my dissertation.

This Ph.D. study is supported by the Excellent Research Graduate Scholarship – EreG Scholarship Program. I am grateful to Thammasat University and NSTDA, Thailand, for this fully funded scholarship giving me the opportunity to study for this degree.

I am thankful to Lieutenant Colonel Kannadit Prayongrattana and all staff members of the Division of Hematology, Department of Medicine, Phramongkutklao Hospital, Thailand, for supporting the clinical samples and data. I also thank all staff members of the Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Thailand, for their encouragement and technical support. I wish to extend my special thanks to the chair of the dissertation examination committee, Assistant Professor Major General Chantrapa Sriswasdi, and the committee members for their helpful and professional comments and recommendations. Finally, I am deeply grateful to my parents and my wife for their love, understanding, prayers, encouragement and continuing support to complete this work.

Captain Dollapak Apipongrat

TABLE OF CONTENTS

	Page
ABSTRACT	(1)
ACKNOWLEDGEMENTS	(3)
LIST OF TABLES	(9)
LIST OF FIGURES	(11)
LIST OF ABBREVIATIONS	(13)
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 REVIEW OF LITERATURE	4
2.1 History of multiple myeloma	4
2.2 Epidemiology of MM	5
2.3 MM pathogenesis	8
2.3.1 B-cell development and myelomagenesis	8
2.3.2 Bone marrow microenvironment	9
2.3.3 Angiogenesis and tumor micrometastasis	11
2.3.4 Immune dysregulation in MM	12
2.4 Genetic events in MM	13
2.4.1 Primary genetic events in MM	13
2.4.1.1 Hyperdiploidy	13
2.4.1.2 Non-hyperdiploidy	13
(1) IGH-CCND translocation	13
(2) IGH-MMSET translocation	14
(3) IGH-MAF and IGH-MAFB translocations	14

(4)

2.4.2 Secondary genetic events in MM	15
2.4.2.1 Deletion of chromosome 13q (del13q)	16
2.4.2.2 Deletion of chromosome 17p (del17p)	16
2.4.2.3 Deletion of chromosome 1p (del1p)	16
2.4.2.4 Amplification of chromosome 1q (amp1q)	17
2.4.3 Genetic events involved in MM progression	17
2.4.3.1 Translocations involving MYC gene	17
2.4.3.2 Recurrent genes mutation	17
2.5 Diagnosis of MM	18
2.5.1 Disease development and progression	18
2.5.2 Clinical presentation and diagnosis	19
2.5.3 Staging and prognosis	24
2.5.4 Refractory and/or relapsed multiple myeloma (RRMM)	25
2.5.5 Laboratory testing in MM	25
2.5.5.1 Serum proteins electrophoresis (SPEP)	26
2.5.5.2 Immunofixation electrophoresis (IFE)	26
2.5.5.3 Serum free light chains (SFLC)	26
2.6 Treatment of MM	28
2.6.1 Treatment of newly diagnosed MM	28
2.6.2 Autologous stem cell transplantation (ASCT)	32
2.6.3 Response criteria of treatment in MM patients	32
2.7 Proteomics studies	38
2.7.1 Methods in proteomics	38
2.7.2 Proteomic analysis in MM research	40
2.7.2.1 Proteomic studies of MM pathogenesis and disease	42
progression	
2.7.2.2 The use of proteomic analysis to discover novel	43
diagnostic biomarkers	
2.7.2.3 Proteomics analysis to identify the potential	44
biomarkers for predicting the response and	
resistance to chemotherapy	

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Study population	46
3.1.1 Patients	46
3.1.1.1 Inclusion criteria	46
3.1.1.2 Exclusion criteria	47
3.1.2 Serum samples	47
3.1.3 Pooled serum samples	48
3.2 Materials	49
3.2.1 Proteomic analysis using nano-LC-MS/MS	49
3.2.2 ELISA	51
3.2.2.1 Human MTA2 ELISA commercial kit	51
3.2.2.2 Human AGO2 ELISA commercial kit	51
3.2.2.3 Other material required for ELISA	52
3.3 Experimental design	52
3.4 Proteomic analysis using nano-LC-MS/MS	54
3.4.1 Sample preparation	54
3.4.2 Protein digestion	54
3.4.3 LC/MS-MS	54
3.4.4 Bioinformatics and data analysis	55
3.5 MTA2 and AGO2 levels measurement using ELISA	56
3.6 Statistical analysis	56

CHAPTER 4 RESULTS

4.1 Serum proteomics characterization	57
4.1.1 Baseline characteristics of the study population	57
4.1.2 The overviews of serum proteomic profiles	59
4.1.3 The common serum proteins	61
4.1.3.1 Upregulated common proteins	64

46

57

4.1.3.2 Downregulated common proteins	66
4.1.4 The common serum proteins expressed in the disease	67
groups	
4.1.5 The signature proteins	71
4.2 Biomarker identification	81
4.2.1 Identification of candidate protein biomarkers	81
4.2.2 Functional analyses of the candidate proteins	85
4.2.3 Analysis of gene expression profiles	86
4.2.4 KEGG enrichment-based network analysis of MTA2 and	89
AGO2	
4.3 Biomarker verification and validation	90
4.3.1 Biomarkers verification	90
4.3.1.1 Serum MTA2 and AGO2 levels	90
4.3.1.2 Specific cut off for serum MTA2 and AGO2	92
4.3.2 Biomarkers validation	92
4.3.3 Association between serum MTA2 and AGO2 levels and	95
disease characteristics	
4.3.4 Impact of serum MTA2 and AGO2 levels on patient's	97
outcomes	
4.3.5 Association of MTA2 and AGO2 gene expressions and	100
patients with MM survival using the NCBI GEO data set	
CHAPTER 5 DISCUSSIONS AND CONCLUSIONS	101
5.1 Discussions	101
5.2 Conclusions	106
REFERENCES	107

APPENDICES

(7)

APPENDIX A: ETHICAL APPROVAL STATEMENTS	124
APPENDIX B: ACCEPTANCE LETTER FOR PUBLICATION	126

BIOGRAPHY

127

(8)

LIST OF TABLES

Tables	Page
2.1 Primary cytogenetic events in MM patients	15
2.2 International myeloma working group diagnostic criteria for	20
multiple myeloma and related plasma cell disorders	
2.3 The International Staging System (ISS) criteria for multiple	24
myeloma	
2.4 The Revised International Staging System criteria	25
2.5 Common front-line treatment regimens in multiple myeloma	29
2.6 The IMWG uniform response criteria by response subcategories for	33
multiple myeloma	
2.7 The updated IMWG response criteria 2016	37
2.8 Examples of proteomic studies in multiple myeloma research	41
3.1 Pooled serum sample preparation	48
3.2 Plastics used for LC–MS/MS	49
3.3 Chemicals and reagents used for LC-MS/MS	50
3.4 Equipment used for LC-MS/MS	50
3.5 Reagents and materials provided in the MTA2 ELISA commercial	51
kit	
3.6 Reagents and materials provided in the AGO2 ELISA commercial	51
kit	
3.7 Other materials required for ELISA	52
4.1 Baseline characteristics of the study population	58
4.2 List of 8 signature proteins identified in normal serum	71
4.3 List of 10 signature proteins identified in MGUS serum	72
4.4 List of 17 signature proteins identified in NDMM serum	73
4.5 List of 67 signature proteins identified in RESP serum	74
4.6 List of 70 signature proteins identified in RRMM serum	78
4.7 The significant upregulated candidate proteins identified in NDMM	83
and RRMM serum samples with a fold change >1.5	

(9)

LIST OF TABLES (Cont.)

Tables	Page
4.8 The significant downregulated candidate proteins identified in	84
NDMM and RRMM serum samples with a fold change <-1.5	
4.9 The gene expression profiles of the genes involving 38 candidate	88
proteins compared between MM patients and normal controls using	
data from GSE47552	
4.10 Median (IQR) MTA2 and AGO2 levels measured by ELISA	91
4.11 Patient demographics and baseline disease characteristics of 60	93
patients in validation cohorts	
4.12 Association between patient's demographics and disease	96
characteristics and the proteins levels	
4.13 Cox-type cause specific hazard models of the TTR and PFS	99

LIST OF FIGURES

Figures	Page
2.1 The first well-known multiple myeloma case, Sarah Newbury	4
2.2 Age-standardized incidence and mortality rates per 100,000 for MM	6
2.3 The percentage of new cases and deaths of MM patients classified	7
by age groups from 2012 to 2016 (modified from the data of SEER	
cancer statistics review: National Cancer Institute, USA)	
2.4 The interactions between myeloma cells, osteoclasts and stromal	10
cells within the BM microenvironment	
2.5 Genetic events occurred in multiple myeloma	18
2.6 The results of SPEP on agarose gel	27
2.7 The results of IFE on agarose gel	28
2.8 An approach for treatment in newly diagnosed multiple myeloma	31
2.9 An overview of the proteomics approaches	39
3.1 A schematic diagram demonstrating the time points of sampling	47
3.2 The overview workflows of this study	53
4.1 Differentially expressed proteins identified by LC-MS/MS and GO	60
classification	
4.2 The relative expression levels of 126 common proteins	62
4.3 The common serum proteins differentially expressed among the	63
study groups	
4.4 GO functional enrichment analysis of the 81 upregulated common	65
proteins in NDMM	
4.5 GO functional enrichment analysis of the 45 downregulated	66
common proteins in NDMM	
4.6 The relative expression levels of 80 common proteins identified in	67
disease groups	
4.7 The common serum proteins expressed in disease groups	69
4.8 GO functional enrichment analysis of the 80 common proteins in	70
the disease group	

LIST OF FIGURES (Cont.)

Figures	Page
4.9 The overview of candidate biomarker screening processes	82
4.10 GO functional and KEGG pathway enrichment analysis of the 38	85
candidate proteins	
4.11 The PPI network of 38 candidate proteins (search on Sep 7, 2022,	86
PPI enrichment <i>p</i> -value <0.001)	
4.12 The expression profiles of the genes involving 38 dysregulated	87
proteins among 41 patients with MM compared with 5 normal	
controls using the data from GSE47552	
4.13 KEGG pathway enrichment-based network analysis	90
4.14 Serum MTA2 and AGO2 levels measured by ELISA	91
4.15 The ROC analysis demonstrating the specific cut off for serum (A)	92
MTA2 and (B) AGO2	
4.16 Serum MTA2 and AGO2 levels measured by ELISA technique in	94
NDMM and RRMM cohorts	
4.17 Impact of serum MTA2 and AGO2 levels on patients' outcomes	98
4.18 Kaplan-Meier analysis of patient outcome data from the GSE2658	100
data set $(n = 350)$ demonstrated the OS of patients with MM	
expressing higher levels of MTA2 and AGO2 compared with those	
with lower expression levels based on the median expression of the	
cohort.	

LIST OF ABBREVIATIONS

Symbols/Abbreviations	Terms
$\beta_2 M$	β2-microglobulin
X^2	Chi-Square test
μΛ	Microliter (s)
μm	Micrometer (s)
2D-DIGE	Two-dimensional differential gel
	electrophoresis
2-DE	Two-dimensional gel electrophoresis
AGO2	Argonaute-2
AL	Amyloid light-chain
Alb	Albumin
AMBIC	Ammonium bicarbonate
ANG	Angiogenin
ANXA2	Annexin A2
ApoC1	Apolipoprotein C1
ApoD	Apolipoprotein D
ASCT	Autologous stem cell transplant
AUC	Area under the curve
BCR	B-cell receptor
b-FGF	Basic-fibroblast growth factor
BM	Bone marrow
BP	Biological process
BSA	Bovine serum albumin
CA	chromosome abnormalities
CBC	Completed blood counts
CC	Cellular component
CHSY1	Chondroitin synthase 1
CI	Confidence interval
CID	Collision-induced-dissociation

Symbols/Abbreviations	Terms
CLU	Clusterin
Cr	Creatinine
CR	Complete remission
CSR	Class-switch recombination
СТ	Computed tomography
CTL	Cytotoxic T lymphocyte
CXCL-12	CXC chemokine ligand-12
CXCR4	CXC-chemokine receptor type 4
DKK1	Dickkopf homolog-1
DTT	Dithiothreitol
ECM	Extracellular matrix
ELISA	Enzyme-linked immunosorbent assay
Ep-CAM	Epithelial transmembrane glycoprotein
ESI	Electrospray ionization
et al.	et alii
eV	Electron volt (s)
FDA	Food and Drug Administration
FDR	False discovery rate
FISH	Fluorescent in situ hybridization
GBP2	Interferon-induced guanylate-binding
	protein 2
GC	Germinal center
GO	Gene Ontology
Hb	Hemoglobin
HMM	Hyperdiploid multiple myeloma
HR	Hazard ratio
HSCs	Hematopoietic stem cells
HSP90	Heat shock protein 90

Symbols/Abbreviations	Terms
IAA	Iodoacetamide
ICAT	Isotope-coded affinity tag
IEC	Ion exchange chromatography
IFE	Immunofixation electrophoresis
Ig	Immunoglobulin
IGF-1	Insulin-like growth factor-1
IL	Interleukin
iMIDs	Immunomodulatory imide drugs
IMWG	International Myeloma Working Group
IQR	Interquartile range
IRE1a	Inositol-requiring enzyme-1 alpha
ISS	International Staging System
iTRAQ	Isobaric tag for relative and absolute
	quantitation
KEGG	Kyoto Encyclopedia of Genes and
	Genomes
LC	Liquid chromatography
LC-MS/MS	Liquid chromatography tandem-mass
	spectrometry
LDH	Lactate dehydrogenase
LFQ	Label-free quantitative
LGAL1	Galactin-1
m/z	Mass-to-charge ratio.
MALDI	Matrix-assisted laser desorption ionization
МАРК	Mitogen-activated protein kinases
MDE	Myeloma defining events
MF	Molecular function

Symbols/Abbreviations	Terms
MGUS	Monoclonal gammopathy of unknown
	significance
MIP-1a	Macrophage inflammatory protein-1a
miRNAs	microRNAs
mL	Milliliter (s)
MM	Multiple myeloma
mm	Millimeter (s)
mM	Millimolar (s)
MM-EV	Multiple myeloma-derived extracellular
	vesicles
MPP	Metalloproteinase
MRD	Minimal residual disease
MRI	Magnetic resonance imaging
MS	Mass spectrometry
MSCs	Mesenchymal stem cells
MTA2	Metastasis-associated protein-2
MVD	Microvessel density
NDMM	Newly diagnosed multiple myeloma
NF-κB	Nuclear factor-kappa B
NGF	Next-generation flow
NGS	Next-generation sequencing
NHMM	Non-hyperdiploid multiple myeloma
NK	Natural killer (cells)
NMR	Nuclear magnetic resonance
NuRD	Nucleosome remodeling and deacetylase
OPG	Osteoprotegerin
OS	Overall survival

Symbols/Abbreviations	Terms
PANTHER	Protein Analysis Through Evolutionary
	Relationships
PCL	Plasma cell leukemia
PD	Progressive disease
PD-1	Programmed cell death protein-1
PD-L1	Programmed cell death ligand-1
PET-CT	Positron emission tomography-computed
	tomography
PFS	Progression-free survival
PLLBs	Peptide ligand library beads
PPI	Protein-protein interaction
PR	Partial response
PRODH	Proline dehydrogenase
PSME	Proteasome activator complex
RANK	Receptor activator of nuclear factor-kappa
	B (NF-κB)
RB-1	Retinoblastoma-1
RESP	Multiple myeloma with the response to
	treatment at least very good partial
	response
RISC	RNA-induced silencing complex
R-ISS	Revised International Staging System
ROC	Receiver operating characteristic curve
RP-HPLC-ESI-MS/MS	Reverse-phase high-pressure liquid
	chromatography-electrospray ionization
	tandem mass spectrometry
RRMM	Relapsed/refractory multiple myeloma
SAA4	Serum amyloid A-4 protein

Symbols/Abbreviations	Terms
sCR	Stringent complete remission
SD	Stable disease
SD	Standard deviation
SDF-1	Stromal-derived factor-1
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide
	gel electrophoresis
SEC	Size exclusion chromatography
SFLC	Serum free-light chains
SHM	Somatic hypermutation
SILAC	Stable isotope labeling with amino acids in
	cell culture
siRNAs	Short interfering RNAs
SMM	Smoldering multiple myeloma
SPEP	Serum protein electrophoresis
TD	T-cells dependent
TGF-b	Tumor growth factor-b
Th-1	T helper-1 (cells)
TI	T-cells independent
TMC1	Transmembrane channel-like protein 1
TOF	Time-of-flight
TP53	Tumor suppressor protien 53
TTR	Time to response
TXN	Thioredoxin
TXNL1	Thioredoxin-like protein 1
UPEP	Urine protein electrophoresis
UPR	Unfolded protein response
UPS	Ubiquitin-proteasome system

Terms

Symbols/Abbreviations

VCAM1	Vascular-cell adhesion molecule 1
VEGF	Vascular endothelial growth factor
VGPR	Very good partial response
VLA-4	Integrin alpha 4
WGS	Whole-genome sequencing
WHO	World Health Organization
XBP1	X box-binding protein 1
XPO1	Exportin 1

CHAPTER 1 INTRODUCTION

Multiple myeloma (MM) is a malignancy of the antibody-secreting plasma cells characterized by hyperproliferation of the malignant plasma cells (myeloma cells) in the bone marrow (BM). These myeloma cells can overproduce an abnormal monoclonal immunoglobulin (Ig), called paraprotein or M-protein, and secrete it into the plasma.¹ The elevation of M-protein is a cause of several pathophysiological abnormalities, including hyperviscosity, hypercalcemia, thrombocytopenia, anemia, and some neurological disorders. This M-protein is also a cause of specific end-organ damage, especially renal impairment and bone lytic lesions. Although, in recent years, the advanced therapeutic options to treat MM have markedly been improved, resulting in increased length of the patient's survival.² However, MM has still considered an incurable disease, and the etiology of MM is still unknown.

In the United States, MM is the second most common hematological malignancy, about 10% and about 1.8% of all cancer cases.³ The incidence rates of MM are around 6.0 per 100,000 per year, and strongly related to age and gender.⁴ The median age at diagnosis of MM is 69 years old, and a median survival of 5 to 7 years for newly diagnosed patients.² The disease is slightly more common in men than women (58% *vs.* 42%),⁵ and the age-adjusted incidence rates are 6.9 and 4.5 per 100,000 per year in men and women, respectively.^{4, 5} Geographically, the disease frequency is high in Australia/New Zealand, Europe, and North America, whereas its incidence and mortality seem to be low in Asia.^{6, 7 8}

MM is one form of plasma cell dyscrasia. The disease progression of MM starts from the asymptomatic pre-malignant stage of monoclonal gammopathy, called monoclonal gammopathy of unknown significance (MGUS). According to the International Myeloma Working Group (IMWG) diagnostic criteria for MM and related plasma cell disorders,⁹ MGUS can develop into the advanced asymptomatic stage, smoldering MM (SMM), that are both caused by a proliferation of monoclonal plasma cells leading to a detectable serum monoclonal protein and/or excess of plasma cells in the BM without clinical symptoms.^{9, 10} The disease can progress to symptomatic MM with the rate of progression around 0.5-1.0% per year for MGUS and 10% per year for SMM.^{9, 11, 12} Despite advanced treatment modality, MM can progress to the most aggressive form, plasma cell leukemia (PCL), with a poor prognosis and high mortality rate.^{13, 14} Most MM patients eventually relapse and/or refractory to drug treatment.¹⁵

The most common clinical symptoms in MM are fatigue and bone pain, which are found in approximately 32% to 58% of the patients.¹⁶ Other common clinical findings, including pathological bone fracture, weight loss, and paresthesia, can be found in 34%, 24%, and 5% of MM patients, respectively.^{4, 16} The important clinical features used to diagnose the disease are myeloma-related organ or tissue impairments, representing the end-organ damage.^{4, 9, 16, 17}

The standard laboratory testing for MM screening includes total serum protein, serum and urine protein electrophoresis (SPEP and UPEP), immunofixation electrophoresis (IFE) and detection of serum free-light chains (SFLC).¹⁸ SPEP is mainly used to detect abnormal M-protein, a tumor marker specific for monoclonal gammopathies reflecting the clonal proliferation of Ig. Approximately 97% of symptomatic MM patients have increased M-protein levels on SPEP.⁴ The presence of serum M-protein is confirmed and characterized by an IFE, where the M-protein can be classified into IgG, IgA, IgM, IgD and IgE with their light chains: kappa (κ) or lambda (λ) isotypes. The elevation of SFLC and abnormal SFLC ratio are commonly observed and used as prognostic implications.^{11, 19} Moreover, the BM aspiration and biopsy are needed to confirm the presence of myeloma cells and for further cytogenetic and chromosome study.¹⁸ A diagnosis usually relies on the presence of at least 10% of nucleated cells being plasma cells in the BM.9, 18 Computed tomography (CT) and/or magnetic resonance imaging (MRI) are recommended to assess bone and extramedullary disease.²⁰ The additional parameters, such as complete blood counts (CBC), serum creatinine (Cr), serum calcium, lactate dehydrogenase (LDH), serum albumin (Alb) and β_2 -microglobulin (β_2 M) level, are used to evaluate the disease stage and progression.^{4, 9, 18}

Cytogenetic abnormalities were detected by fluorescent *in situ* hybridization (FISH) in newly diagnosed MM patients to assess the risk stratification.²¹ The chromosome translocations involving the Ig loci and hyperdiploidy, such as t(11;14), t(4;14), t(14;16), t(6;14), t(14;20) and trisomy on chromosome 1, 13, and 21, are

commonly genetic aberrations found in MM and associated with clinical characteristics, prognosis and therapy responses.²²⁻²⁴ The previous sequencing study has defined the mutation landscape of MM.^{25, 26} Approximately 20% of the cases are *KRAS* and *NRAS* gene mutations, followed by *TP53*, *DIS3*, *FAM46C*, and *BRAF*, respectively. The association of these mutations with patient outcomes was demonstrated.²⁷⁻²⁹ However, no single pathological, laboratory, or molecular testing can be used to distinguish between the premalignant and malignant stages, as well as to predict the progression of the disease. As a result, the diagnosis of MM has highly depended on overt clinical manifestations of serious end-organ damage.³⁰ Therefore, biomarkers from different sources for better diagnosis and prognosis are needed. Nevertheless, identifying these biomarkers remains a major challenge

Recently, the analysis of the global expression of proteins or proteomics has been widely employed for MM research studies. The proteomic analysis was used to identify known and novel expressed proteins among different tumor samples. The advantages of the proteomic analysis included the information of advanced pathogenesis, diagnosis, prognosis, response to therapy and provided novel biomarker discoveries.³¹⁻³⁷ Potential biomarkers associated with the patients' outcomes, for example, Annexin A2 (ANXA2) and galactin-1 (LGAL1) were identified from the BM extracellular matrix of newly diagnosed MM and associated with patients' overall survival (OS).³⁶ Moreover, a related study demonstrated that an increased level of integrin alpha-11 subunit and isoform-1 of the multimerin-1 in patient's serum samples are potential biomarkers for diagnosis.³² Regarding the disease progression, the proteomic profiling may be changed in each stage. Since data of proteomic profiles associated with MM Thai patients remain unknown, further studies are suggested.

Therefore, in this study, we performed serum proteomic analysis to characterize the proteomic profiles in various disease states and to identify potential prognostic biomarkers corresponding to MM disease activity. In addition, the association between the proposed biomarkers and clinical outcomes among patients with MM were investigated.

CHAPTER 2 REVIEW OF LITERATURE

2.1 History of multiple myeloma

MM has been recognized since ancient times;³⁸⁻⁴⁰ the first well-known case was reported in 1844 by Samuel Solly.⁴¹ The 39-years-old woman, Sarah Newbury, presented with fatigue and bone pain from multiple fractures (**Figure 2.1A**). She died four years after the onset of symptoms, and the autopsy results revealed that almost of her BM were replaced with a red substance (**Figure 2.1B**). The disease was an inflammatory process and began with a "morbid action" of the blood vessels in which the "earthy matter of bone is absorbed and thrown out by the kidneys in the urine".⁴¹

Figure 2.1 The first well-known multiple myeloma case, Sarah Newbury.⁴¹ (A) The patient with fractured femurs and right humerus. (B) Destruction of femurs by myeloma tumor.

In 1845, Henry Bence Jones performed biochemical testing using the patients' urine samples, and a substance precipitated by the addition of nitric acid was observed. The precipitated substance was soluble in boiling water but re-precipitated after the urine was cooled. Subsequently, the proteins were recognized as "Bence Jones proteins".⁴² The term multiple myeloma was first introduced by von Rustizky in 1873.⁴³ Soft and reddish color consistency found in several sites of the BM obtained from eight patients at the autopsy and then called "multiple myeloma".⁴³ The term "Kahler's disease" was also used to describe myeloma resulting from a case report of a physician named Otto Kahler in 1889.^{44, 45} The patient had progressive bone pain, proteinuria with Bence Jones protein, and the presence of large, round cells at autopsy similar to the first reported in 1844.^{44, 45} In addition, the presence of pathologic fractures, Bence Jones proteinuria, anemia, and chronic renal complications were observed by the literature reviewing among 412 MM cases from 1848 to 1928.⁴⁶ In 1974, four cases of possible MM in American Indian skeletons from AD 200±1300 were reported. Discrete lytic lesions with sharply demarcated borders were described with no evidence of sclerosis or formation of new bone. This finding suggested that MM had probably been presented for more than centuries.⁴⁷

In 1939, the electrophoresis technique was first applied to determine the protein patterns in serum and urine.⁴⁸ The tall narrow-based "church spire" peak or "M-spike" was observed only in MM patients but not in normal individuals.⁴⁸ Subsequently, the light chains of the Ig molecule in M-spike found in serum were identical to the Bence Jones protein which were detected in the urine.⁴⁹ A narrow band of hyper-gammaglobulinemia on electrophoresis was also observed in patients with no evidence of malignancy. This finding is called "essential hyper-gammaglobulinemia" or a "benign monoclonal protein", presently the preferred term is MGUS. These patients have the potential to develop MM, amyloidosis, macroglobulinemia and other related diseases.⁵⁰ Additionally, the IFE technique was developed to determine the Ig subclasses and small monoclonal light chains not recognized by electrophoresis.⁵¹

2.2 Epidemiology of MM

Among hematological malignancy cases, 10 to 15% were MM cases.³ Approximately 86,000 cases occur annually worldwide. Of these, 47,000 (54.7%) and 39,000 (45.3%) cases were males and females, with a male-to-female (M: F) ratio of 1.2: 1. Importantly, about 63,000 cases died from the disease each year.^{3, 6, 8} The

Figure 2.2 Age-standardized incidence and mortality rates per 100,000 for MM⁶

The incidence of new cases and mortality rates are increased by the patient's age. Based on data from 2012 to 2016 in the United States, the disease incidence is high in the age range of 65 to 74 years (30.2%), with a median age of diagnosis of 69 years (**Figure 2.3**). The highest percentage of deaths is in patients aged 75 to 84 (32.0%), with a median age of 75 years (**Figure 2.3**). Even though the patient survival rate trend to be low in the past ten years because of inappropriate therapies, currently, the median

survival rate is up 5 to 7 years, and the 5-year survival rate is 52.5% for newly diagnosed patients.⁵²

Figure 2.3 The percentage of new cases (A) and deaths (B) of MM patients classified by age groups from 2012 to 2016 (modified from the data of SEER cancer statistics review: National Cancer Institute, USA)⁵²

In Thailand, the incidence rate of MM cases is around 0.4 to 0.9 per 100,000,⁸ and the 5-year prevalence was 3.94%.⁵³ Moreover, the prevalence of MGUS was 2.35% in 2012.⁵⁴ In 2018, 1,251 newly diagnosed MM cases in Thailand were reported by The International Agency for Research on Cancer, World Health Organization (WHO).⁵³

2.3 The pathogenesis of MM

MM is a B-cell malignancy characterized by over-proliferation and differentiation of monoclonal malignant plasma cells within the BM. The malignant plasma cells or myeloma cells are a subset of post-germinal center (post-GC) B-cells known as long-lived plasma cells, terminally differentiated and non-proliferating cells.⁵⁵⁻⁵⁷ In general, plasma cells play a major role in the adaptive immune system, specifically in antibody production against specific pathogens. These cells can survive for months to years in the BM, representative for immunologic memory. Although the unknown etiology of MM, the myeloma cells produce abnormal Ig (IgG, IgM, IgA and rarely IgE or IgD), abnormal free-light chain proteins (κ or λ) and/or cytokines that stimulate osteoclasts, suppress osteoblasts and promote new blood vessel formation.⁴, ⁵⁷ The increase of those proteins is crucial in disease pathogenesis. An increase M and light chain proteins induce hyperviscosity and end-organ damage, especially in the kidney. Cytokines released from myeloma cells induce the invasion of osteoclasts in BM resulting in bone pain, osteoporosis, and hypercalcemia. Moreover, this invasion also leads to anemia by the hematopoietic interruption and immunologic alterations contributing to recurrent infections.⁵⁷

2.3.1 B-cell development and myelomagenesis

B-cell is derived from hematopoietic stem cells (HSCs) that primarily develop in the BM. The HSCs can differentiate into multipotent and common lymphoid progenitors. The common lymphoid progenitors then differentiate through the stages pre-B, pro-B, immature B, and become mature B-cells.^{56, 58} This process required the transcription factors, including E2A, PU.1, and PAX5, as well as cytokine signaling to stimulate the B cell maturation.⁵⁸⁻⁶² In addition, the two important enzymes, RAG1 and RAG2, are required for B-cell receptor (BCR) development.⁶⁰ These two enzymes are used to recombine the variable (V), diversity (D) and joining (J) segments of the heavy and light chains of immunoglobulin (*IGH* and *IGL*) genes leading to the genetic rearrangement of the BCR.⁶⁰

The mature B cell circulate in the blood and are home to the follicular zone of lymph nodes. Activation of B-cell occurs after the exposure of pathogens and is divided into two pathways depending on antigen types; T-cell independent (TI) and T-cell dependent (TD) antigens.^{56-58, 60} In the TI activation pathway, naïve B-cells can recognize and activate directly without cytokine signals from T-cells. The B-cells are activated and undergone proliferation and differentiation to IgM-secreting short-lived plasma cells. On the contrary, in the TD activation pathway, B-cells require many cytokines and other complexe molecular signalings from T-cells. The activation by TD antigens results in a clonal selection of B-cells, somatic hypermutation (SHM) of the *IGH* and *IGL* genes and class-switch recombination (CSR). This allows B-cells to transform to be long-lived plasma cells that can produce the antigen-specific Ig with high-affinity and long-lasting immunity.⁶⁰ This process occurs in the germinal center (GC) of the lymphoid organs and also called GC reactions.⁶⁰ However, this GC reaction is prone to genomic errors contributing to oncogenesis. Several reports suggested that almost all myeloma cells are originated by mutations associated with GC reaction stimulated by TD antigens.^{60, 63} Indeed, most genetic abnormalities in MM involve genetic mechanisms, such as V-(D)-J arrangement of the *IGH* and *IGL* genes during the SHM and CSR.⁶⁰

2.3.2 Bone marrow microenvironment

The factors involved in the initiation of myeloma include genetic events and microenvironmental factors. The interaction between myeloma cells and the BM microenvironment is crucial for myeloma development, progression and treatment.⁶⁴⁻⁶⁶ The microenvironment or niche comprises HSCs, osteoclasts and non-hematopoietic cells, including mesenchymal stem cells (MSCs), osteoblasts, fibroblasts, stromal cells and extracellular matrix (ECM).⁶⁴⁻⁶⁷ These cellular compartments provide several factors, including cytokines, chemokines, growth factors and adhesion molecules, that promote angiogenesis, migration and proliferation of myeloma cells contributing to bone damage.^{57, 65, 66} In addition, the ECM is related to myelomagenesis by providing structural support and facilitate cell adhesion and signaling to myeloma cells.⁶⁷

The interactions between CXC-chemokine receptor type 4 (CXCR4) on the myeloma cells and stromal-derived factor-1 (SDF-1), or CXC chemokine ligand 12 (CXCL-12), expressed on stromal cells in the BM niches result in myeloma cells' migration from the secondary lymphoid organs to the BM by activation of intracellular downstream signaling molecules, Rho and Rac.^{68, 69} Subsequently, adherence of myeloma cell to BM is mediated by cell-adhesion molecules; vascular-cell adhesion molecule 1 (VCAM1) and integrin alpha 4 (VLA-4), CD40 and CD40 ligand (CD40L), and MUC-1 and ICAM-1, respectively (**Figure 2.4**).⁷¹ Those interactions increase the production of growth factors, interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) from stromal cells and osteoclasts, which stimulate angiogenesis.^{70,71} In addition, the adhesion of myeloma cells to the ECM proteins, such as collagen, fibronectin, laminin and vitronectin, can also activate the up-regulation of cell-cycle regulatory proteins and anti-apoptotic proteins.⁷²

Figure 2.4 The interactions between myeloma cells, osteoclasts and stromal cells within the BM microenvironment⁷¹

The colonization of myeloma cells contributes to change in a microenvironment, and to create a unique niche in the BM, called BM remodeling, resulting in increased osteoclast activity and suppressed osteoblast-driven bone formation.^{71, 73} The increased osteoclast activity is due to an imbalance ratio of the receptor activator of NF- κ B (RANK) and osteoprotegerin (OPG), resulting from

increased production of RANK ligand (RANK-L) and decreased production of OPG (**Figure 2.4**). OPG is a potent inhibitor of osteoclast differentiation and is downregulated in myeloma-derived stromal cells. Moreover, macrophage inflammatory protein-1 α (MIP-1 α) is an inducer of osteoclasts in a RANKL-independent manner.⁶⁶ Osteoblast activity is also suppressed by the production of dickkopf homolog 1 (DKK1), a Wnt signaling pathway antagonist from myeloma cells. In addition, myeloma cells can inhibit a transcription factor, runt-related transcription factor 2, in osteoblasts leading to suppressed osteoblast activity are causes of pathologic fractures, bone pain and severe osteoporosis observed in MM patients.^{64, 71-74}

Apart from cell-to-cell interaction, the interaction between myeloma cells and ECM is a dynamic process during the disease course. Changes in ECM are mediated by degrading proteins, such as metalloproteinase-1 (MMP-1), MMP-2 and MMP-9, correlating with disease progression.^{64, 73, 76} MMP-9 is overproduced in myeloma cells resulting in induction and activation of MMP-1 and MMP-2. The increased MMP-1 level promotes collagen degradation, whereas the increased MMP-2 directly modulates myeloma cell invasion and spreading.^{74, 75} Moreover, changes in ECM components of the BM samples from MGUS, MM and healthy donors were demonstrated in related studies. Losing of fibronectins, laminin and several kinds of collagens confirmed in both transcriptomic and proteomic levels were also observed in MGUS and MM patients.^{36, 73, 76}

2.3.3 Angiogenesis and tumor micrometastasis

Angiogenesis is a prominent feature associated with disease progression and severity in several malignancies, including MM. In the plasma cell dyscrasias, increasing angiogenesis indicated by microvessel density (MVD) measuring within myeloma microenvironment are correlated with disease progression, severity and prognosis.⁷³ Increasing angiogenesis is found in the patients during disease progression from MGUS to symptomatic MM, suggesting its role in MM progression.⁷³ This process is triggered by angiogenesis-associated factors produced by stromal and myeloma cells, such as VEGF, basic-fibroblast growth factor (b-FGF), tumor growth factor- β (TGF- β) and IL-8. Those factors can stimulate endothelial cells to form new vessels.^{64, 73, 75} In most MM patients, not only the myeloma cells remain localized in the BM but they can disseminate and engraft multiple areas of the axial skeleton.⁶⁸ The disease may originates from a single local myeloma clone, called a solitary plasmacytoma.⁷⁷ Due to the continuous trafficking and increasing angiogenesis processes, the disease can progress from a solitary plasmacytoma to asymptomatic MGUS and subsequently to overt MM.⁷⁷ In cases of extramedullary MM, myeloma cells do not only home to the BM niches but also other organs, including subcutaneous sites, liver, gut, lungs and rarely the central nervous system.⁶⁸ Moreover, in the advanced stage, the myeloma cells are overproduced without the acquisition of dependence on the microenvironment resulting in the increased number of circulating myeloma cells and development of end-stage plasma cell leukemia.⁶⁸

2.3.4 Immune dysregulation in MM

The progressive immune dysregulation is characterized by decreased antigen-presenting and effector cell function, that allows the myeloma cells to escape from immune surveillance by expressing inhibitory molecules, including programmed cell death ligand-1 (PD- L1) or CD274.^{64, 78, 79} In general, the PD-L1 is expressed on antigen-presenting cells, such as macrophages and dendritic cells, as well as on non-hematopoietic cells, such as pancreatic islet cells and endothelial cells. ⁸⁰ This molecule plays a role in protecting the tissue from immune-mediated injury.⁸⁰ The PD-1 or CD279, a receptor of the PD-L1, is expressed on T cells, B cells, monocytes and natural killer (NK) cells. The binding of PD-L1 to the PD-1 receptor results in decreased secretion of cytokines from T helper-1 (Th1), which induces T-cell apoptosis and inhibits T-cell proliferation and tumor cell killing by cytotoxic T lymphocyte (CTL).⁷⁸⁻⁸¹ In MM patients, PD-L1 is highly expressed on myeloma cells but not found in plasma cells isolated from MGUS patients and healthy individuals.⁸²⁻⁸⁴ In addition, a significantly increased PD-L1 expression was described in relapsed/refractory MM (RRMM) patients and correlated with tumor burden and poor prognosis.⁸⁵

2.4 Genetic events in MM

2.4.1 Primary genetic events in MM

Greater than 90% of MM patients harbor chromosome aberrations, including deletion, aneuploidy (mostly hyperdiploidy) and translocation.^{55, 58} Based on chromosome abnormality, MM is divided into two groups, hyperdiploid MM (HMM) and non-hyperdiploid MM (NHMM). The HMM karyotypes are characterized by trisomy on odd-numbered chromosomes, including 3, 5, 7, 9, 11, 15, 19 and 21, which found in 50% to 60% of all cases.^{55, 58} While the NHMM is involves translocation between IGH loci on chromosome 14 (14q32) and one of several partner oncogenes, including cyclins D (CCND), multiple myeloma SET domain-containing protein (MMSET) and v-avian musculoaponeurotic fibrosarcoma oncogene homologs (MAF or MAFB) genes.^{86, 87} These chromosomal abnormalities are considered primary cytogenetic events, commonly found in plasma cell dyscrasia, especially in MGUS. Several studies demonstrated that cytogenetic abnormalities are associated with the prognosis and outcome of patients with MM.⁸⁶⁻⁹¹ Primary cytogenetic events are found independently with non-overlapping patterns, however, 15% of MM patients have both trisomies and IGH translocations (Table 2.1).⁹¹ During disease progression and development, additional events caused by SHM, CSR, genetic mutations and chromosomal copy-number changes can occur s simultaneously with primary cytogenetic events.⁹¹

2.4.1.1 Hyperdiploidy

Approximately 50% of the MM cases carry hyperdiploid (48-75 chromosomes). Of these, multiple trisomies involving eight odd-numbered chromosomes, including 3, 5, 7, 9, 11, 15, 19 and 21, are the most common. Although the mechanisms remain unclear, the hyperploidy is hypothesized to occur during rapid B-cell proliferation in the GC resulting in chromosome segregation errors. Based on retrospective analyses, hyperdiploidy is associated with a better prognosis.⁸⁸⁻⁹⁰

2.4.1.2 Non-hyperdiploidy

(1) IGH-CCND translocation

IGH-CCND is the most common type of *IGH* translocation accounting for 50-60% of MM cases. This translocation involves t(11;14), t(12;14) and

t(14:16) translocation that juxtaposes the *IGH* enhancer(s) with *CCND1*, *CCND2* and *CCND3*, resulting in cyclin D dysregulation.^{58, 86, 92} In general, the function of cyclin D involves the activation of downstream signaling molecules, CDK4 and CDK6, and the inactivation of the retinoblastoma (RB1) protein, which allows for cell cycle progression. Overexpression of *CCND* genes caused by *IGH* translocation induces susceptibility of myeloma cells to proliferative stimuli, such as IL-6 and insulin-like growth factor-1 (IGF-1), resulting in selective clonal expansion.^{58, 92} These translocations occur at the switch region or chromosome breakpoints via the errors in V(D)J recombination during the B cell development.⁹³

(2) IGH-MMSET translocation

IGH-MMSET or t(4;14) translocation is the second most common translocation occurring in up to 15% of MM cases.^{88, 93} MMSET is a histone methyltransferase, which plays an important role in epigenetic regulation. The *MMSET* overexpression is associated with chromatin and gene dysregulations,⁹⁴ and strongly associated with increased expression and activating mutations of the fibroblast growth factor receptor 3 (*FGFR3*) gene contributing to MM pathogenesis.^{95, 96}

(3) IGH-MAF and IGH-MAFB translocations

IGH-MAF and *IGH-MAFB* resulting from t(14;16) and t(14;20) translocations are found in 1-5% of MM cases. These translocations dysregulate the expression of a MAF transcription factor leading to increased expression of several genes, including *CCND2* and encoding genes of adhesion molecules, contributing to the ability of tumor cells to interact with the BM microenvironment.^{58,87}
Chromosome	Gene/chromosome defected	Prevalence
abnormalities		(%)
Hyperdiploidies	Recurrent trisomies involving odd- numbered chromosome	40-60
IGH translocation		
t(11;14)	CCND1/IGH	20
t(4;14)	MMSET, FGFR3/IGH	15
t(14;16)	MAF/IGH	3
t(14;20)	MAFB/IGH	1
IGH translocations with	<i>CCND3/IGH</i> , t(6p21;14) or	4-5
uncommon chromosome	IRF4/IGH, t(6p25;14)	
Trisomies plus any IGH	Presence of trisomies and any one of	15
translocation	the recurrent IGH translocations in	
	the same patient	

Table 2.1 Primary cytogenetic events in MM patients^{23, 30, 58, 87, 89-91, 95, 96}

CCND, cyclin D encoded gene; *FGFR3*, fibroblast growth factor receptor 3 encoded gene; *IGH*, immunoglobulin heavy chains encoded gene; *MAF*, v-avian musculoaponeurotic fibrosarcoma oncogene; *MAFB*, v-avian musculoaponeurotic fibrosarcoma oncogene homologue B; *MMSET*, multiple myeloma SET domain-containing protein encoded gene

2.4.2 Secondary genetic events in MM

Secondary cytogenetic abnormalities can occur during disease progression after normal plasma cell transitions to a clonal premalignant cell in the earlier stage of primary cytogenetic abnormalities (**Figure 2.5**).⁹¹ Monosomy of chromosome 13 (monosomy 13) or deletion of chromosome 13q (del13q) is the most frequent secondary cytogenetic abnormality found in MM patients, followed by deletions of chromosome 17p (del17p), chromosome 1p (del1p) and amplification of chromosome 1q (amp1q), respectively.^{87, 90, 91, 97}

2.4.2.1 Deletion of chromosome 13q (del13q)

Deletion of chromosome 13q (del13q) or monosomy 13 is detected in approximately 50% of MM patients and commonly found in MGUS, suggesting that del13q is a genetic event occurring in the early stage of clonal expansion.^{97, 98} This abnormality may contribute to MM pathogenesis because several loci located on chromosome 13q are involved in the cell cycle and proliferation. Related studies revealed that del13q is a marker of poor prognosis in MM patients, especially in MM patients harboring del13q along with t(4;14).⁹⁷⁻⁹⁹

2.4.2.2 Deletion of chromosome 17p (del17p)

Deletion of chromosome 17p (del17p) is detected in about 10% of newly diagnosed MM, and high frequency is observed in the later stage of the disease.¹⁰⁰ Deletion of chromosome 17 is the cause of loss of several genes, especially the tumor suppressor *TP53* gene. The TP53 protein plays an important role in transcriptional regulators influencing cell-cycle arrest, DNA repair, apoptosis and response to DNA damage. Hence, the loss of this gene is associated with disease progression to an aggressive form and poor prognosis in MM patients.¹⁰⁰⁻¹⁰²

2.4.2.3 Deletion of chromosome 1p (del1p)

Approximately 30% of MM patients harbor deletion of chromosome 1p (del1p). This del1p is a marker associated with poor prognosis in MM patients.¹⁰³ The two common regions, 1p12 and 1p32.3, deletions involve MM pathogenesis. The 1p12 region contains a candidate tumor suppressor gene, *FAM46C*, a novel eukaryotic non-canonical poly (A) polymerase involving the regulation of gene expression, cell differentiation and development of several malignancies.¹⁰³⁻¹⁰⁵ The *FAM46C* mutation is the cause of loss of gene function and is associated with disease progression in MM patients.^{104, 105} The other 1p32.3 region contains two genes, *CDKN2C* and *FAF1*. The deletion of the 1p32.3 region can be found in either hemizygous or homozygous. *CDKN2C* encodes cyclin-dependent kinase-6 inhibitor involved in negative regulation of the cell cycle, whereas *FAF1* encodes a protein, inducing cell apoptosis through the Fas cell signaling pathway.^{87, 103, 105}

2.4.2.4 Amplification of chromosome 1q (amp1q)

Amplification of the long arm of chromosome 1 (amp1q), with 4 or more copies, is detected in up to 45% of MM patients and is associated with a poor prognosis.¹⁰⁶ Of note, the number of 1q copies is positively correlated with clinical outcome. The candidate oncogenes, including *CKS1B*, *ANP32E*, *BCL9* and *PDZK1*, are identified in this region.^{103, 106} Overexpression of those genes due to amp1q results in increased histone methylation and epigenetic upregulation, which are key to MM pathogenesis.^{103, 106} Moreover, a BCL2- anti-apoptotic protein family encoded genes, such as the *MCL1* gene, promoting cell differentiation and survival of plasma cells and myeloma cells, is also identified in this region. High expression of the *MCL-1* gene causes tumorigenesis and resistance to several anticancer therapies.¹⁰⁷

2.4.3 Genetic events involved in MM progression

2.4.3.1 Translocations involving MYC gene

Although the translocations affecting to MYC gene are a late secondary genetic event found in only 3-4% of patients with MGUS or SMM; however, their frequencies increased up to 15-20% in newly diagnosed symptomatic MM patients. In general, the proto-oncogene *MYC* is a key transcription factor involving in cell growth, proliferation, apoptosis, differentiation and transformation. Chromosomal abnormality involving the *MYC* locus is involved in disease progression to an aggressive form and poor prognosis.¹⁰⁸

2.4.3.2 Recurrent gene mutation

Several genes are recurrently mutated and considered to be driver events in MM disease progression (**Figure 2.5**). Of these, KRAS, NRAS and BRAF mutations affecting the mitogen-activated protein kinases (MAPK) pathway are observed in up to 20-50% of MM patients and associated with disease progression.^{87, 91, 109, 110} Mutations of *KRAS* and *NRAS* are less found in MGUS (>10%), but the frequencies are higher in symptomatic MM (~50%) and plasma cell leukemia (64-70%).^{87, 110} The mutations of the gene involved in DNA-repair processes, such as *TP53*, *ATM* and *ATR*, are found in up to 15%, whereas other genes, including *DIS3*, *FAM46C*, *PRDM1*, *IRF4*, *ERG1* and *SP140*, are found in less than 10% of MM cases.^{87, 91} In addition, gene mutations encoding components of the NF-κB pathway, such as *TRAF3*, *CYLD* and *LTB*, are observed in 3.0-5.5% of MM cases with disease progression.¹¹¹⁻¹¹³

These gene mutations can promote proliferation, survival, immune evasion and drugresistance of myeloma cells, which subsequently activate secretion of several cytokines and growth factors, enhancing cell growth, angiogenesis and inflammation.^{111,112}

Figure 2.5 Genetic events occurred in multiple myeloma⁸⁷

2.5 Diagnosis of MM

2.5.1 Disease development and progression

Approximately 80% of MM cases originate from an asymptomatic premalignant stage called MGUS, which is found in 3-4% among populations aged over 50 years.⁵⁻⁶ MGUS can progress to symptomatic MM or related malignancy at a rate of 1% per year.^{5, 9-12, 17} Some MGUS patients can evolve into an advanced asymptomatic stage called SMM. The risk of progression from SMM to symptomatic MM is about 10% per year in the first five years after diagnosis.⁹⁻¹² This rate depends on underlying cytogenetic types, especially in patients with t(4;14) and del17p, who are at higher risk

of disease progression from MGUS or SMM to MM.^{88, 93, 100-102} Almost MM patients can develop into RRMM after treatment and only few patients can evolve to an aggressive stage, PCL.⁹⁻¹²

2.5.2 Clinical presentation and diagnosis

The most common clinical presenting symptoms in MM patients are fatigue and unexplained bone pain, which found in approximately 32% to 58% of the cases.¹⁶ Other common clinical findings, including pathologic bone fracture, weight loss and paresthesia, can be found in 34%, 24% and 5%, respectively.^{4, 16} The important clinical features used to diagnose the disease are myeloma-related organ or tissue impairments, representing the end-organ damage. These specific end-organ damage features are recognized as "CRAB" features. The CRAB features include hypercalcemia (serum calcium greater than 11.0 mg/dL), renal insufficient (serum creatinine greater than 2.0 mg/dL), anemia (hemoglobin level less than 10.0 g/dL) and bone lytic or osteolytic lesions.^{4, 9, 16, 17} Other impairments, such as symptomatic hyperviscosity, amyloidosis, neurological complications and recurrent bacterial infections (more than two consecutive times within 12 months), can be often observed in MM patients.^{4, 16, 17} Because of impairment of the immune system, MM patients are susceptible to bacterial infections, especially pneumonia and pyelonephritis, which are a common cause of death in MM patients.^{4, 16, 17}

According to the 2014 Revised International Myeloma Working Group Criteria for the diagnosis of multiple myeloma and related disorders (**Table 2.2**),¹⁷ the diagnosis of MM required the presence of 10% to 60% clonal plasma cells on BM examination or a biopsy-proven plasmacytoma together with the specific myeloma defining events (MDE).

Disorder	Disease definition
Non-IgM monoclonal gammopathy of undetermined	All 3 criteria must be met:
significance (Non-IgM MGUS)	- Serum M protein (non-IgM type) <3.0 g/dL
	- Clonal BM plasma cells <10.0%
	- Absence of end-organ damage such as hypercalcemia, renal insufficiency,
	anemia and bone lesions (CRAB) that can be attributed to the plasma cell
	proliferative disorder
Smoldering multiple myeloma (SMM)	Both criteria must be met:
	- Serum M protein (IgG or IgA) \geq 3.0 g/dL, or urinary M protein $>$ 500 mg per 24
	hours and/or clonal BM plasma cells 10%-60%
	- Absence of myeloma defining events or amyloidosis
Multiple myeloma (MM)	Both criteria must be met:
	- Clonal BM plasma cells $\geq 10\%$ or biopsy-proven bony or extramedullary
	plasmacytoma
	- Any one or more of the following myeloma defining events:
	• Evidence of end organ damage that can be attributed to the underlying
	plasma cell proliferative disorder, specifically:
	- Hypercalcemia: serum calcium >0.25 mmol/L (>1 mg/dL) higher than
	the upper limit of normal or >2.75 mmol/L (>11 mg/dL)

Table 2.2 International myeloma working group diagnostic criteria for multiple myeloma and related plasma cell disorders¹⁷

Disorder	Disease definition		
Multiple myeloma (MM) continued	- Renal insufficiency: Cr clearance <40 mL per minute or serum Cr >177		
	μ mol/L (>2.0 mg/dL)		
	- Anemia: hemoglobin (Hb) value of >2 g/dL below the lower limit of		
	normal, or a Hb value <10 g/dL		
	- Bone lesions: one or more osteolytic lesions on skeletal radiography, CT,		
	or positron emission tomography-CT (PET-CT)		
	• Clonal BM plasma cell percentage ≥60%		
	• Involved: uninvolved SFLC ratio >10 (involved SFLC level must be >100		
	mg/L)		
	• More than one focal lesion on MRI studies (at least 5 mm in size)		
IgM monoclonal gammopathy of undetermined	All 3 criteria must be met:		
significance (IgM MGUS)	- Serum IgM-M protein <3.0 g/dL		
	- BM lymphoplasmacytic infiltration <10%		
	- No evidence of anemia, constitutional symptoms, hyperviscosity,		
	lymphadenopathy, or hepatosplenomegaly that can be attributed to the underlying		
	lymphoproliferative disorder.		

Table 2.2 International myeloma working group diagnostic criteria for multiple myeloma and related plasma cell disorders (Cont.)¹⁷

Disorder	Disease definition
Light chain MGUS	All criteria must be met:
	- Abnormal SFLC ratio (<0.26 or >1.65)
	- Increased level of the appropriate involved light chain (increased kappa FLC in
	patients with ratio >1.65 and increased lambda FLC in patients with ratio <0.26)
	- No immunoglobulin heavy chain expression on IFE
	- Absence of end-organ damage that can be attributed to the plasma cell
	proliferative disorder
	- Clonal BM plasma cells <10%
	- Urinary M-protein <500 mg/24 hours
Solitary plasmacytoma	All 4 criteria must be met
	- Biopsy proven solitary lesion of bone or soft tissue with evidence of clonal
	plasma cells
	- Normal BM with no evidence of clonal plasma cells
	- Normal skeletal survey and MRI (or CT) of spine and pelvis (except for the
	primary solitary lesion)
	- Absence of end-organ damage (CRAB) that can be attributed to a lympho-plasma
	cell proliferative disorder

Table 2.2 International myeloma working group diagnostic criteria for multiple myeloma and related plasma cell disorders (Cont.)¹⁷

Disorder	Disease definition
Solitary plasmacytoma with minimal marrow	All 4 criteria must be met
involvement*	- Biopsy proven solitary lesion of bone or soft tissue with evidence of clonal
	plasma cells
	- Clonal BM plasma cells <10%
	- Normal skeletal survey and MRI (or CT) of spine and pelvis (except for the
	primary solitary lesion)
	- Absence of end-organ damage (CRAB) that can be attributed to a lympho-plasma
	cell proliferative disorder

Table 2.2 International myeloma working group diagnostic criteria for multiple myeloma and related plasma cell disorders (Cont.)¹⁷

* Solitary plasmacytoma with 10% or more clonal plasma cells is considered as multiple myeloma.

2.5.3 Staging and prognosis

According to the International Staging System (ISS),¹¹⁴ MM is divided into 3 stages based on the levels of serum β_2 M and Alb. The elevation of β_2 M level reflects high tumor mass and reduced renal function. While the depression of serum Alb level is mainly caused by inflammatory cytokines, such as IL-6, secreted by the myeloma microenvironment.¹¹⁴ The median OS of the patient is 62, 44 and 29 months for stage I, II and III, respectively (**Table 2.3**).¹¹⁴

Ct.		Median OS
Stage	Criteria	(months)
I	Serum $\beta_2 M < 3.5 \text{ mg/L}$	62
	Serum Alb ≥3.5 g/dL	
II	Not stage I or III*	44
III	Serum $\beta_2 M \ge 5.5 \text{ mg/L}$	29

Table 2.3 The International Staging System (ISS) criteria for multiple myeloma¹¹⁴

* There are two categories for stage II: serum $\beta_2 M < 3.5 \text{ mg/L}$ but serum Alb < 3.5 g/dL; or serum $\beta_2 M$ 3.5 to < 5.5 mg/L irrespective of the serum aAlb level.

The chromosomal abnormalities detected by the FISH technique are the key element defining the clinical outcomes in MM patients. Patients with del17p, t(14;16) and t(14;20) are considered a high-risk, while patients with t(4;14) translocation and amp1q are considered an intermediate-risk MM. The other chromosomal abnormalities are considered standard-risk.¹¹⁵ In addition, serum LDH is another relevant biomarker in MM because an increased serum LDH is associated with disease aggressiveness, suggesting high proliferation of tumor mass and involvement in the extramedullary disease.^{116, 117} Therefore, the combination of ISS, chromosome abnormalities (CA) and LDH was recommended in the Revised ISS (R-ISS) criteria to improve the predictive value and was used to stratification in newly diagnosed MM patients (**Table 2.4**).¹¹⁸

R-ISS stage	Criteria	Median OS (months)
Ι	ISS stage I and standard-risk CA by FISH and	82
	normal serum LDH	
II	Not R-ISS stage I or III	62
III	ISS stage III and either high-risk CA by FISH or	40
	high serum LDH	

Table 2.4 The Revised International Staging System criteria¹¹⁸

CA, chromosome abnormalities; FISH, fluorescence *in situ* hybridization; LDH, lactase dehydrogenase; OS, overall survival; R-ISS, Revised International Staging System

2.5.4 Refractory and/or relapsed multiple myeloma (RRMM)

Based on a recent American Society of Hematology–Food and Drug Administration (FDA) panel on endpoints in myeloma,¹¹⁹ there are two categories of refractory myeloma, relapsed and/or refractory myeloma (RRMM) and primary refractory myeloma. RRMM is defined as a disease that becomes non-responsive or progressive on therapy or within 60 days of the last treatment in patients who had achieved a minimal response (MR) or better on prior therapy, whereas primary refractory myeloma is defined as a disease that is non-responsive in patients who never achieved an MR or better with any therapy.¹¹⁹

2.5.5 Laboratory testing in MM

Laboratory assessment for diagnostic work-up in patients with monoclonal gammopathy is recommended by several expert groups. After completing a medical history and physical examination, when MM is suspected clinically, patients should be evaluated for presence of M-protein using a combination of tests, including SPEP, IFE and SFLC.^{17, 18} The 24-hr-urine collection and M-protein analysis by UPEP are recommended. Serum electrolytes, serum calcium, CBC and renal function tests are indicators providing CRAB symptoms. In addition, imaging techniques, including CT, MRI and PET, are required to detect osteolytic bone lesions and determine the disease stage.

2.5.5.1 Serum proteins electrophoresis (SPEP)

In SPEP, proteins are separated according to their respective electrical charges on agarose gel using both electrophoretic and electroendosmotic forces presented in the system. Then, the proteins are stained with a visible stain, mostly Amido black, Coomasie blue and acid blue stains. Based on their electrical charge at a particular pH and molecular weight, the serum proteins are fractionated into five classical fractions: Alb, alpha1 (α 1), alpha2 (α 2), beta (β 1 and β 2) and gamma (γ) proteins.⁴⁸ The pattern of the protein fractions is scanned with a densitometer to obtain a semi-quantitative estimating of specific fractions and then visualized by a densitometric graph (**Figure 2.6**). Although the relative proportions of those fractions identified by SPEP are helpful in diagnosis and prognosis of plasma cell dyscrasias; however, abnormal patterns can be observed in pregnancy and other disorders, including inflammatory response, rheumatic diseases, liver diseases, protein-loss-disorders and genetics deficiencies.¹²⁰

2.5.5.2 Immunofixation electrophoresis (IFE)

When a restricted band is identified in SPEP, the IFE should be performed to definitively identify the M-protein isotype. IFE is a procedure, in which the serum proteins are separated by electrophoresis, and treated with specific antiserum against human IgG, IgA, IgM, kappa, lambda and rarely for IgE and IgD. The gel is washed with saline to remove all unprecipitated antibodies, followed by staining, destaining and drying processes. The positive result is presented with a precipitin band. As compared with SPEP, IFE could improve test sensitivity by 10-folds to detect specific isotypes of the M-protein.¹²¹ Therefore, IFE is suggested in the case of a patient with suspected monoclonal gammopathy with negative SPEP result. Normal and abnormal patterns of IFE test results are shown in **Figure 2.7**.

2.5.5.3 Serum free light chains (SFLC)

SFLC is an important tumor marker presented in the serum and urine of patients with monoclonal gammopathies. In healthy individuals, light chains found in the serum are bounded form with the heavy chain. However, low levels of free-light chains are found in the serum of normal individuals due to the overproduction and secretion by plasma cells.¹²² The quantitative measurement of SFLC was performed using the immunoturbidimetric or immunonephelometric assay, in which the polyclonal or monoclonal antibodies specifically recognized the epitope in the hidden constant region of the light chains, are used to detect the κ and λ FLC in serum separately. The SFLC concentrations are calculated by comparing the optical density with the reference standard curve.¹²²⁻¹²⁴ The elevation of the SFLC is associated with plasma cell dyscrasia, amyloid light-chain (AL) amyloidosis and other light-chain deposition diseases.¹²²⁻¹²⁴

Figure 2.6 The results of SPEP on agarose gel. (A) The SPEP results from a MM patient demonstrating a restricted band on the gamma globulin zone (red arrow) compared with healthy individuals. (B) A densitometric graph showed the normal pattern of the serum proteins. (C) A densitometric graph showed the "M-spike" on the gamma globulin zone in MM patient.

Figure 2.7 The results of IFE on agarose gel. (A) Normal pattern showed the fainted bands on each lane with specific antibodies to immunoglobulin isotypes. (B) An abnormal pattern (IgG lambda pattern) from MM patient showed the restricted precipitin bands on anti-IgG and anti-lambda light chain lanes.

2.6 Treatment of MM

The treatment of MM depends on the patient's experiencing symptoms, staging and the patient's overall health. Although MM is considered an incurable disease; however, the treatment goals are to eliminate myeloma cells, control tumor growth, reduce pain, and allow patients to have a better life. The treatment options typically include chemotherapy and targeted therapy, BM stem cell transplantation and other types of treatments, such as radiation therapy and surgery.^{125, 126}

2.6.1 Treatment of newly diagnosed MM

Treatment should be initiated in all patients with MM according to the updated definition proposed by the IMWG. The recommended common treatment regimens in MM are shown in **Table 2.5.**^{125, 126} The approach to treat a symptomatic newly diagnosed MM is outlined in **Figure 2.8**.¹⁶ There are 3 important phases of therapy; initial therapy (with or without autologous stem cell transplant, ASCT), consolidation/maintenance therapy and treatment of relapse.^{16, 17}

		Overall	Estimated
Regimens	Suggested doses	response	CR+VGPR
		rate (%)	rate (%)
Thalidomide-dexamethasone (TD)	Thalidomide 200 mg oral days 1–28; dexamethasone 40 mg oral days 1, 8, 15, 22; repeated every 4 weeks	65	30
Lenalidomide-dexamethasone (Rd)	Lenalidomide 25 mg oral days 1–21 every 28 days; dexamethasone 40 mg oral days 1, 8, 15, 22 every 28 days; repeated every 4 weeks	70	40
Bortezomib-dexamethasone (VD)	Bortezomib 1.3 mg/m ² intravenous days 1, 8, 15, 22; dexamethasone 20 mg on day of and day after bortezomib (or 40 mg days 1, 8, 15, 22); repeated every 4 weeks	80	40
Melphalan–prednisone–thalidomide (MPT)	Melphalan 0.25 mg/kg oral days 1–4 (use 0.20 mg/kg per day oral days 1–4 in patients over the age of 75 years); prednisone 2 mg/kg oral days 1–4; thalidomide 100–200 mg oral days 1–28 (use 100 mg dose in patients >75 years); repeated every 6 weeks	70	30
Bortezomib–melphalan–prednisone (VMP)	Bortezomib 1.3 mg/m ² intravenous days 1, 8, 15, 22; melphalan 9 mg/m2 oral days 1–4; prednisone 60 mg/m2 oral days 1–4; repeated every 35 days	70	40
Melphalan-prednisone-lenalidomide (MPR)	Melphalan 0.18 mg/kg oral days 1–4; prednisone 2 mg/kg oral days 1–4; lenalidomide 10 mg oral days 1–21; repeated every 4 weeks	67	33

 Table 2.5 Common front-line treatment regimens in multiple myeloma^{125, 126}

		Overall	Estimated
Regimens	Suggested doses	response	CR+VGPR
		rate (%)	rate (%)
Bortezomib-thalidomide-	Bortezomib 1.3 mg/m ² intravenous days 1, 8, 15, 22; thalidomide 100–200	95	60
dexamethasone (VTD)	mg oral days 1-21; dexamethasone 20 mg on day of or after bortezomib (or		
	40 mg days 1, 8, 15, 22); repeated every 4 weeks \times 4 cycles as pre-transplant		
	induction therapy		
Bortezomib-cyclophosphamide-	Cyclophosphamide 300 mg/m ² orally on days 1, 8, 15 and 22; bortezomib	90	70
dexamethasone (VCD)	1.3 mg/m2 intravenously on days 1, 8, 15, 22; dexamethasone 40 mg orally		
	on days on days 1, 8, 15, 22; repeated every 4 weeks		
Bortezomib-lenalidomide-	Bortezomib 1.3 mg/m ² intravenous days 1, 8, 15; lenalidomide 25 mg oral	100	70
dexamethasone (VRD)	days 1–14; dexamethasone 20 mg on day of and day after bortezomib (or 40		
	mg days 1, 8, 15, 22); repeated every 3 weeks		

 Table 2.5 Common front-line treatment regimens in multiple myeloma (Cont.)^{125, 126}

CR, complete response; VGPR, very good partial response

Abbreviations: VRD, bortezomib, lenalidomide, dexamethasone; KRD, carfilzomib, lenalidomide, dexamethasone; Rd, lenalidomide plus dexamethasone; VCD, bortezomib, cyclophosphamide, dexamethasone; ASCT, autologous stem cell transplantation; CR, complete response; VGPR, very good partial response.

Figure 2.8 An approach for treatment in newly diagnosed multiple myeloma¹⁶

For the initial or induction therapy, the drugs option varies across the country depending on drug availability. The standard initial treatment for symptomatic MM patients depends on their eligibility for high dose therapy (HDT) and ASCT, which is based on the patient's age, comorbidities and functional status. In the USA, the upper age limit for ASCT is approximately 75 years. In most Asian countries, including Thailand, patients 65 years and older are not considered candidates for ASCT.

In clinical practice, the triplet regimens using a combination of bortezomib (V), dexamethasone (D), cyclophosphamide (C) and thalidomide (T), including bortezomib-thalidomide-dexamethasone (VTD) regimen, bortezomibcyclophosphamide-dexamethasone (VCD) regimen and bortezomib-lenalidomidedexamethasone (VRD) regimen, are widely used in the treatment of newly diagnosed MM.¹⁶ In addition, the triplet regimen of carfilzomib, lenalidomide and dexamethasone (KRD) is recommended only in patients with high-risk MM. In ASCT eligible group, patients are treated with approximately 3–4 cycles of induction therapy before stem cell harvest.^{16, 17} Long-term melphalan-based treatment is inappropriate for patients considering ASCT candidate because it can interfere with adequate stem cell mobilization.¹²⁶

The consolidation phase is generally defined as treatment given for a short duration, about 2 to 4 cycles, after induction therapy or after ASCT. In this phase, the patients were usually treated with the same regimen used for induction therapy, followed by high-dose therapy. The goal of the consolidation therapy is to further better or deepen response.¹²⁷ Several studies demonstrated that consolidation treatment could improve the depth of response; however, there are insufficient data to establish that consolidation treatment prolongs OS in MM patients.^{126, 127}

Maintenance therapy is usually given after an ASCT or induction therapy in non-transplant candidate MM patients. In the maintenance phase, a low dose chemotherapy is used over a long period to maintain or prolong remission and to prevent or delay the relapsed disease.¹²⁶ In post-ASCT patients, a meta-analysis of randomized trials revealed that maintenance therapy using immunomodulatory imide drugs (iMIDs), such as thalidomide and lenalidomide, improved progression-free survival (PFS) and OS.¹²⁸ However, the benefit of maintenance therapy in nontransplant candidate patients remains unclear.¹⁷

2.6.2 Autologous stem cell transplantation (ASCT)

ASCT has been considered the standard approach for frontline therapy in eligible MM patients. ASCT could improves CR rates and prolongs median OS in MM by approximately 12 months, with 2% of mortality rate.^{129, 130}

2.6.3 Response criteria of treatment in MM patients

The uniform response criteria for MM was established by IMWG to facilitate precise comparisons of the efficacy of treatment strategies in trials and to provide the definition and classification for the responses in MM patients (**Table 2.6**).^{119, 131}

Response category	Criteria
Stringent complete remission (sCR)	CR as defined above plus normal SFLC ratio and absence of clonal cells in BM by immunohistochemistry or immunofluorescence
Complete remission (CR)	 Negative IFE on the serum and urine and disappearance of any soft tissue plasmacytomas and <5% plasma cells in BM
Very good partial response (VGPR)	Serum and urine M-protein detectable by IFE but not on electrophoresis or > 90% reduction in serum M-protein plus urine M-protein level <100 mg/24 h
Partial response (PR)	 50% reduction of serum M-protein and reduction in 24 h urinary M-protein by >90% or to <200 mg/24 h If the serum and urine M-protein are unmeasurable, >50% decrease in the difference between involved and uninvolved SFLC levels is required in place of the M-protein criteria If serum and urine M-protein are not measurable and SFLC assay is also not measureable, >50% reduction in plasma cells is required in place of M-protein, provided baseline BM plasma cell percentage was >30% In addition to the above listed criteria, if present at baseline, a >50% reduction in the size of soft tissue plasmacytomas is also required

Table 2.6 The IMWG uniform response criteria by response subcategories for multiple myeloma^{119, 131}

Response category	Criteria
Stable disease (SD) or no change	Not meeting criteria for CR, VGPR, PR, or PD
Progressive disease (PD)	Increase of >25% from lowest response value in any one or more of the following:
	• Serum M-component and/or (the absolute increase must be >0.5 g/dL)
	• Urine M-component and/or (the absolute increase must be >200 mg/24 h)
	• Only in patients without measurable serum and urine M-protein levels; the difference
	between involved and uninvolved SFLC levels. The absolute increase must be $>10 \text{ mg/dL}$
	• BM plasma cell percentage; the absolute percentage must be $>10\%$
	• Definite development of new bone lesions or soft tissue plasmacytomas or definite increase
	in the size of existing bone lesions or soft tissue plasmacytomas
	• Development of hypercalcaemia (corrected serum calcium >11.5 mg/dL or 2.65 mmol/L)
	that can be attributed solely to the plasma cell proliferative disorder

 Table 2.6 The IMWG uniform response criteria by response subcategories for multiple myeloma (Cont.)^{119, 131}

Response category	Criteria
Relapse	Clinical relapse requires one or more of:
	Direct indicators of increasing disease and/or end organ dysfunction (CRAB features). It is not used
	in calculation of time to progression or PFS but is listed here as something that can be reported
	optionally or for use in clinical practice
	• Development of new soft tissue plasmacytomas or bone lesions
	• Definite increase in the size of existing plasmacytomas or bone lesions. A definite increase
	is defined as a 50% (and at least 1.0 cm) increase as measured serially by the sum of the
	products of the cross-diameters of the measurable lesion
	• Hypercalcemia (>11.5 mg/dL) [2.65 mmol/L]
	• Decrease in hemoglobin of >2.0 g/dL [1.25 mmol/L]
	• Rise in serum creatinine by 2.0 mg/dL or more [177 mmol/L or more]
Relapse from CR (To be used only if the	Any one or more of the following:
end point studied is disease-free	• Reappearance of serum or urine M-protein by IFE or electrophoresis
survival)	• Development of >5.0% plasma cells in the BM
	• Appearance of any other sign of progression (i.e., new plasmacytoma, lytic bone lesion, or
	hypercalcemia)

Table 2.6 The IMWG uniform response criteria by response subcategories for multiple myeloma (Cont.)^{119, 131}

More recently, the updated IMWG response criteria have now included minimal residual disease (MRD) status defined by the absence of BM plasma cells by next-generation flow (NGF) or next-generation sequencing (NGS), as shown in **Table 2.7**.¹³²

Response subcategory	Criteria
Sustained MRD-negative	MRD-negative in the marrow (NGF and/or NGS)
	and by imaging as defined below, confirmed one year
	apart. Subsequent evaluations can be used to further
	specify the duration of negativity (e.g. MRD-
	negative at 5 years)
Flow MRD-negative	Absence of phenotypically aberrant clonal plasma
	cells by NGF on BM aspirates using the EuroFlow
	standard operation procedure for MRD detection in
	MM (or validated equivalent method) with a
	minimum sensitivity of 1 in 10^5 nucleated cells or
	higher
Sequencing MRD-negative	Absence of clonal plasma cells by NGS on BM
	aspirates in which presence of a clone is defined as
	less than two identical sequencing reads obtained
	after DNA sequencing of BM aspirates using the
	Lymphosight VR platform (or validated equivalent
	method) with a minimum sensitivity of 1 in 10^5
	nucleated cells or higher
Imaging + MRD-negative	MRD-negative as defined by next-generation flow
	cytometry or NGS plus
	Disappearance of every area of increased tracer
	uptake found at baseline or a preceding PET-CT or
	decrease to mediastinal blood pool SUV or decrease
	to less than that of surrounding normal tissue

 Table 2.7 The updated IMWG response criteria 2016¹³²

IMWG, International Myeloma Working Group; MRD, minimal residual disease; NGF, next-generation flow cytometry; NGS, next-generation sequencing; PET-CT, positron emission tomography-computed tomography; SUV, standardized uptake value.

2.7 Proteomics studies

Although the current genomics studies provided information about gene expression during several physiological and pathological processes, the relationship between the *in vivo* concentration of an mRNA and its encoded protein is inconsistent. ¹³³ In humans, the genome contains about 25,000-30,000 genes. Most of them were transcribed and generated different variants of mRNA, which can be translated into diverse functional proteins. The posttranslational modifications, including phosphorylation, glycosylation and acetylation, are vital keys contributing to diversity in protein structure, function and activity.¹³⁴ In clinical, studying proteins provide disease information and is also used to determine mechanisms, elucidate pathways and indicate disease status. Thus, the studies of proteins are crucial for disease diagnosis, prognosis and monitoring of disease development.¹³⁴

Proteomics is the studies involved in the applications of technologies to identify and quantify overall proteins in a particular cell, tissue, or organism. The term proteome was first used in 1994 by Mark Wilkins to denote the "PROTein complement of a genOME".¹³⁵ The "proteome" can be defined as the overall protein content of a cell characterized by its localization, interactions, post-translational modifications, interactions and turnover at a particular time.¹³⁴

2.7.1 Methods in proteomics

Proteome analysis provides the complete description of structural and functional information of cells using single or multiple proteomics techniques. Several technologies are used to separate, purify, characterize, identify and quantify of the proteins. Moreover, bioinformatics tools are employed to analyze the protein interaction. An overview of the proteomics techniques is shown in **Figure 2.9**.¹³⁴

Figure 2.9 An overview of the proteomics approaches¹³⁴

In the conventional proteomic techniques, chromatography-based techniques, including ion exchange chromatography (IEC), size exclusion chromatography (SEC) and affinity chromatography, are used to purify proteins in the first step. For analysis of selective protein, enzyme-linked immunosorbent assay (ELISA) and Western blotting can be used to restrict and define the expression level of the interested protein. ¹³⁴

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE) and two-dimensional differential gel electrophoresis (2D-DIGE) techniques are advanced proteomics techniques used for separation of complex protein samples. Edman sequencing has been developed to determine the amino acid sequence of a particular protein. In addition, X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy techniques are high-throughput techniques providing a three-dimensional (3D) structure of the protein that might be helpful to understanding its biological function. The protein microarray techniques, including analytical, functional and reverse-phase microarrays, have been established for high throughput and rapid expression analysis.^{134, 136, 137}

Mass spectrometry (MS) based techniques are the most effective tools for proteomics study. A mass spectrometer determines the mass of a molecule by measuring its mass-to-charge (m/z) ratio.³¹ Each mass spectrometry analyzer consists of three components; the source, mass analyzer and detector. The digested peptides obtained from an intersted sample are ionized either by matrix-assisted laser desorption ionization (MALDI) or electrospray ionization (ESI) in the source. The charged peptides are sorted according to their m/z ratio and measured by the detector³¹ Applications of MS techniques include not only mass determination and protein identification but also provide a detailed characterization of protein isoform, posttranslational modification and quantification of protein levels.^{134, 137} Quantitative protein analysis by mass spectrometry is an effective way to discover the biomarkers.¹³⁸ Quantitative protein analysis by mass spectrometry is an effective way to discover the biomarkers. The label-free quantitative (LFQ) protein analysis and stable isotope labeling techniques, including isotope-coded affinity tag (ICAT) labeling, stable isotope labeling with amino acids in cell culture (SILAC) and isobaric tag for relative and absolute quantitation (iTRAQ) techniques, are used to quantify proteins within a sample and widely used for biomarker discovery.¹³⁸

2.7.2 Proteomic analysis in MM research

Proteomics has been employed in MM research for many specific purposes, including the identification of the mechanisms of MM pathogenesis, the discovery of novel diagnostic and prognostic biomarkers and the discovery of potential targeting molecules for MM treatment. Several published studies demonstrated the advantages of proteomic approaches in MM research. Examples of proteomic studies in MM research are shown in **Table 2.8**.

Approach	Study	Sample type	Number of MM subject	Method	References
Study MM pathogenesis	Interaction between myeloma cells and osteoclasts	Separated myeloma cells and osteoclasts	50	SELDI-MS	Yin, 2005 ¹³⁹
	The proteome alterations during disease transformation from MM to secondary plasma cell leukemia	BM samples from same patient at MM and sPCL stages	1	SILAC LC–MS/MS	Zatula et al., 2017 ¹⁴⁰
	Proteomic characterization of BM extracellular matrix in MM patients	BM samples	16	LC-MS/MS	Glavey et al., 2018 ³⁶
	The role of the unfolded protein response pathway in osteoclastogenesis in MM	MM cell lines		ESI-MS/MS	Raimondi et al., 2020 ¹⁴¹
Biomarker discovery	A reference map for proteomics comparison in BM of MM patients	Separated plasma cells from BM	8	2DE MALDI– TOF/TOF MS	Lu et al., 2010 ¹⁴²
	Identifying pathogenic factors and potential biomarkers in sera of MM patients.	Serum samples	8	LC MS/MS	Zhang et al., 2015 ³²
	Development of a specific model for predicting the presence of MGUS	Serum samples	103	MALDI-TOF MS/MS	Barceló et al., 2018 ¹⁴³
Drug monitoring and predicting the response	Comparative proteomic profiles in BM of RRMM patients responding to bortezomib-based chemotherapy	BM samples	77	iTRAQ LFQ	Dytfeld et al., 2016 ¹⁴⁴
	Novel biomarkers to predict the response to bortezomib-based chemotherapy in MM patients	Serum samples	67	LFQ using LC–MS/MS	Łuczak et al., 2017 ³³
	Discovery of biomarkers to predict response to treatment containing bortezomib	Serum samples	17	LFQ using LC–MS/MS	Ting et al., 2017 ³⁷
	The role of exportin 1 (XPO1) in bortezomib resistance	MM cell lines	-	iTRAQ LFQ	Chanukuppa et al., 2019 ¹⁴⁵

Table 2.8 Examples of proteomic studies in multiple myeloma research

2DE, two-dimensional gel electrophoresis; ESI, electrospray ionization; iTRAQ, isobaric tag for relative and absolute quantitation; LC, liquid chromatography; LFQ, label-free quantitation; MALDI, matrix-assisted laser desorption/ionization; MS, mass spectrometry; SELDI, surface-enhanced laser desorption/ionization; SILAC, stable isotope labeling with amino acids in cell culture; TOF, time-of-flight

2.7.2.1 Proteomic studies of MM pathogenesis and disease progression

To study the MM pathogenesis, focused on the pathophysiology of bone involvement in myeloma, Yin¹³⁹ used SELDI–MS analysis to demonstrate the *in vivo* interaction between myeloma cells and osteoclasts. The secreted proteome obtained from myeloma cells separated from 50 MM patients, osteoclasts and cocultured myeloma cells with osteoclasts, were analyzed and compared. The results showed a significantly increased level of the secreted protein, chondroitin synthase 1 (CHSY1), observed in co-cultured myeloma cells with osteoclasts compared with the other groups.¹³⁹ This protein plays an important role in the activation of the Notch2 signaling pathway and inhibition of the Notch1 signaling pathway, that known to be involved in the interaction between myeloma cells and the BM microenvironment and promoted bone destruction in MM.¹³⁹

In 2017, Zatula et al.¹⁴⁰ used proteomics approaches to elucidate the proteome alterations during disease transformation from MM to secondary PCL. In this study, SILAC quantitative technique was used to analyze the proteomic profile of six human myelomas and two human B-cell lymphoma cell lines. In addition, myeloma cells separated from the same patient at both MM and PCL stages were subjects for LC–MS/MS analysis. The results revealed that 795 differentially expressed proteins were identified among MM and PCL samples. Gene ontology analysis indicated that proteins involved in aerobic glycolytic metabolism were upregulated, while the proteins involved in glycan synthesis were downregulated in PCL. Most upregulated proteins, including serum amyloid A-4 protein (SAA4), apolipoprotein D (ApoD) and interferoninduced guanylate-binding protein 2 (GBP2), were observed in PCL with the fold changes of 21.2, 9.75 and 5.92-fold, respectively.

The related study was conducted by Glavey et al.³⁶ in 2018. The proteomic analysis was performed to characterize the BM-ECM in patients with MGUS and MM compared with healthy donor-derived BM-ECM. The results revealed that the tumor ECM was remodeled at mRNA and protein levels in MGUS and MM to allow the development of a permissive microenvironment. Notably, two ECM-affiliated proteins, ANXA2 and LGALS1, are more abundant in MM, and higher levels of those proteins were associated with inferior overall survival. This finding suggested that BM-

ECM remodeling plays an important role in MM and provides prognostic implications for MM patients.

In a recent study by Raimondi et al.¹⁴¹, reverse-phase highpressure liquid chromatography-electrospray ionization tandem mass spectrometry (RP-HPLC-ESI-MS/MS) was employed to demonstrate the role of the unfolded protein response (UPR) pathway in osteoclastogenesis induced by multiple myeloma-derived extracellular vesicles (MM-EV). In human MM cell lines, the myeloma cells can produce extracellular vesicles or exosomes that can activate osteoclast differentiation and promote osteoclast function in bone resorption activity.¹⁴⁶ The results revealed that MM-EV induced osteoclastogenesis through the activation of the inositol-requiring enzyme-1 alpha (IRE1 α)/x box-binding protein 1 (XBP1) axis of the UPR pathway.

2.7.2.2 The use of proteomic analysis to discover novel diagnostic biomarkers

In 2010, Lu et al.¹⁴² used proteomic techniques to identify the abundant proteins in plasma cells separated from the BM of eight newly diagnosed MM patients. The proteomics analysis was accessed using 2DE and MALDI-TOF/TOF MS techniques. The results demonstrated that a total of 517 spots were identified by 2DE, corresponding to 268 proteins characterized by mass spectrometry. These identified proteins correspond to different functional categories and represent a preliminary functional profile of the MM proteome. This database can serve as a reference map for proteomics comparison and could be a useful source for potential biomarker identification.

In 2015, Zhang et al.³² applied proteomic analysis to identify pathogenic factors and potential biomarkers in the sera of MM patients. Pooled serum samples obtained from 8 MM patients and pooled serum samples from eight healthy donors were subjects for this analysis. The high abundance proteins, such as albumin and immunoglobulin, were depleted using peptide ligand library beads (PLLBs)-based affinity method. The low abundance serum proteins were identified using 1D gel-LC MS/MS. Altogether 789 and 849 proteins were identified in MM patients and healthy controls, respectively. Of these, 22 proteins, including serum amyloid A protein, vitamin D-binding protein isoform-1 precursor, kallikrein, apolipoprotein A-I, integrin alpha-1 and isoform-1 of multimerin-1, were differentially expressed. In addition, the serum levels of integrin alpha-1 and isoform-1 of multimerin-1 were validated by Western blotting to demonstrate the diagnostic value of these biomarkers.

To identify the early diagnostic biomarkers, the study by Barceló et al.¹⁴³ in 2018 demonstrated the use of the MALDI-TOF technique to examine sera obtained from 103 MGUS patients and 108 healthy volunteers. Their ultimate objective is to develop a specific model for predicting the presence of MGUS. In this study, their developed model can classify unknown serum samples as belonging to either MGUS patients or healthy individuals with 88% average model accuracy, 89% average sensitivity and 86% average specificity.

2.7.2.3 Proteomics analysis to identify the potential biomarkers for predicting the response and resistance to chemotherapy

Dytfeld et al.¹⁴⁴ reported alteration in the BM proteomic profile in MM patients who responded to bortezomib-based chemotherapy. Comparative proteomic analysis was conducted using three independent quantitative approaches, MALDI-iTRAQ, ESI-iTRAQ and LFQ techniques. The proteomic data were compared among healthy control, patients who responded less than CR or VGPR and patients who achieved CR or VGPR. The proteins associated with proteasome function and protein folding, such as proteasome activator complex (PSME) subunit 1 (PSME1), PSME2 and heat shock protein 90 (HSP90), exhibited upregulation in RRMM patients. Similarly, the proteins involved in oxidative stress and cell hemostasis, such as thioredoxin (TXN), thioredoxin-like protein 1 (TXNL1) and lactoylglutathione lyase, were upregulated, whereas proteins involved in the regulation of apoptotic processes and programmed cell death, such as ANXA1, ANXA6 and LGALS1, were downregulated in RRMM patients.

Another report was conducted by Łuczak et al.³³ in 2017. This group reported the alteration in several proteins, including apolipoprotein C1 (ApoC1), complement components and sulfhydryl oxidase 1, involved in crucial biological processes, such as regulation of hydrolase activity and cellular response to the stimulus. These novel molecules can be used as biomarkers to predict the response to bortezomib-based chemotherapy in MM patients In the same year, Ting et al.³⁷ performed the proteomic analysis in serum samples obtained from 17 MM patients (9 responders and 8 non-responders) using the LFQ technique to discover biomarkers to predict response

to treatment containing bortezomib. An additional 20 MM patient serum samples were used for the ELISA-based validation phase. The results showed that the levels of clusterin (CLU) and angiogenin (ANG) concentration were significantly higher in the responders group, while complement C1q had a higher level in the non-responders group. Interestingly, this study demonstrated the use of these novel biomarkers in combination with standard biomarkers, including Alb, β_2 M, M-protein and κ/λ ratio, as a potential panel of biomarkers to predict response to treatment containing bortezomib.

A recent study by Chanukuppa et al.¹⁴⁵ demonstrated the role of exportin 1 (XPO1) in bortezomib resistance. Here, 112 differentially expressed proteins were identified using iTRAQ and LFQ proteomic approaches in bortezomib-resistant MM cell lines (RPMI 8226-R), and the interesting candidate protein, XPO1, was selected for further study. XPO1 is a well-known nuclear exporter, and previous reports suggested that overexpression of XPO1 was a common feature observed in both solid and hematological malignancies.¹⁴⁷ Using functional studies like cell count assay, flow cytometry assay and soft agar assay, the results proved that XPO1 knockdown in RPMI 8226-R cell line results in re-sensitization to bortezomib drug. This result indicates that XPO1 plays a crucial role in emerging bortezomib resistance and could be a potential therapeutic target for MM treatment.

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Study population

3.1.1 Patients

Patients diagnosed with MGUS and MM presented at the Division of Hematology, Department of Medicine, Phramongkutklao Hospital (Bangkok, Thailand) between May 2020 and December 2021 were enrolled. Patient demographic data, including age, sex and date of diagnosis, were collected by retrospective medical record reviews. Only newly diagnosed patients, laboratory parameters, such as Mprotein levels, IFE, SFLC ratio, hematocrit, total protein, albumin, creatinine, serum calcium, β₂M, LDH levels and cytogenetic detection by FISH technique, were collected at first diagnosis. All patients were treated with appropriated drug regimen according to the status of their MM. Patients' responses were assessed according to IMWG response criteria.^{119, 131} Clinical events, including disease progression, relapsed or refractory to treatment and death, were recorded by prospective following. Additional 70 serum samples were collected from age-matched healthy donors and were used as normal control serum. Informed consent was obtained from all subjects under the Declaration of Helsinki. The study protocol was approved by Institutional Review Board Royal Thai Ammy Medical Department, Bangkok, Thailand (approved No. IRBRTA 433/2563, Subject No. S076h/62) and The Human Research Ethics Committee of Thammasat University, Pathumthani, Thailand (HREC-TUSc, COE No. 015/2564, Appendix A).

3.1.1.1 Inclusion criteria

Subjects eligible for inclusion in this study must meet all of the following criteria:

(1) Patients must be diagnosed with MGUS or MM based on the 2014 revised IMWG criteria for the diagnosis of MM and related disorders.¹⁷

(2) Patients must be evaluated for MM staging based on the ISS criteria¹¹⁴ or R-ISS crteria¹¹⁸ for MM.

(3) All patients must be evaluated the based-line SPEP, IFE and SFLC at first diagnosis before the treatment.

3.1.1.2 Exclusion criteria

Subjects meeting any of the following criteria are not eligible for inclusion in this study

(1) Subjects with prior malignancy.

(2) Subjects with a history of organ transplant or allogeneic hematopoietic stem cell transplant before MGUS or MM diagnosis.

(3) Subjects who received any blood component, especially plasma or platelet transfusion, within 90 days before blood sample collection.

3.1.2 Serum samples

In this study, 70 age-matched healthy donors, 20 MGUS and 139 MM patients were enrolled. A total of 465 serum samples, including 70, 20, 57, 228 and 90 serum samples were obtained from healthy donors, patients with MGUS, newly diagnosed MM (NDMM), MM with the response to treatment at least VGPR (RESP) and refractory/relapsed MM (RRMM), respectively. The time points of sampling are shown in **Figure 3.1**.

Figure 3.1 A schematic diagram demonstrating the time points of sampling

All serum samples were obtained from Special Hematology Laboratory, Phramongkutklao Hospital, as leftover specimens. Four milliliters of blood samples were collected in a serum clot activator tube (VACUTTE®, Greiner Bio-One, Thailand), incubated for 30 minutes at room temperature to allow completely clotting, and then centrifuged at $1,500 \times g$ for 10 minutes to separate the serum. These serum samples were divided into five groups based on the time point of sampling, including MGUS, NDMM, RESP, RRMM and normal control samples (**Figure 3.1**). Each serum sample was aliquoted into 3 microtubes (200 μ L per microtube), and all serum samples were stored at -80° C until used for proteomic analysis.

3.1.3 Pooled serum samples

To reduce variation which may occur among individual samples, 10-50 serum samples were pooled in each study group. Briefly, each individual sample was diluted by a 1:50 ratio using distilled water (4 μ L of serum + 196 μ L of distilled water). The protein concentration of each diluted sample was determined, then 5 μ g of protein from each sample was pooled. The detail of each pooled sample is listed in **Table 3.1**.

Sample No.	Number of samples	Pooled sample	Description	
N001-N025	25	Normal-1	Age-matched	
N026-N050	25	Normal-2	healthy donors	
N051-N070	20	Normal-3	(Normal control)	
MGUS001-MGUS020	20	MGUS-1	MGUS patients	
NDMM001-NDMM020	20	NDMM-1	Nowly diagnosed	
NDMM021-NDMM040	20	NDMM-2	MM nationta	
NDMM041-NDMM057	17	NDMM-3	MM patients	
RESP001-RESP050	50	RESP-1		
RESP051-RESP100	50	RESP-2		
RESP101-RESP150	50	RESP-3	MM patients with	
RESP151-RESP200	50	RESP-4	response >VGPR	
RESP201-RESP228	28	RESP-5		

Table 3.1 Pooled serum sample preparation

Sample No.	Number of samples	Pooled sample	Description
RRMM001-RRMM020	20	RRMM-1	
RRMM021-RRMM040	20	RRMM-2	Pafractory/ralansad
RRMM041-RRMM060	20	RRMM-3	MM natients
RRMM061-RRMM080	20	RRMM-4	why patients
RRMM081-RRMM090	10	RRMM-5	

 Table 3.1 Pooled serum sample preparation (Cont.)

3.2 Materials

3.2.1 Proteomic analysis using nano-LC–MS/MS

Table 3.2 Plastics used for LC–MS/MS

Plastics	Supplier
Microtubes (0.2/0.5/1.5 mL) Axygen®	Corning Life Science, China
Falcon tubes (15 mL)	Fred Baker Scientific, UK
Pasteur pipette (3 mL)	Greiner bio one, UK
Pipette tips (10/20/100/200/1000 µL)	Greiner bio one, UK

Table 3.3 Chemicals and reagents used for LC–MS/MS $\,$

Reagents	Supplier
Bovine serum albumin (BSA)	Sigma-Aldrich, USA
10 mM dithiothreitol (DTT)	Thermo Scientific, UK
10 mM ammonium bicarbonate (AMBIC)	Thermo Scientific, UK
30 mM iodoacetamide (IAA)	Thermo Scientific, UK
Sequencing grade trypsin	Promega, Germany
0.1 % formic acid	Sigma-Aldrich, USA
80% acetonitrile	Sigma-Aldrich, USA

Table 3.4 Equipment used for LC-MS/MS

Equipment	Supplier
Eppendorf BioSpectrometer® basic	Eppendorf, Germany
Dry bath incubator (HB-96D)	Daihan Scientific, Korea
Ultimate-3000 Nano/Capillary LC System	Thermo Scientific, UK
Hybrid Quadrupole Q-Tof Impact II [™]	Bruker Daltonics, Germany
$\mu\text{-}Precolumn$ holder, with 300 μm i.d. \times 5 mm	Thermo Scientific, UK
$\mu\text{-}Precolumn$ holder, with 75 μm i.d. \times 15 mm	Thermo Scientific, UK
Acclaim PepMap100 C18, 5 µm, 100 °A	Thermo Scientific, UK
Acclaim PepMap RSLC C18, 2 µm, 100 °A,	Thermo Scientific, UK
nanoViper	
3.2.2 ELISA

3.2.2.1 Human MTA2 ELISA commercial kit

Table 3.5 Reagents and materials provided in the MTA2 ELISA commercial kit

kit)

3.2.2.2 Human AGO2 ELISA commercial kit

Table 3.6 Reagents and materials provided in the AGO	J2 ELISA commercial kit
--	-------------------------

Reagents	Quantity (per kit)
Pre-coated, assay plate (12×8 Microwells)	1
Standard material	2
Biotin-antibody ($100 \times \text{concentrate}$)	$1 \times 120 \ \mu L$
HRP-avidin ($100 \times \text{concentrate}$)	$1 \times 120 \ \mu L$
Biotin-antibody diluent	$1 \times 15 \text{ mL}$
HRP-avidin diluent	$1 \times 15 \text{ mL}$
Sample diluent	$1 \times 50 \text{ mL}$
TMB substrate	$1 \times 10 \text{ mL}$
Wash buffer ($25 \times \text{concentrate}$)	$1 \times 20 \text{ mL}$
Plate sealer for 96 wells	4
Stop solution	$1 \times 10 \text{ mL}$

3.2.2.3 Other material required for ELISA

Table 3.7 Other materials required for ELISA

Materials	Supplier
Microplate reader, Synergy TM HT	Bio-Tek instrument, USA
Dry bath incubator (HB-96D)	Daihan Scientific, Korea
Multi-channel pipette, Axypet®	Corning Life Science, China
Pipette tips (10/20/100/200/1000 µL)	Greiner bio one, UK
Microtubes (0.5/1.5 mL) Axygen®	Corning Life Science, China
UltraPure TM distilled water	Invitrogen, USA

3.3 Experimental design

The overview workflows of this study are shown in Figure 3.2. In the discovery phase, five groups of pooled plasma samples obtained from age-matched healthy donors, MGUS, NDMM, RESP and RRMM patients were included. The plasma proteins were in-solution digested by trypsin and injected into a mass spectrometer (LC-MS/MS). The LC-MS/MS analysis of each pooled sample is done in triplicate. The proteomic profiles for each study group were analyzed using bioinformatics and statistical tools. The candidate serum biomarkers were identified and verified using publicly available gene expression databases and a literature review. In the verification phase, additional serum samples were obtained separately from age-matched healthy donors (n = 20), MGUS (n = 15), NDMM (n = 35), RESP (n = 50) and RRMM (n = $\frac{1}{2}$ 40). The serum concentrations of the interesting biomarkers were measured by ELISA technique and were compared among the study groups. In the validation phase, pairedserum samples collected from the same patient but with the difference in time point, were obtained from MM patients, including paired-serum samples collected at first diagnosis and at the time of response (NDMM-RESP, n = 30) and paired-serum samples collected at the time of response and at the time of relapse (RESP-RRMM, n = 30). The serum concentrations of the interesting biomarkers were measured and compared individually.

B. Biomarker identification, verification, and validation phases

Figure 3.2 The overview workflows of this study. (A) Discovery phase. (B) Biomarker identification, verification and validation phases.

3.4 Proteomic analysis using nano-LC–MS/MS

3.4.1 Sample preparation

The protein concentration of pooled serum samples was determined by Lowry assay using bovine serum albumin (BSA) as a standard protein.¹⁴⁸ Briefly, 10 mM dithiothreitol (DTT) in 10 mM ammonium bicarbonate (AMBIC) is added into the protein solution to reduce disulfide bonds. The reformation of disulfide bonds in the protein is blocked by alkylation by adding 30 mM iodoacetamide (IAA) in 10 mM AMBIC.

3.4.2 Protein digestion

Five micrograms of each protein sample were subjected to in-solution digestion. Samples were completely dissolved in 10 mM AMBIC. To reduce disulfide bonds, 5 mM DTT in 10 mM AMBIC was added, then incubated at 60°C for 1 hour, followed by alkylation of sulfhydryl groups by adding 15 mM IAA in 10 mM AMBIC and left at room temperature for 45 minutes in the dark. For digestion, samples were mixed with 50 ng/µl of sequencing grade Trypsin (Promega, Germany) by 1:20 ratio and incubated at 37°C overnight. Before LC–MS/MS analysis, the digested samples must be dried and protonated with 0.1 % formic acid.

3.4.3 LC/MS-MS

The tryptic peptide samples were prepared for injection into an Ultimate 3000 Nano/Capillary LC System (Thermo Scientific, UK) coupled to a Hybrid Quadrupole Q-Tof Impact IITM (Bruker Daltonics, Germany) equipped with a Nano-captive spray ion source. Briefly, 1 μ L of peptide digests were enriched on a μ -Precolumn 300 μ m i.d. × 5 mm C18 Pepmap 100, 5 μ m, 100 °A (Thermo Scientific, UK), separated on a 75 μ m I.D. × 15 cm, and packed with Acclaim PepMap RSLC C18, 2 μ m, 100 °A, nanoViper (Thermo Scientific, UK). The C18 column was enclosed in a thermostatted column oven set to 60°C. Solvents A and B containing 0.1% formic acid in water and 0.1 % formic acid in 80% acetonitrile, respectively, were supplied in the analytical column. A gradient of 5–55% solvent B was used to elute the peptides at a constant flow rate of 0.30 μ L/min for 30 minutes. Electrospray ionization was carried out at 1.6 kV using the CaptiveSpray. Nitrogen was used as a drying gas (flow rate of 50 L/hour). Collision-induced-dissociation (CID) product ion mass spectra were

obtained using nitrogen gas as the collision gas. Mass spectra and MS/MS spectra are obtained in the positive-ion mode at 2 Hz over the range (m/z) 150–2200. The collision energy was adjusted to 10 eV as a function of the m/z value. The LC-MS analysis of each sample was done in triplicate.

3.4.4 Bioinformatics and data analysis

MaxQuant 1.6.6.0 were used to quantify the proteins in individual samples using the Andromeda search engine to correlate MS/MS spectra to the Uniprot *Homo sapiens* database.¹⁴⁹ Label-free quantitation with MaxQuant's standard settings was performed: maximum of two miss cleavages, a mass tolerance of 0.6 daltons for the main search, trypsin as digesting enzyme, carbamidomethylation of cystein as fixed modification, and the oxidation of methionine and acetylation of the protein N-terminus as variable modifications. Only peptides with a minimum of 7 amino acids, as well as at least one unique peptide, were required for protein identification. Only proteins with at least two peptides and at least one unique peptide, were considered as being identified and used for further data analysis. Protein false discovery rate (FDR) was set at 1% and estimated by using the reversed search sequences. The maximal number of modifications per peptide was set to 5. As a search FASTA file, the proteins presented in the *Homo sapiens* proteome were downloaded from Uniprot. Potential contaminants presented in the contaminants.fasta file that comes with MaxQuant were automatically added to the search space by the software.

The MaxQuant ProteinGroups.txt file was loaded into Perseus Version 1.6.6.0,¹⁵⁰ potential contaminants that did not correspond to any UPS1 protein was removed from the data set. Max intensities were log_2 transformed, and pairwise comparisons between conditions were done via *t*-tests. Missing values were also imputed in Perseus using constant value (zero). The visualization and statistical analyses were conducted using the MultiExperiment Viewer (MeV) in the TM4 suite software.¹⁵¹

To explore the potential functions of differentially expressed proteins and the pathways that these proteins might be involved, the Protein Analysis Through Evolutionary Relationships (PANTHER Version 11.1, available from: http://www.pantherdb.org/) analysis was performed by keeping the *Homo sapiens* as a selected organism.¹⁵² Bioinformatics analyses, including Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein domain functional enrichment, were performed to classify the functions of the identified proteins. When FDR was <1.0%, GO terms and KEGG pathways were significantly enriched. In addition, a protein-protein interaction (PPI) network was constructed using STITCH Version 5.0 (available from: http://stitch.embl.de/) to analyze the common and the forecasted functional interaction networks between identified proteins and small molecules.¹⁵³

3.5 MTA2 and AGO2 levels measurement using ELISA

The concentrations of MTA2 and AGO2 in serum samples were measured using commercial ELISA kits (Human MTA2 [MBS2705865] and Human Proteins Agonaute-2/EIF2C2 [MBS910054] ELISA kits, MyBioSource, CA, USA). The assay procedure was performed according to the manufacturer's instruction.

3.6 Statistical analysis

Continuous variables were presented as mean, median, standard deviation (SD) and/or interquartile range (IQR) and compared using Student t-test, paired t-test, Mann–Whitney U test, Kruskal–Wallis test and ANOVA test. Categorical variables were described as frequency and percentage. The receiver operating characteristic (ROC) with the area under the curve (AUC) was used to determine the optimal cut-off providing high sensitivity and specificity for each protein. Clinical data and laboratory parameters were compared among diverse groups using Chi-Square (χ^2) or Fisher's exact tests, as appropriate. A Kaplan–Meier plot for time to response (TTR) and PFS was analyzed to determine the association between biomarkers and patients' outcomes. The hazard ratio (HR) with a 95% confidence interval (CI) was calculated using univariate and/or multivariate Cox regression analysis. Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 20.0 (IBM Corp., Armonk, NY, USA) and GraphPad Prism, Version 9 (GraphPad Software, CA, USA). A p-value of less than 0.05 was considered statistically significant.

CHAPTER 4 RESULTS

4.1 Serum proteomics characterization

4.1.1 Baseline characteristics of the study population

In this study, 70 age-matched healthy donors, 20 patients with MGUS and 139 patients with MM were enrolled. The baseline characteristics of the study population are shown in **Table 4.1**. No significant difference was observed in age and gender among the study groups. In MGUS patients, the most common heavy and light chain isotypes were IgG and lambda light chain, which were found in 55.0% and 60.0% of the cases, respectively. Similarly, in MM patients, the most common heavy chain isotype was IgG, which was found in 61.9%, followed by IgA, found in 24.5% of the cases. MM with free-light chains was observed in 12.8% of MM cases. Kappa light chain was the most common isotype found in 56.1% of MM cases. The ISS stages were evaluated for MM patients. Most of them were ISS-stage III (66.2%), followed by ISS-stage II (20.1%) and ISS-stage I (13.7%), respectively.

		Study groups		
Characteristics	Healthy donors	MGUS	MM	
	(n = 70)	(n = 20)	(n = 139)	
Age, years				
Mean ± SD	60.4 ± 10.2	65.1 ± 7.4	62.2 ± 12.0	
Gender, n (%)				
Male	37 (52.9)	11 (55.0)	80 (57.5)	
Female	33 (47.1)	9 (45.0)	59 (42.5)	
Heavy chain type, n (%)				
IgG	N/A	11 (55.0)	86 (61.9)	
IgA	N/A	9 (45.0)	34 (24.5)	
Other (IgM, IgD and IgE)	N/A	0 (0.0)	1 (0.8)	
None	N/A	0 (0.0)	18 (12.8)	
Light chain type, n (%)				
Kappa (κ)	N/A	8 (40.0)	78 (56.1)	
Lambda (λ)	N/A	12 (60.0)	61 (43.9)	
ISS stage, n (%)				
Ι	N/A	N/A	19 (13.7)	
II	N/A	N/A	28 (20.1)	
III	N/A	N/A	92 (66.2)	

Table 4.1 Baseline characteristics of the study population

Ig, immunoglobulin; ISS, The International Staging System; MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; N/A, not applicable.

4.1.2 The overviews of serum proteomic profiles

A total of 1,783 proteins were identified using LC–MS/MS with FDR <1.0%. Of these, 772, 581, 830, 1,425 and 1,301 were serum proteins identified in normal, MGUS, NDMM, RESP and RRMM groups, respectively. The overlapping of the protein expression among the study groups was visualized by Venn's diagram (**Figure 4.1A**). The results revealed that 126 proteins were common proteins identified in all study groups, and 80 proteins were common proteins identified only in disease groups. Interestingly, 8, 10, 17, 67 and 70 were signature proteins identified in normal, MGUS, NDMM, RESP and RRMM groups, respectively.

To explore the potential functions of differentially expressed proteins and the pathways these proteins might be involved, the PANTHER Version 11.1 (available from: http://www.pantherdb.org/) analysis was performed by keeping the *Homo sapiens* as a selected organism. Bioinformatics analyses, including GO annotation and KEGG functional enrichment, were performed to classify the functions of the identified proteins. Significant GO terms and KEGG pathways enrichment were considered when FDR was <1.0%. In addition, a PPI network was constructed using STITCH Version 5.0 (available from: http://stitch.embl.de/).

Using the PANTHER database, only 1,281 of 1,738 expressed proteins were described in GO analysis. The proteins were classified based on their respective biological process (BP), molecular function (MF) and cellular component (CC), as shown in **Figure 4.1B**. According to the BP classification, most of them (383 of 1,281, or 29.9%) were associated with cellular processes involving cellular component organization, cellular response to stimuli and signal transduction processes. Approximately 19.0% (244 of 1,281) and 18.4% (236 of 1,281) of the expressed proteins were associated with metabolic and biological regulation processes, respectively. Based on the MF, most identified proteins were involved in molecular binding, catalytic activity and molecular regulators. Furthermore, most identified proteins were classified as structural, membrane and intracellular or cytoplasmic proteins. Only a few of them were protein-containing complexes, such as ribonucleoprotein complex, catalytic complex and membrane protein complex.

Figure 4.1 Differentially expressed proteins identified by LC–MS/MS and GO classification. (A) Venn diagram illustrating the overlap between the serum proteins detected in normal, MGUS, NDMM, RESP and RRMM. (B) PANTHER GO protein classification of the differentially expressed proteins.

4.1.3 The common serum proteins

Altogether 126 common proteins were identified in all study groups. Consistent with the basic serum protein components, the most abundant serum protein detected in this analysis was Alb, which showed the highest log₂ intensity in all study groups, followed by several kinds of immunoglobulins and apolipoproteins (**Figure 4.2**). The GO classification of the common proteins is shown in **Figures 4.3A** and **4.3B**. Moreover, to compare the relative expression levels of the identified proteins, the row Z-score was calculated, and a heatmap was plotted to illustrate the comparative expression levels among the study group (**Figure 4.3C**).

Based on their BP, the proteins involved in the metabolic process and cellular component organization or biogenesis were majority proteins accounting for 26.9% and 19.2%, respectively. In terms of MF, these proteins functioned as catalytic (43.7%), binding (37.5%) and functional regulatory molecules (18.8%). In addition, the majority of the common proteins were classified as cellular structural proteins (45.6%) and intracellular proteins (**Figure 4.3B**).

			ormal	GUS	MMC
Accession No.	Protein name	Score	ž	Σ	z
A8K9P0	Albumin	323.3	22.4	24.3	23
S6B291	lgG H chain	152.9	20.3	22.3	22
Q6PJF2	IGK@ protein	323.3	20.2	22.5	22
Q6N092	DKFZp686K18196 (Fragment)	323.3	20	22.5	20
Q6N093	DKFZp686l04196 (Fragment)	7.5	19.9	19.1	22
U5KJ79	dC->dU-editing enzyme APOBEC-3G	15.0	19.4	18.6	10
O95347	SMC protein 2(SMC-2)	10.3	19.2	16.3	14
Q92824	Proprotein convertase subtilisin/kexin type 5	13.4	19.1	13.9	9.8
A0A2R8YEM9	TPR and ankyrin repeat-containing protein 1	21.6	18.8	19.7	15
Q6PJR7	IGL@ protein	166.4	18.6	20.1	21
P51512	Matrix metalloproteinase-16 (MMP-16)	10.4	18.6	12.9	13
A0A024R3E3	Apolipoprotein A-I, isoform	114.3	18.4	19.8	1
Q6Al59	DKFZp781H0795 (Fragment)	22.0	18.4	13.2	13
A0A2X0U2G7	ARHGEF28 (Fragment)	14.4	18.4	14.5	12
A0A1W2PQ71	Potassium voltage-gated channel KQT3	9.1	18.3	13.4	19
E9KL23	Serpin peptidase inhibitor clade A member 1	187.0	18	21.2	19
B7ZVX0	DOCK9 protein	13.1	17.6	14.7	16
A0A0U1RRH1	Ryanodine receptor 3	12.5	17.6	12.8	17
P01023	Alpha-2-macroglobulin (Alpha-2-M)	8.5	17.5	20.5	17
A0A0U1RRM1	Transcriptional repressor p66-beta	11.8	17.4	13.6	11
Q15172	PP2A B subunit isoform B'-alpha	6.1	17.2	15.5	12
A0A2S0BDD1	Antithrombin-III (Serpin C1)	6.6	17.1	14.5	17
A0A024RDC2	WD repeat and FYVE domain containing 3	8.1	17.1	16.7	14
B0I1T2	Unconventional myosin-lg	8.1	17	13.3	16
P0CG39	POTE ankyrin domain family member J	8.8	16.9	13.9	19
Q53H26	Beta-1 metal-binding globulin	30.0	16.9	20.3	18
A8K8U1	CAND1	12.7	16.8	19.4	17
Q2M389	WASH complex subunit 4	9.4	16.8	11.3	17
J3KRA9	Non-specific serine/threonine protein kinase	10.5	10.0	18.6	17
Q5EBM2	Uncharacterized protein	7.8	10.5	20	12
AUA5C2GFZ5	IG c514 (Fragment)	1/8.2	10.0	10	10
AUA/PUIBE/	WD repeat-containing protein 62	9.0	10.4	16.9	12
F5GX13	Anoctamin	0.3 E.C	10.2	14.0	13
P00730		0.0 7.0	10.1	20.0	17
Q 13402	Zine finger protein 789	9.9	10.1	16	15
CREMYR	DNA replication licensing factor MCM7	0.0 6.7	16	15.0	16
05T7N2	ES cell-associated protein 11	12.0	16	10.0	16
OGLIXNO	WD repeat-containing protein 82	5.7	15.9	16.8	17
096M86	Dynein beavy chain domain 1-like protein	20.9	15.9	12.2	19
Q5SWA1	Protein phosphatase 1 regulatory subunit 15B	9.9	15.9	11.2	1
A2RTY6	Inter-alpha (Globulin) inhibitor H2	16.5	15.8	15.8	15
J3KNG8	Folliculin-interacting protein 1	13.9	15.6	13	12
A0A384P5S9	Epididymis secretory sperm binding protein	6.7	15.6	14.4	14
Q7Z7G8	Vacuolar protein sorting-associated p13B	22.9	15.5	13.1	12
P02790	Hemopexin (Beta-1B-glycoprotein)	9.5	15.4	18.1	17
A0A024R3R7	HEAT repeat-containing protein 1	12.0	15.3	11.3	20
A0A3B3IT03	Zinc finger protein 600	11.7	15.1	12.5	11
A0A1S5UZ31	TRIO and F-actin-binding protein	23.1	15.1	13.8	13
Q14008	Cytoskeleton-associated protein 5 (6.6	15	14	14
Q6ZRZ4	Uncharacterized protein C9orf47	6.0	15	14.6	15
B4DXR5	Golgi autoantigen	10.7	14.9	11.5	14
B3KMH8	Autophagy protein 5	7.6	14.9	13.1	13
Q9H2K8	Serine/threonine-protein kinase TAO3	8.3	14.9	12.9	14
Q86SQ0	Protein LL5-beta	7.7	14.9	15.5	10
Q9C0l3	Coiled-coil serine-rich protein 1	6.3	14.8	15.2	15
Q9NPG3	Ubinuclein-1 (HIRA-binding protein)	14.0	14.8	12.1	14
E7EVJ3	Glucosamine N-sulfotransferase	11.4	14.7	13.1	10
Q7Z2Z1	Treslin	10.3	14.7	13.6	20
P51532	Transcription activator BRG1	13.6	14.7	20.9	18
B4E3R6	Squamous cell carcinoma antigen	7.9	14.7	10.4	16
014617	AP-3 complex subunit delta-1	12.4	14.5	13.8	1
Q9HD74	∠inc finger protein SBZF3	15.8	14.5	11.3	12

MMMUN	RESP	RRMM	Accession No.	Protein na
23.2	24.8	23.8	A0A2S1ZR87	Structural
22.4	20.3	20.9	A0A7P0Z491	Abnormal S
22.3	21	22.9	G8JLP4	Limkain-b1
20.5	20.4	21.9	P11498	Pyruvate c
22.9	20.8	20.3	B4DDI2	Neuronal g
10.8	17.9	19	H0YJZ6	Endoribonu
14.3	12.8	16	Q5T011	KICSTOR
9.89	16.4	16.2	Q12913	Protein-tyre
15.1	19.1	19.3	Q59GK3	RAS p21 p
21.2	19.5	22.2	H3BOO2	F3 ubiquitir
13.4	20	16.5	07KZY0	Matrix met
18	22.3	19.4	.13KNV1	Zinc finger
13.9	17.2	19	050KC8	Taste rece
12.4	19.3	16.5	B4E015	G natch do
19.7	19.8	18.6	C9 IEV4	Tectonin h
19.2	20.5	20.4	075901	Ras assoc
16.4	19.4	17.4	O8TE21	Ankvrin ron
17.3	19.7	19.7	Q01121	Protein dor
17.3	10.7	20.4	Q9151(5	
11.6	10.0	20.4	002283	Somonogo
12.2	13.2	10.1	QU2303	Lomino oo
17.6	19.2	17.4	071 PC6	Lamino ono
1/.0	10.2	1/.4	OFTED2	Cickle toil r
14.0	19.4	14.Z	Q515P2	
10.7	10.0	10.7	Q90KG3	AKAP 3000
19.9	12.4	10.7	075162	
17.5	20.0	19.7		CMD N con
17.0	10.1	10.1	AUAZKOTUDU	CiviP-IN-aci
17.3	10.0	15.9	DADYA4	Sialic acid-
17.1	15.5	15.4	B4DYA4	Keich dom
1Z.1	17.8	18	Q9NP71	ChREBP
18.2	10.3	14.9	Q9NS98	Semaphori
12.2	14.8	15.9	A0A6Q8PGY3	Sodium ch
13.2	14.6	17.9	Q5JV89	Uncharacte
17.6	17.5	18.9	Q8N7W2	BEN doma
15.3	20	13.9	H0Y6I0	Golgin sub
15.4	17.9	17.3	A0A669KAW2	Uncharacte
16.4	16.4	17.1	B4DW26	Interstitial
16.5	19.5	20.4	O15060	Zinc finger
17.8	18.2	18.3	Q2VF42	Glucose-6-
19.4	18.5	16.3	A0A024R663	Kinectin 1
18	13.1	15.1	Q6ZTY9	LINC0290
15.5	18.7	17.4	Q6ZN50	Oxysterol-l
12.3	16.4	15.6	P24557	Thromboxa
14.1	15.1	15	Q9BV73	Centrosom
12.2	13.8	17.4	O75691	Novel nucle
17.6	17.3	17.1	O94782	Ubiquitin ca
20.3	16.4	17.1	Q96IR2	Zinc finger
11.1	20.1	17	J3QT09	Sentrin-spe
13.1	11.2	13.4	G3V3F7	X-linked ret
14.6	17.4	17.7	D3DSS6	Dedicator of
15.3	16	15.6	Q9H2M9	Rab3 GTP
14.5	14.8	16.2	O14544	Suppresso
13.4	16.9	15.6	H0YDJ3	PRP4 pre-
14.5	16.7	14	C9JT67	Coiled-coil
10.6	16.3	16.6	Q7Z6P3	Ras-relate
15.1	17.3	13.5	A0JNW5	UHRF1-bir
14.2	14.8	16.9	Q5FBX5	Interleukin-
10.3	16.4	14.8	Q8TEQ8	GPI ethanc
20.1	14.6	13	Q2TAZ0	Autophagy
18.6	15.8	15.5	P13533	Myosin-6 (I
16.1	14.1	12.5	Q8IY85	EF-hand C
10	13	20.3	Q96SE4	DNA-direct
12.2	14.7	15.7	C9JLR9	Zinc finger

No	Protein name	Score	Normal	MGUS	MMMUN	RESP	RRMM
37	Structural maintenance of chromosomes 6	6.7	14.5	12.5	15.1	16.3	12.7
1	Abnormal SLM-associated protein	6.1	14.5	13.2	11.6	17.6	21
	Limkain-b1	15.3	14.4	17.7	14.4	15.9	16.1
	Pyruvate carboxylase Neuronal quanine nucleotide exchange factor	9.7 7.7	14.4	14.0	14.2	15.3	12.6
	Endoribonuclease Dicer	8.1	14.2	16.2	15.6	13.6	13.4
	KICSTOR complex protein SZT2	6.1	14	15.3	12.7	14.6	18.4
	Protein-tyrosine phosphatase eta	6.4	14	13.3	19.2	17.7	15.6
	RAS p21 protein activator 1 isoform 1	11.8	13.9	17	17.5	14.2	15.7
	E3 ubiquitin-protein ligase ZNF598	6.0 6.0	13.8	12.9	19.1	15.9	13.9
	Zinc, finger protein 292	10.9	13.7	16.3	18.3	14.4	17.9
	Taste receptor type 2 (Fragment)	8.5	13.7	11.1	15	15.2	15.8
	G patch domain-containing protein 3	10.7	13.4	12.6	11.6	18.5	13.4
	Tectonin beta-propeller repeat-containing 1	6.6	13.4	11.4	21	14.3	12.8
	Ras association domain-containing protein 9	8.9	13.4	12.5	16.7	16.8	14.4
	Ankyrin repeat domain-containing protein 24	6.8	13.3	15.7	14.5	18.1	14.3
	Protein dopey-2 HAPRIN-a2 (Fragment)	12.2	13.2	10.0	13.7	10.4	16.1
	Semenogelin-2 (Semenogelin II) (SGII)	7.6	12.9	18.3	14.7	12	13.8
	Lamina-associated polypeptide 2,	7.6	12.9	11.6	18.2	13.3	15.6
	Lysine-specific demethylase 3B	12.7	12.8	13.3	14	12.6	14.7
	Sickle tail protein homolog	9.6	12.8	9.68	12.3	13.8	12.9
	AKAP350C	8.1	12.7	13.5	19.7	17.8	13.3
	Histone deacetylase complex subunit Sin3b	6.7	12.5	14	13	11.3	13.9
RO	Ras-G Pase-activating protein SH3	0.3	12.5	122	12.5	14	15
50	Sialic acid-binding lg-like lectin 7 (Fragment)	8.2	12.3	13	14	15.8	14.8
	Kelch domain-containing protein 3	9.6	12.4	14.2	13.4	12.6	12.7
	ChREBP	6.4	12.4	17.2	12.6	12.3	13.6
	Semaphorin-3G (Semaphorin sem2)	7.4	12.4	11	13.5	14.2	11.4
Y3	Sodium channel protein type 11 subunit alpha	14.1	12.3	17.1	15.2	17.2	16.3
	Uncharacterized protein DKFZp434F1622	7.2	12.2	12.6	14.9	16	15.1
	BEIN domain-containing protein 7 Goloin subfamily A member 4 (Fragment)	6.0 18.0	12.1	15.1	12.9	12.8	19.2
V2	Uncharacterized protein	7.1	12.1	12.3	13.3	14.9	14.3
	Interstitial collagenase	6.2	11.7	14.9	14.1	15.1	11.3
	Zinc finger protein 39	7.4	11.6	16.8	12.8	16.3	15.9
	Glucose-6-phosphate 1-dehydrogenase	6.9	11.6	13.2	15.1	18.6	19.2
3	Kinectin 1 (Kinesin receptor)	11.3	11.6	15	11.7	13	13.5
	LINC02902	7.8	11.5	13	12.2	11.4	11.8
	Thromboxane-A synthase	0.0 9.4	11.3	17.6	11.8	11.3	12.8
	Centrosome-associated protein CEP250	11.6	11.1	14.4	13.6	12.6	14.5
	Novel nucleolar protein 73 (NNP73)	19.9	11.1	18.2	12.7	16.7	14.2
	Ubiquitin carboxyl-terminal hydrolase 1	10.1	11	11	16.5	15.4	13.3
	Zinc finger protein 845	7.8	11	13.7	12.8	15	14.5
	Sentrin-specific protease 7	5.8	11	14	12.4	15.3	13.4
	X-linked retinitis pigmentosa GTPase p1	6.2	10.9	18.2	15.3	15 7	12.1
	Rab3 GTPase-activating protein	7.5	10.9	13.4	13.3	15.2	13.3
	Suppressor of cytokine signaling 6 (SOCS-6)	9.1	10.7	11.8	14.7	17.3	13.3
	PRP4 pre-mRNA-processing factor 4	7.4	10.7	13.5	16.8	14.3	12.2
	Coiled-coil domain-containing protein 144A	7.8	10.6	10.2	16.2	13.4	14.8
	Ras-related protein Rab-44	6.5	10.5	12.3	17.1	13.2	13
	UHRF1-binding protein 1-like	11.0	10.3	13	17.7	15.1	14.3
	Interleukin-/	8.2 7 °	10.2	11.4	12	1/ 1	13.2
	Autophagy-related protein 2 homolog A	7.0 9.6	9.98	12.5	12.2	11	12.1
	Myosin-6 (Myosin heavy chain 6)	10.8	9.97	14.7	18.5	20.1	12.2
	EF-hand Ca-binding domain-containing p13	6.4	9.91	12.3	12	19.3	12.3
	DNA-directed DNA polymerase	8.8	9.87	14.1	13.1	13.3	12.9
	Zinc finger translocation-associated protein	9.8	9.78	15.6	17.1	13.7	19.9

Figure 4.2 The relative expression levels of 126 common proteins

Figure 4.3 The common serum proteins differentially expressed among the study groups. (A-B) PANTHER GO protein classification of 126 common proteins. (C) Heatmap of 126 differentially expressed proteins showing the relative levels of expression among normal, MGUS, NDMM, RESP and RRMM groups.

We further analyzed the common proteins by individually comparing a fold-change of those between normal and NDMM groups. The fold-change was calculated using the difference between the log₂-intensity of NDMM and normal (log₂ [NDMM]-log₂ [normal]). We found that 81 proteins showed up-regulation and 45 proteins showed down-regulation in NDMM patients compared to the normal controls.

4.1.3.1 Upregulated common proteins

Consistent with the salient clinical picture of MM patients, several isotypes of immunoglobulin showed higher expression in MM compared to normal group. According to GO functional enrichment analyses (**Figure 4.4**), the common upregulated proteins were significantly related to cellular component organization or biogenesis, organelle organization and cell cycle process, as shown in **Figure 4.4A**.

The proteins involved in the positive regulation of the cell cycle process, such as treslin or TopBP1-interacting checkpoint and replication regulator and transcription activator BRG1, as well as the proteins involved in DNA replication, such as DNA polymerase, endonuclease dicer1, DNA replication licensing factor MCM7, were significantly upregulated in NDMM group. Almost upregulated proteins functioned in the DNA replication process, including nucleoside-triphosphate activity, helicase activity, chromatin binding, DNA helicase activity and DNA replication origin binding (Figure 4.4B). Based on CC classification, the majority of the upregulated proteins are the proteins located in the nucleus, nucleoplasm, nuclear lumen and chromosome (Figure 4.4C). Notably, we found that the proteins involved in the Ras family, including Ras-related protein Rab-44, Ras p21 protein activator 1 and Ras association domain-containing protein 9, were upregulated in MM serum. All Ras protein family belongs to a member of small GTPase proteins and are involved in the cell signaling process. The upregulation of these proteins is involved in the positive regulation of cell growth, differentiation and survival. Furthermore, the proteins involved in the ubiquitin-proteasome system (UPS), such as ubiquitin carboxylterminal hydrolase 1 and E3 ubiquitin-protein ligase, were also upregulated in MM patients.

Figure 4.4 GO functional enrichment analysis of the 81 upregulated common proteins in NDMM. The proteins were classified according to the following GO categories: (A) biological process, (B) molecular function and (C) cellular component. The y-axis indicates the functional classification or pathway, and the x-axis indicates the proteinencoded gene ratio (observed gene count/total upregulated genes) of the respective function type. The color key that accompanies the bubble plot indicates the false discovery rate, and the bubble size indicates the observed gene count of the proteins in the respective functional class or pathway.

4.1.3.2 Downregulated common proteins

Among 45 downregulated proteins, the most abundant proteins involved in the negative regulation of catalytic activity and cellular protein metabolic process (**Figure 4.5A**). Most of these proteins are located on chromosome part, chromosome and condensin complex (**Figure 4.5B**). However, no significant respective MF was observed among these downregulated proteins.

Figure 4.5 GO functional enrichment analysis of the 45 downregulated common proteins in NDMM. The proteins were classified according to the following GO categories: (A) biological process and (B) cellular component. The y-axis indicates the functional classification or pathway, and the x-axis indicates the protein encoded gene ratio (observed gene count/total downregulated genes) of the respective function type. The color key that accompanies the bubble plot indicates the false discovery rate, and the bubble size indicates the observed gene count of the proteins in the respective functional class or pathway.

4.1.4 The common serum proteins expressed in the disease groups

We found 80 serum proteins expressed in all disease groups but not normal serum. The lists and relative expression levels of these disease-associated proteins are shown in **Figure 4.6**.

			L	og2 ir	ntensi	ty				Lo	g2 ini	ensit	y
Accession No.	Protain nama	Score	MGUS	MMMUN	RESP	RRMM	Accession No.	Protein name	Score	MGUS	NDMM	RESP	RRMM
H3RRD5	Inconventional myosin-IXa	13.0	19.2	19.4	20.1	17.4	A8K6110	IPI A2(GAMMA)	0.010	124	16.8	13.1	14.6
OgeRI 1	BRC A1-A complex subunit R AP80	77	20.2	16.2	20.1	14.7	058E21	Bromodomain testis-specific protein	3.2 10.7	11.7	14.9	15.2	14.0
D08170	E3 ubiquitin-protein ligase XIAP	73	17.0	18.1	18.8	17.2	COISPO	Protein downstream neighbor of Son	11.4	13.8	15.3	12.7	14.9
4041¥7SBRQ	Thrombospondin motifs 19	10.4	14.2	20.5	16.0	16.2	O98872	F3 ubiquitin-protein ligase TRIM56	50	11.7	11.2	12.6	20.8
P05023	Sodium/notassium.transnorting ATPase alpha-1	63	17.7	17.1	16.1	14.6	FOPERO	Coiled-coil domain-containing protein 18	6.2	13.0	10.1	14.7	18.2
075923	Dysferlin	11.0	15.7	16.0	16.2	17.3	B2RBS8	Albumin-like protein	7.2	18.7	10.0	14.0	13.4
ANA494C181	CCA tRNA nucleotidy/transferase 1	71	22.0	13.4	14.2	14.3	09H2P0	Activity-dependent neuroprotective protein	7.0	11.9	13.8	15.7	14.4
ANANANMR.I7	Coaculation factor V	91	12.3	16.9	16.4	18.3	O8NDX6	Zinc finger protein 740	93	12.5	10.8	16.1	16.2
Q9UKV8	Protein argonaute-2 (Argonaute2)	12.7	13.6	13.6	17.7	18.6	B4D7F1	Eukarvotic translation initiation factor 4	71	14.8	11.7	11.0	18.0
Q9HBG6	Intraflagellar transport protein 122 homolog	92	15.0	18.0	12.9	17.4	B4DMS0	Cysteine-rich protein 2-binding protein	83	13.5	16.5	11.9	13.5
09Y4C4	Malignant fibrous histiocytoma-amplified seg 1	9.8	16.0	20.3	13.1	12.8	P35579	Myosin-9	6.3	14.1	13.1	14.7	13.3
A0A6Q8PF19	Sodium leak channel non-selective protein	7.7	17.3	13.6	15.1	16.0	P51587	Breast cancer type 2 susceptibility protein	13.0	12.7	11.8	14.4	16.2
A0A1B0GXK6	Disks large-associated protein 2	11.8	13.7	15.8	17.4	14.9	H0YNN7	Notch2-binding receptor 1	6.0	13.8	15.5	12.5	13.0
F5H2D0	Complement subcomponent C1r	11.3	20.1	12.4	12.4	16.0	A0A087WTF0	Protein tyrosine phosphatase protein 1	9.9	15.0	14.8	13.1	11.7
B7Z855	Ubiguitin carboxyl-terminal hydrolase 7	5.7	11.2	21.6	15.4	12.5	B7Z6K4	Zinc finger protein 406	7.3	14.5	10.3	13.7	15.7
Q6P2Q9	Pre-mRNA-processing-splicing factor 8	6.7	15.3	14.5	15.8	15.1	Q9H5L6	DNA transposase	9.3	13.2	13.8	13.9	13.0
Q9NT68	Teneurin-2 (Ten-2)	5.9	14.3	11.6	16.4	18.1	l6L994	Serine/threonine-protein kinase RIO3	6.7	13.4	11.8	15.6	12.9
Q9NQV6	PR domain zinc finger protein 10	7.4	9.9	12.5	19.3	18.6	O00300	Osteoprotegerin	7.4	13.0	16.2	12.2	12.1
B7ZKX2	Uncharacterized protein	13.2	12.5	18.2	12.8	16.4	A0A0C4DGN6	ARF GTPase-activating protein GIT1	7.9	13.6	12.7	14.0	13.2
P02549	Spectrin alpha chain, erythrocytic 1	11.4	15.1	18.7	14.2	11.9	E7EUH7	Pseudouridylate synthase 7 homolog	7.8	13.5	15.0	12.5	12.3
Q8IVM0	Coiled-coil domain-containing protein 50	8.1	14.1	12.7	18.9	14.1	Q5SQS8	Uncharacterized protein C10orf120	8.4	10.3	11.5	14.1	17.4
Q02388	Collagen alpha-1(VII) chain	6.7	13.3	15.4	15.6	15.5	Q9Y2F5	Little elongation complex subunit 1	6.0	13.9	12.8	12.7	13.7
075339	Cartilage intermediate layer protein 1	7.1	17.3	12.2	10.4	19.5	Q96DX9	Amyloid beta (A4) protein-binding	7.7	13.8	16.5	10.3	12.4
B4DZQ2	Alpha-actinin-3	10.3	18.3	11.7	14.8	14.6	B7ZAX9	SW/SNF-related matrix-associated actin	8.5	12.6	14.1	14.3	11.0
A0A7P0T8N2	Cytoplasmic dynein 1 heavy chain 1	6.8	11.3	15.3	16.0	16.6	B0AZQ4	Structural maintenance of chromosome protein	20.9	13.2	10.0	14.3	13.3
Q4G0X9	Coiled-coil domain-containing protein 40	9.5	11.2	16.1	14.0	18.0	E9PBC6	Transforming acidic coiled-coil-containing p2	10.8	12.5	12.3	14.0	12.1
Q96JB5	CDK5 regulatory subunit-associated protein 3	5.6	17.4	12.0	12.5	17.2	A0A0G2JK05	LY6G6F-LY6G6D readthrough	7.3	14.3	11.6	12.8	12.0
B4DW8	Nuclear body protein SP140	7.8	10.5	14.4	17.6	16.3	Q5VY43	Platelet endothelial aggregation receptor 1	9.2	12.3	11.7	14.2	12.3
A0A1W2PPX1	Cellular communication network factor 6	6.6	16.5	16.0	13.4	12.8	Q5JRA6	Transport and Golgi organization protein 1	12.2	16.4	12.6	10.0	11.5
E5RJN3	Condensin-2 complex subunit H2	7.3	11.4	18.4	13.6	15.1	B2R6H3	Kinesin-like protein	8.4	13.0	11.0	11.7	14.5
Q6UWX4	HHIP-like protein 2	9.3	11.4	16.2	17.0	13.2	Q59F82	C21orf2 protein variant (Fragment)	6.5	13.2	9.9	14.6	12.3
C9JG08	Uncharacterized protein C2orf16	7.0	10.5	18.5	11.5	17.1	A0A024RAC9	Zinc finger, UBR1 type 1, isoform CRA_c	11.0	10.6	11.4	14.5	13.5
D3DP75	Rab3 GTPase-activating protein	6.8	14.2	17.7	12.6	13.1	Q9BWF3	RNA-binding protein 4	5.7	14.6	11.7	12.1	11.4
Q96BY2	Modulator of apoptosis 1 (MAP-1)	6.9	17.5	12.5	14.7	12.7	Q6VY07	Phosphofurin acidic cluster sorting protein 1	6.0	12.7	14.2	11.7	11.1
P01871	Immunoglobulin heavy constant mu	28.8	18.8	12.9	12.6	12.9	Q63HN4	Uncharacterized protein DKFZp686J1732	6.4	11.4	12.7	12.6	12.9
Q8WWQ0	PH-interacting protein (PHIP)	9.9	12.9	13.5	15.1	15.7	E9PGA6	C1QTNF3-AMACR readthrough	6.9	13.2	12.8	11.8	11.9
Q69YQ0	Cytospin-A	5.9	13.1	14.0	15.2	14.8	A0A087X0B9	Protein-tyrosine-phosphatase	7.8	10.4	9.5	14.8	14.6
Q5JY77	GASP-1	11.0	12.4	11.0	17.6	16.1	13L4W6	ZSCAN32 (Fragment)	6.4	11.4	10.3	12.8	13.1
B2R969	MGAT3	6.5	11.9	15.9	11.3	17.8	Q07973	Cytochrome P450 24A1	8.1	9.3	11.4	13.0	12.8
Q8N4P8	Nucleolar GTP-binding protein 1 (Fragment)	8.3	15.1	15.5	13.1	13.2	Q13769	THO complex subunit 5 homolog	8.1	10.4	12.8	12.4	10.7

Figure 4.6 The relative expression levels of 80 common proteins identified in disease

groups

Based on GO classification, the respective BP, MF and CC of the diseaseassociated proteins are provided in **Figures 4.7A** and **4.7B**. The BP classification, including cellular process, biological process, metabolic process, response to stimuli and localization, were observed in 28.6%, 20.2%, 18.2%,9.1% and 9.1%, respectively. Based on their MF, these disease-associated proteins were classified into binding (37.5%), catalytic activity (23.5%), molecular regulator (11.8%) and transport activity (5.9%). This results suggested that almost these proteins acted as catalysts, regulators and transporter proteins involved in cell activities via many biological pathways. The CC classification of the 80 disease proteins is also demonstrated in **Figure 4.7B**. They were classified as cellular anatomical entities (48.8%), intracellular (36.6%) and protein-containing complex (14.6%). In addition, the protein expression pattern among the disease groups was represented by the heatmap (**Figure 4.7C**).

The results from GO functional enrichment analysis indicated that proteins involved in the regulation of microRNAs (miRNAs)-dependent gene expression and RNA processing, including pre-mRNA-processing-splicing factor 8, eukaryotic translation initiation factor 4, RNA-binding protein 4, argonaute-2 (AGO2), bromodomain testis-specific protein and THO complex (THOC) subunit 5, were the major upregulated proteins in this disease groups (**Figure 4.8A**). Depending on MF, most of them are involved in nucleotide triphosphate activity and mRNA binding (**Figure 4.8B**). Moreover, the predominant proteins in disease groups were located in the nucleus, macromolecular complex and nucleoplasm (**Figure 4.8C**). Furthermore, the proteins involving UPS, including ubiquitin carboxyl-terminal hydrolase-7 and E3 ubiquitin-protein ligase XIAP, were also observed with higher abundance in the disease groups.

Figure 4.7 The common serum proteins expressed in disease groups. (A.-B.) PANTHER GO protein classification of 80 common proteins in disease groups. (C.) Heatmap of 80 differentially expressed proteins showing the levels of expression among MGUS, NDMM, RESP and RRMM groups.

Figure 4.8 GO functional enrichment analysis of the 80 common proteins in the disease groups. The proteins were classified according to the following GO categories: (A) biological process, (B) molecular function and (C) cellular component. The y-axis indicates the functional classification or pathway, and the x-axis indicates the proteinencoded gene ratio (observed gene count/total common protein encoded genes) of the respective function type. The color key that accompanies the bubble plot indicates the false discovery rate, and the bubble size indicates the observed gene count of the proteins in the respective functional class or pathway.

4.1.5 The signature proteins

We found 8, 10, 17, 67 and 70 signature proteins identified in normal, MGUS, NDMM, RESP and RRMM groups, respectively. The lists of these proteins are shown in **Tables 4.2-4.6**.

No.	Accession No.	Gene	Protein name	Log ₂ intensity
1	H7BXS4	CAMK2B	Calcium/calmodulin-dependent	18.8784
			protein kinase type II subunit beta	
2	B4DNZ4	TIMP3	Metalloproteinase inhibitor 3	17.6022
3	Q8WVV4	POF1B	Premature ovarian failure protein	16.2047
			1B	
4	A0A286YEQ8	SCN1A	Sodium channel protein	15.3285
5	Q15697	ZNF174	Zinc finger protein 174	15.0755
		ZSCAN8	(Zinc finger and SCAN domain-	
			containing protein 8)	
6	I0CE67	FHL2	Four-and-a-half LIM domains 2	14.9009
7	B7Z951	DAGK	Diacylglycerol kinase (DAG	14.2253
			kinase)	
8	B3KTS4	ARHGEF16	Rho guanine nucleotide exchange	11.2516
			factor 16	

 Table 4.2 List of 8 signature proteins identified in normal serum

No.	Accession No.	Gene	Protein name	Log ₂ intensity
1	A0A087WXZ6	FCGR1B	High affinity immunoglobulin	17.020
			gamma Fc receptor IB (Fragment)	
2	Q53T94	TAF1B	TATA box-binding protein-	15.223
			associated factor RNA polymerase	
			I subunit B	
3	A4D248	- 71	Hypothetical gene supported by	15.196
			AK124321	
	Q9NVM9	INTS13	Integrator complex subunit 13	14.913
5	B4DMM4	RABEP1	Rab GTPase-binding effector	13.632
			protein 1	
6	D3DSM4	COL18A1	Collagen, type XVIII, alpha-1	13.371
			isoform	
7	Q8N2X6	C5orf55	Chromosome 5 open reading	13.181
			frame 55	
8	A6NK75	ZNF98	Zinc finger protein 98 (ZNF98)	12.970
9	B4DE95	ZNF187	Zinc finger protein 187 (ZNF187)	12.361
10	A0A024R7I8	IL27RA	Interleukin 27 receptor-alpha-	11.924
			isoform	

 Table 4.3 List of 10 signature proteins identified in MGUS serum

No.	Accession No.	Gene	Protein name	Log ₂ intensity
1	P24347	MMP11 STMY3	Matrix metalloproteinase-11	19.699
2	Q9ULL1	PLEKHG1 KIAA1209	Pleckstrin homology domain- containing family G member 1	19.226
3	Q9UF56	FBXL17 FBL17 FBX13 FBX013	F-box/LRR-repeat protein 17	18.923
	Q5VVK9	TRMT13	X modification enzyme TRM13	18.394
5	Q9HD33	MRPL47 NCM1 CGI-204	Mitochondrial 39S ribosomal protein L47	16.878
6	A0A0D9SFD2	THEMIS	Protein THEMIS	16.154
7	B4DR62	LMLN	Leishmanolysin-like peptidase	15.865
8	A0A3B3IRY8	EPHB1	Receptor protein-tyrosine kinase	15.504
9	Q08EN2	TPH1	TPH1 protein	14.148
10	A0A140VKH5		Testis tissue sperm-binding protein Li 92mP	13.954
11	Q9BT22	ALG1 HMAT1 HMT1 PSEC0061	Asparagine-linked glycosylation protein 1 homolog	13.665
12	B4DEA8	ACADVL	Very-long-chain specific acyl- CoA dehydrogenase	13.423
13	Q12986	NFX1 NFX2	Transcriptional repressor NF-X1	12.579
14	Q8NA66	CNBD1	Cyclic nucleotide-binding domain-containing protein 1	12.109
15	B3KXD1	PLCXD3	Phosphatidylinositol-specific phospholipase C	11.882
16	A0A024R7X9	UBE2W	Ubiquitin-conjugating enzyme E2W	11.460
17	Q6IPW4	NDUFV2	NADH dehydrogenase [ubiquinone] flavoprotein 2	11.316

Table 4.4 List of 17 signature proteins identified in NDMM serum

No.	Accession No.	Gene	Protein name	Log ₂ intensity
1	B3KMW2	USP36	Ubiquitin carboxyl-terminal hydrolase 36	21.286
2	Q2M2A3	GANC	Glucosidase, alpha neutral C	21.093
3	B4DWS9	SERPINB5	Serpin B5	20.469
4	A1L447	USP29	Ubiquitin carboxyl-terminal	20.230
			hydrolase	
5	A0A024QZZ4	ZNF322A	Zinc finger protein 322A	19.712
6	A0A0G2JPT5	RAD17	Cell cycle checkpoint protein	19.604
			RAD17	
7	M0R181	RPL21	60S ribosomal protein L21	19.549
8	Q8IYF3	TEX11	Testis-expressed protein 11	19.281
			(ZIP4H)	
9	P12757	SKIL	Ski-like protein (Ski-related	19.118
			oncogene)	
10	Q4LE36	ACLY	ATP-citrate (pro-S-)-lyase	18.867
11	Q6ZSS3	ZNF621	Zinc finger protein 621	18.621
12	V9HWG4	HEL37	1-phosphatidylinositol-3-	18.590
		PIP5K3	phosphate 5-kinase	
13	B4DP06	ATIC	5-aminoimidazole-4-carboxamide	18.305
			ribonucleotide formyltransferase	
14	A0A087WUX1	ENKUR	Enkurin	17.841
15	B7Z592	ZC3H15	Zinc finger CCCH domain-	17.815
			containing protein 15	
16	Q6P142	LIN9	LIN9 protein	16.606
17	Q5JZY3	EPHA10	Ephrin type-A receptor 10	16.605
18	A0A1B0GV63	ARID1B	AT-rich interactive domain- containing protein 1B	16.516
19	A0A024R1I0	NF2	Neurofibromin 2	16.434
20	Q9UDR5	AASS	Alpha-aminoadipic semialdehyde synthase	16.272

 Table 4.5 List of 67 signature proteins identified in RESP serum

No.	Accession No.	Gene	Protein name	Log ₂ intensity
21	Q9Y3A0	COQ4 CGI-92	Ubiquinone biosynthesis protein COQ4 homolog	16.161
22	A0A024QZN9	VDAC2	Outer mitochondrial membrane protein porin 2	16.110
23	G3V5E1	CCNK	Cyclin-K	16.084
24	A0A2X0SFI5	ECT2L	ECT2L	15.913
25	C9JKS0	NR2C2	Nuclear receptor subfamily 2 group C member 2	15.722
26	B4DYX8	PDP1	Pyruvate dehydrogenase (lipoamide)-phosphatase 1	15.330
27	A0A0U1RQB8	SERPINA2	Putative alpha-1-antitrypsin- related protein	15.257
28	Q9H176	ZNF143	ZNF143 protein (Fragment)	15.219
29	Q6IBA9	TNFSF10	Tumor necrosis factor ligand superfamily member	15.181
30	C9J069	AJM1 Coorf172	Apical junction component 1	15.096
31	075243	C901j172	R30783 1	15 007
32	075245 059FM8	HECTDI	RBR_type F3 ubiquitin transferase	17.007
33	A0A024RBG0	Cl2orf48	PARP-1 binding protein (PARP1- binding protein)	14.966
34	B2R6S9	LRPAP1	Low density lipoprotein receptor- related protein associated protein 1 (LRPAP1)	14.935
35	B7Z8S8	CAPN1	Calpain inhibitor (Calpastatin)	14.904
36	Q6ZNA1	ZNF836	Zinc finger protein 836	14.842
37	Q9NX65	ZSCAN32 ZNF434 HCCS5	Zinc finger and SCAN domain- containing protein 32	14.640
38	O14958	CASQ2	Calsequestrin-2 (Calsequestrin, cardiac muscle isoform)	14.379
39	E9PCD7	MAN2B2	Alpha-mannosidase	14.379
40	Q8N6Q8	METTL25 C12orf26	Methyltransferase-like protein 25	14.339

 Table 4.5 List of 67 signature proteins identified in RESP serum (Cont.)

No.	Accession No.	Gene	Protein name	Log ₂ intensity
41	A8MW78	GRAP	GRB2-related adapter protein	14.245
42	A0A7S5EWW8	-	IGH c918_heavy_IGHV3-	14.186
			15_IGHD6-19_IGHJ4	
43	B4DIH2	GDAP1	Ganglioside-induced	14.121
			differentiation-associated protein	
			1	
44	Q6PG37	ZNF790	Zinc finger protein 790	14.033
45	Q6PKG0	LARP1	La-related protein 1 (La	13.846
		KIAA0731	ribonucleoprotein domain family	
		LARP	member 1)	
46	B0QYC0	IL2RB	Interleukin-2 receptor subunit	13.838
	1/72/65 5		beta	
47	Q9NVU7	SDAD1	Protein SDA1 homolog	13.813
		NUC130	(Nucleolar protein 130)	
48	Q08495	DMTN	Dematin (Dematin actin-binding	13.628
		DMT	protein)	
		EPB49		
49	A0A024RBM7	PRDM4	PR domain zinc finger protein 4	13.573
			(PR domain-containing protein 4)	
50	Q5JQQ2	DPCD	Protein DPCD	13.457
51	J3QL54	NUP85	Nuclear pore complex protein	13.357
			Nup85	
52	B4DYC6	SGT1	SGT1	13.180
53	Q8N8P6		Putative uncharacterized protein	13.068
			FLJ39060	
54	F5H617	RTN3	Reticulon	12.901
55	Q8IWZ5	TRIM42	Tripartite motif-containing protein	12.834
	-		42	
56	A0A494C0K8	IGSF1	Immunoglobulin superfamily	12.814
			member 1	
57	Q7Z524	-	HUMEEP	12.595
58	B0BCZ3	ENPEP	Aminopeptidase	12.574
59	Q5U058	GAP43	Axonal membrane protein GAP-	12.458
			43 (Growth-associated protein 43)	
60	O60583	CCNT2	Cyclin-T2 (CycT2)	12.422

 Table 4.5 List of 67 signature proteins identified in RESP serum (Cont.)

No.	Accession No.	Gene	Protein name	Log ₂ intensity
61	B5MCF9	PES1	Pescadillo homolog	12.301
62	B3KPP7		Autophagy-related protein 9	12.273
63	A0A286YF60	SCYGR3	Small cysteine and glycine repeat-	11.948
		KRTAP28-	containing protein 3 (Keratin-	
		3	associated protein 28-3)	
64	A0A494C1I7	ZNF587B	Zinc finger protein 587B	11.790
65	D6RG18	CCNH	Cyclin-H	11.225
66	A0A024RCX2	PRRT1	Proline-rich transmembrane	11.179
			protein 1	
67	M0QZC2	PRKD2	Serine/threonine-protein kinase D2	10.892

 Table 4.5 List of 67 signature proteins identified in RESP serum (Cont.)

No.	Accession No.	Gene	Protein name	Log ₂ intensity
1	A0A2R8YEQ5	NEXMIF	Neurite extension and migration	20.749
2	X6R3B1	F11	Coagulation factor XI	20.342
3	B5M0C0	DUOXAI	Dual oxidase maturation factor 1	19.760
4	O5SOS7	SH2D4B	SH2 domain-containing protein 4B	19.582
5	B7Z1N6	ALDOA	Fructose-bisphosphate aldolase	19.369
6	O8N7U5		cDNA FLJ40332 fis, clone	19.152
			TESTI2031760	
7	A0A0U1RQC7	CFAP99	Cilia- and flagella-associated	18.817
8	A0A0C4DGE7	EVC2	Ellis van Creveld syndrome 2 (Limbin)	18.664
9	J3KP02	LEKR1	Leucine-, glutamate- and lysine-rich protein 1	18.538
10	B4DF67	MAPK5	Mitogen-activated protein kinase 5	18.109
11	Q96NH3	TBC1D32	PTBC1 domain family member 32	17.638
		BROMI C6orf170 C6orf171		
12	Q6PFW1	PPIP5K1	Inositol hexakisphosphate and	17.569
		HISPPD2A	diphosphoinositol-	
		IP6K IPS1	pentakisphosphate kinase 1	
		KIAA0377		
12	4040240705	VIP1 OLEMA	Olfactomadin 4	17516
13	AUAU24QZ93	OLFM4	Chromosome 2 open reading frame	17.202
14	AUAU24K2I4	C301j20	20	17.295
15	Q9ULA1	ZNF667	Zinc finger protein 667	17.217
16	Q2NL82	<i>TSR1</i>	Pre-rRNA-processing protein TSR1	17.085
17		KIAA1401	homolog	17.020
17	AUAUAUMQSU	PHF20L1	PHD finger protein 20-like protein 1	17.028
18	F8W9B8	EXOC5	Exocyst complex component 5	17.008
19	AUAU87WYG4	МКОН5	Maestro heat-like repeat family member 5	16.734
20	Q6ZMU5	TRIM72 MG53	Tripartite motif-containing protein 72	16.658

 Table 4.6 List of 70 signature proteins identified in RRMM serum

No.	Accession	Gene	Protein name	Log ₂
	No.			intensity
21	09BY89	KIAA 1671	Uncharacterized protein	16.655
21	Q) D 10)	11110/1	KIAA1671	10.022
22	A0A2R8Y6J6	SCN10A	Sodium channel protein	16.531
23	B2RAM6	KIF11	kinesin family member 11	16.449
24	U3KQG0	TARS2	Threonyl-tRNA synthetase	16.384
25	Q12899	TRIM26	Tripartite motif-containing protein	16.381
		RNF95	26	
		ZNF173		
26	Q7L5A3	FAM214B	Protein FAM214B	16.274
		KIAA1539		
27	A0A024R1Y2	ACLY	ATP-citrate synthase	16.253
		hCG_19718		
28	Q9Y2H9	MAST1	Microtubule-associated	16.125
		KIAA0973	serine/threonine-protein kinase 1	
		SAST		
29	Q8NB16	MLKL	Mixed lineage kinase domain-like	15.952
			protein (hMLKL)	
30	A0A024R2L8	CTDSPL	Carboxy-terminal domain, RNA	15.847
			polymerase II	
31	Q9NXH8	TOR4A	Torsin-4A (Torsin family 4	15.786
		C9orf167	member A)	
32	A0A024R9R5	ZFP106	Zinc finger protein 106 homolog	15.785
33	Q13467	FZD5	Frizzled-5	15.755
		C2orf31		
34	F5H2N6	KIAA1586	E3 SUMO-protein ligase	15.729
35	Q68DW7	STAG1 D	Cohesin subunit SA-1	15.629
36	Q96GD3	SCMH1	Polycomb protein SCMH1	15.604
37	E9PJN0	ACOT8	Acyl-coenzyme A thioesterase 8	15.469
38	A0A0K0K1J0	HEL-S-292	Epididymis secretory protein Li	15.194
			292	
39	Q14692	BMS1	Ribosome biogenesis protein	15.175
		BMS1L	BMS1 homolog	
		KIAA0187		
40	Q8IV76	PASD1	Circadian clock protein PASD1	15.050

Table 4.6 List of 70 signature proteins identified in RRMM serum (Cont.)

No.	Accession	Gene	Protein name	Log ₂
	No.			intensity
41	A0A087X254	ZNF615	Zinc finger protein 615	15 008
42	B3KVF0		DNA helicase	14.863
43	O8TDG4	HELO	Helicase POLO-like	14.600
		HEL308		
44	A5PLL1	ANKRD34B	Ankyrin repeat domain-containing	14.529
			protein 34B	
45	Q86Y64	ZNF354A	Zinc finger protein 354A	14.527
46	C9JSJ3	MEIOSIN	Meiosis initiator protein	14.358
		BHMG1		
47	B3KP14	GRSF1	G-rich sequence factor 1	14.324
48	B3KU60	FTO	Alpha-ketoglutarate-dependent	14.324
			dioxygenase FTO	
49	Q9BQ24	ZFYVE21	Zinc finger FYVE domain-	14.280
			containing protein 21	
50	F8VZA0	PUS7L	Pseudouridylate synthase 7	13.993
			homolog-like protein	
51	Q5JWV1	UCKL1	Uridine-cytidine kinase-like 1	13.886
52	A0A0C5BIK5		NOK mRNA	13.785
53	C9J1J2	NME6	Nucleoside diphosphate kinase 6	13.717
54	Q9NR61	DLL4	Delta-like protein 4	13.702
55	Q6ICI8	APOL4	APOL4 protein (13.651
56	Q495X7	TRIM60	Tripartite motif-containing protein	13.568
		RNF129	60	
		RNF33		
57	Q96NW4	ANKRD27	Ankyrin repeat domain-containing	13.483
-		PP12899	protein 27	
58	A8MUV8	ZNF727	Putative zinc finger protein 727	12.815
50		ZNF727P		10 (10
59	AUA494C077	GIPK	Gastric inhibitory polypeptide	12.640
()	OF COVC	CCD C157	receptor	10 (20
60	Q369K6		Colled-coll domain-containing	12.639
		KIAA1656	protein 15/	

Table 4.6 List of 70 signature proteins identified in RRMM serum (Cont.)

No.	Accession No.	Gene	Protein name	Log ₂
				intensity
61	B7Z970	INTS9	Integrator complex subunit 9	12.484
62	Q5T457	ANKRD2	Ankyrin repeat domain-containing	12.234
			protein 2	
63	C9JX88	PSMC2	26S proteasome AAA-ATPase	12.040
			subunit RPT1	
64	Q9BR84	ZNF559	Zinc finger protein 559	11.806
65	A0A3B3ITQ6	NEK5	Serine/threonine-protein kinase	11.737
			Nek5	
66	A0A024RAE1	Clorf33	Ribosome assembly factor mrt4	11.388
67	A0A0S2Z486	NDN	Necdin-like protein isoform 2	11.204
68	B4DW48	TPRC4AP	Trpc4-associated protein	10.597
69	Q6ZT31		BRAWH3014609	10.536
70	B2RU13	KCNA7	Potassium voltage-gated channel,	10.198
			shaker-related subfamily, member 7	

Table 4.6 List of 70 signature proteins identified in RRMM serum (Cont.)

4.2 Biomarker identification

4.2.1 Identification of candidate protein biomarkers

In this chapter, we aimed to identify potential serum biomarkers indicating disease activity in MM patients. The differentially expressed proteins identified in normal, NDMM, RESP and RRMM were subjects for further exploration to discover the biomarkers. Based on MM disease activity, the ideal biomarkers should be present in the active states of the disease, such as newly diagnosed or relapsed/refractory disease, but they exhibited downregulation or were absent in disease remission states (RESP). Therefore, the differentially expressed proteins identified in normal group (772 proteins) were filtered out. To identify potential biomarkers indicating MM disease

activity, 966 differentially expressed proteins identified among patients were analyzed. Only 288 differentially expressed proteins identified in disease-active states (NDMM and RRMM) were compared with RESP. Proteins with fold change (disease-active states *vs.* remission states) greater than 1.5 or less than -1.5 and adjusted *p*-values less than 0.05 were considered potential candidate biomarkers. Among these, 38 dysregulated proteins including 23 up-regulated and 15 down-regulated proteins were compatible with the criteria (**Figure 4.9**). The upregulated and downregulated candidate proteins are listed in **Tables 4.7** and **4.8**.

Figure 4.9 The overview of candidate biomarker screening processes. Volcano plot demonstrating the change in the relative abundance of 288 proteins between disease-active states (NDMM and RRMM) and disease remission states (RESP). The x-axis represents \log_2 fold changes of proteins, and the y-axis represents $-\log_{10}$ FDR-adjusted *p*-values. The rose pink and blue-green dots represent significantly upregulated and downregulated proteins with a \log_2 -fold change >1.5 and <-1.5, respectively.

No.	Accession No.	Gene name	Peptide sequence	Log ₂ -	p-value
				FC	
1	Q8TDI8	TMC1	ESLRPKRK	7.99	0.001
2	A0A024QZH0	PLA2G4C	QEWDLAKSLQKTIQAAR	7.61	0.024
3	A0A0G2JRT2	MUC20	ASPTIVPHPGDSSASSESR	6.96	< 0.001
4	A0A024R534	MTA2	AECSIRLPKAAK	6.78	< 0.001
5	E7EVV3	SPATA18	QLQNIEEEAALLSIAR	6.19	0.005
6	F8W9W0	EPHA5	IPIRWTAPEAIAFR	6.04	0.002
7	X5D7N2	PRODH	HALLAPWACRLLVLLR	5.50	0.003
8	Q6ZNE1	EIF3A	DRPDLSAPESLQLYLDTR	5.43	< 0.001
9	B3KY41	SMNT	ENWLHSQQREAEQR	5.33	0.017
10	Q9UKV8	AGO2	AALAQHRDGNSQGSTHSGE-	5.02	0.024
			ASDHK		
11	P51587	BRCA2	CLSPERVLLQLKYR	4.48	0.007
12	Q86XN6	ZNF761	CEECDKAFHFK	3.85	0.006
13	A0A2R8YG28	ΟΤΟΑ	ISPIEIGLFISYDNATK	3.75	0.007
14	A0A090N8Y2	ERP70	DIASDQTSGQVDMMHR	3.41	0.019
15	O14917	PCDH17	GGGGLQPHSYEARICNYR	3.35	0.005
		PCDH68			
		PCH68			
16	Q5SXM1	ZNF678	AGCEECPYKPEGSHK	3.17	0.014
17	F5H450	FZD10	ADVHRAGLYPHPR	3.07	0.015
18	Q14CC5	TPH2	ELSKLYPTHACR	2.92	0.043
19	Q7KZN9	COX15	APARAPALLPLYRQK	2.35	0.003
20	A0A0C4DG03	SULT6B1	GFLFPGVAGHTDQK	2.25	0.024
21	Q7Z6I6	ARHGAP30	AYFRELPDPLLTYR	1.87	0.010
22	J3KN75	TBC1D8B	EDDPEKFR	1.73	0.002
23	A0A024RAC0	LUZP1	AANGLEADNSCPNSK	1.57	0.023

Table 4.7 The significant upregulated candidate proteins identified in NDMM andRRMM serum samples with a fold change >1.5

No.	Accession No.	Gene name	Peptide sequence	Log2-	p-value
				FC	
1	Q9HCE0	EPG5	DWPKRLYTSHFAYLIFEPK	-1.94	0.001
2	Q9UKT9	IKZF3	AEMSNGAPQELEKK	-2.16	0.008
3	Q13470	MKRN2	AQEPDFPHLVQRLCIECVEG-	-2.28	0.001
			HLYVCADGR		
4	O60500	NPHS1	KSLILNVK	-2.81	0.000
5	C6KE32	P2RX7	CCQPCVVNEYYYR	-2.94	0.001
6	Q9ULX3	NOB1	TFCGHRCLIYR	-3.07	0.001
		PSMD8BP1			
7	Q9NX05	FAM120C	DRLAEWGRR	-3.11	0.031
		CXorf17			
8	A0A0S2Z4T5	RIN1	LELEQVRQKLLQLLR	-3.26	0.033
9	Q9BV57	ADI1	DKLPNYEEKIK	-3.66	0.006
		MTCBP1			
		HMFT1638			
10	A0A1W2PRI9	C4orf50	AEWGSHKWQAFSWNER	-4.24	0.008
11	Q9BYV9	BACH2	AGDVEMDRK	-4.31	0.006
12	A0A140VJV5	CBY2	KDVVELSASKDHLLPSPR	-4.79	0.004
13	B4E100	APBB1	ESKETNEKMNAK	-4.89	0.014
14	P20848	SERPINA2	AEELHPAGTAETK	-6.25	0.002
15	Q9BZZ2	SIGLEC1	ADTGFYFCEVQNVHGSER	-6.53	0.016

Table 4.8 The significant downregulated candidate proteins identified in NDMM andRRMM serum samples with a fold change <-1.5</td>

4.2.2 Functional analyses of the candidate proteins

To evaluate the functional relevance of the 38 dysregulated proteins, GO functional and KEGG pathway enrichment analyses were performed. The proteins were classified based on their respective biological processes, molecular functions and cellular components (**Figure 4.10A**). The KEGG pathway enrichment analysis revealed that most dysregulated proteins were significantly enriched in RNA transport, pathways in cancer, miRNAs in cancer and the p53 signaling pathway (**Figure 4.10B**). In addition, the genetic constitution, functional and drug–protein interactions of the 38 candidate proteins was described on PPI network (**Figure 4.11**).

Figure 4.10 GO functional and KEGG pathway enrichment analysis of the 38 candidate proteins. (A) Bar charts demonstrating the distribution of the proteins according to GO classification. (B) KEGG pathway enrichment analysis.

Figure 4.11 The PPI network of 38 candidate proteins (search on Sep 7, 2022, PPI enrichment *p*-value<0.001)

4.2.3 Analysis of gene expression profiles

To confirm whether the dysregulated proteins were expressed by myeloma cells, the NCBI GEO microarray data set (accession no.GSE47552)¹⁵⁴ of plasma cells isolated from 41 patients with MM and 5 normal controls were analyzed. A comparison of normalized gene expression values among 38 dysregulated proteins encoding genes is shown in **Figure 4.12A**. Gene levels were expressed by normalized expression values and two-tailed *t*-test were calculated to compare between MM and healthy control groups. The results were shown in **Table 4.9**. We found that 12 of 38 genes were significantly expressed among patients with MM. However, only five genes—metastasis-associated protein-2 (*MTA2*), argonaute-2 (*AGO2*), proline dehydrogenase (*PRODH*), transmembrane channel-like protein 1 (*TMC1*) and protein FAM120C (*FAM120C*)—showed significant expression patterns consistent with our
results from LC–MS/MS. Regarding our criteria for biomarker selection consisting of (a) fold change >1.5 or <-1.5 and p <0.05 by LC–MS/MS and (b) fold change >1.2 or <-1.2 and p <0.05 using data from the microarray dataset,¹⁵⁴ only MTA2 and AGO2 were selected for further analyses as potential biomarkers (**Figure 4.12B**).

Figure 4.12 The expression profiles of the genes involving 38 dysregulated proteins among 41 patients with MM compared with 5 normal controls using the data from GSE47552.¹⁵⁴ (A) Bar chart showing the relative gene expression levels of genes involving 38 dysregulated proteins. The significant *p*-value less than 0.05 and 0.01 are represented with * and **, respectively. (B) Selecting of the candidate biomarkers.

Na	Como norma	Type of	MM vs. (Control	n valua
INO.	Gene name	regulation	Fold change	t (df=44)	<i>p</i> -value
1	TMC1	Up	1.015	2.153	0.037*
2	PLA2G4C	-	0.951	1.219	0.229
3	MUC20	-	1.052	1.755	0.086
4	MTA2	Up	1.185	3.567	< 0.001*
5	SPATA18	10.0	0.991	0.329	0.744
6	EPHA5		1.026	1.001	0.322
7	PRODH	Up	1.059	2.220	0.032*
8	EIF3A	Down	0.945	2.103	0.041*
9	SMTN	n. · N	0.945	1.420	0.163
10	AGO2	Up	1.110	2.177	0.035*
11	BRCA2	Down	0.850	3.567	< 0.001*
12	ZNF761	Down	0.902	3.760	< 0.001*
13	ΟΤΟΑ	- NA	- 0.983		0.469
14	ERP70		1.001	1.673	0.071
15	PCDH17) · ·) · ?	1.043	1.812	0.077
16	ZNF678	Down	0.821	4.801	< 0.001*
17	FZD10	NOĽ	1.039	1.931	0.059
18	TPH2	11-	1.032	0.358	0.722
19	COX15	S184	0.958	1.291	0.229
20	SULT6B1		1.058	2.654	0.111
21	ARHGAP30	-	1.053	1.403	0.167
22	TBC1D8B	Down	0.895	2.233	0.031*
23	LUZP1	-	1.027	0.835	0.408
24	EPG5	-	0.930	1.749	0.087
25	IKZF3	-	0.967	0.648	0.520

Table 4.9 The gene expression profiles of the genes involving 38 candidate proteinscompared between MM patients and normal controls using data from GSE47552

* significant *p*-value

Table 4.9 The gene expression profiles of the genes involving 38 candidate proteins

 compared between MM patients and normal controls using data from GSE47552

 (Cont.)

No	Cono nomo	Type of	MM vs. (MM vs. Control			
110.	Gene name	regulation	Fold change	t (df=44)	<i>p</i> -value		
26	MKRN2	-	1.014	0.257	0.798		
27	NPHS1	-	1.029	1.291	0.204		
28	P2RX7	1.5	0.952	1.136	0.262		
29	NOB1	1.2	1.082	1.801	0.079		
30	FAM120C	Down	0.819	7.838	< 0.001*		
31	RIN1	Up	0.964	2.684	0.010*		
32	ADI1	-	1.027	0.674	0.504		
33	C4orf50	Up	1.110	3.648	0.001*		
34	BACH2	· · /	1.066	1.401	0.168		
35	APBB1	_ ·	1.016	0.714	0.479		
36	CBY2		1.120	1.444	0.156		
37	SIGLEC1	- 2- VA	0.998	0.113	0.910		
38	SERPINA2		0.998	0.076	0.939		

* significant *p*-value

4.2.4 KEGG enrichment-based network analysis of MTA2 and AGO2

We further analyzed KEGG enrichment-based PPI network analysis, which revealed MTA2 and AGO2 as a central mediator of multiple signaling pathways, including apoptosis, miRNAs in cancer, ubiquitin mediated proteolysis, nucleosome remodeling and deacetylase (NuRD) complex, the *TP53*, the MAPKs and FOXO signaling pathways, as shown in **Figure 4.13**.

Figure 4.13 KEGG pathway enrichment-based network analysis. The top candidate proteins, MTA2 and AGO2 (gold yellow), were predicted to be a central mediator of multiple signaling pathways.

4.3 Biomarker verification and validation

4.3.1 Biomarkers verification

4.3.1.1 Serum MTA2 and AGO2 levels

In the verification phase, the sample size was calculated using a pooled SD of log_2 intensity from LC–MS/MS (SD of 17.6 and 18.4 for MTA2 and AGO2); a level of significance of 5% and a level of the estimation error of 5%. We estimated that at least 50 samples were required for each group. The simple randomized sampling was performed using a random sample of cases function in IBM SPSS Statistics for Windows, Version 20.0 (IBM Corp., Armonk, NY, USA), in which each sample has an exactly equal chance of being selected. However, due to insufficient volume existing in some samples, only 160 samples from NDMM (n = 50), RESP (n =

50), RRMM (n = 40) and normal controls (n = 20) were used for MTA2 and AGO2 measurement by enzyme-linked immunosorbent assay (ELISA).

MTA2 and AGO2 concentrations were measured using an ELISA assay. Median (IQR) MTA2 and AGO2 levels in each group are shown in **Table 4.10**, and comparison of MTA2 and AGO2 levels among the study group are shown in **Figure 4.14**.

	Median (IQR), pg/mL							
	Normal (n = 20)	NDMM (n = 50)	RESP $(n = 50)$	RRMM (n = 40)				
MTA2	2,274.0	5,001.0	2,889.0	4,395.0				
	(1,750.0–3,332.0)	(4,356.0-6,069.0)	(2,091.0-4,256.0)	(3,720.0–5,149.0)				
AGO2	46.2	123.4	55.6	80.1				
	(15.7–64.2)	(90.9–208.9)	(34.0–73.9)	(48.2–127.7)				

Table 4.10 Median (IQR) MTA2 and AGO2 levels measured by ELISA

IQR, inter-quartile ranges; NDMM, newly diagnose multiple myeloma; RESP, multiple myeloma patients with the response to treatment at least very good partial response; RRMM, relapsed/refractory multiple myeloma.

Figure 4.14 Serum MTA2 and AGO2 levels measured by ELISA. Comparison of (A) MTA2 levels and (B) AGO2 levels among normal control, MGUS, NDMM, RESP and RRMM patients. * represents *p*-value <0.05, ** represents *p*-value <0.01, *** represents *p*-value <0.001, *** represents *p*-value <0.001, *** represents *p*-value <0.001 and ns represents not significant.

4.3.1.2 Specific cut off for serum MTA2 and AGO2

The diagnostic performance and specific cut-off for MM discrimination were analyzed based on MTA2 and AGO2 levels from controls and NDMM. Sensitivity, specificity and ROC with AUC were evaluated. The MTA2 level of 4,101.0 pg/mL could provide a sensitivity of 82.6% and a specificity of 95.0%; while the AGO2 level of 83.0 pg/mL could provide a sensitivity of 80.0% and a specificity of 95.0% (**Figure 4.15**). These levels were considered the optimal specific cut-offs.

Figure 4.15 The ROC analysis demonstrating the specific cut off for serum (A) MTA2 and (B) AGO2

4.3.2 Biomarkers validation

To confirm our findings, 30 NDMM and 30 RRMM patients were enrolled to the validation cohorts. Paired serum samples were collected from each patient at the time of diagnosis and at the time of VGPR/CR for NDMM cohort, and at the time of VGPR/CR and the time of relapsed/refractory disease for RRMM cohort. Demographic data of the NDMM and RRMM patients are summarized in **Table 4.11**.

Characteristics	NDMM cohort	RRMM cohort		
Characteristics	(n = 30)	(n = 30)		
Age, year				
Mean \pm SD	58.93 ± 11.96	62.20 ± 10.01		
Sex, n (%)				
Male	16 (53.3)	20 (66.7)		
Female	14 (46.7)	10 (33.3)		
Heavy chain type, n (%)				
IgG	13 (43.3)	24 (80.0)		
IgA	11 (36.7)	6 (20.0)		
Other (IgM, IgD and IgE)	0 (0.0)	0 (0.0)		
None	6 (20.0)	0 (0.0)		
Light chain type, n (%)				
Карра (к)	17 (56.7)	18 (60.0)		
Lambda (λ)	13 (43.3)	12 (40.0)		
ISS stage, n (%)				
I or II	14 (46.7)	7 (23.3)		
III	16 (53.3)	23 (76.7)		
ASCT, n (%)				
ASCT eligible (≤65 yrs.)	20 (66.7)	20 (66.7)		
Non-ASCT eligible (>65 yrs.)	10 (33.3)	10 (33.3)		
First-line treatment regimen, n (%)				
Bortezomib based	25 (83.3)	23 (76.7)		
Non-Bortezomib based	5 (16.7)	7 (23.3)		
Following time, days				
Median (range),	194 (97–793)	456 (119–2,192)		

Table 4.11 Patient demographics and baseline disease characteristics of 60 patients in validation cohorts

ASCT, autologous stem cell transplantation; Ig, immunoglobulin; IQR, inter quartile range; ISS, International Staging System; NDMM, newly diagnosed multiple myeloma; RRMM, relapsed/refractory multiple myeloma, SD, standard deviation.

The serum MTA2 and AGO2 levels were determined using the ELISA technique, and were shown in **Figure 4.16**. In the NDMM cohort, the MTA2 levels measured at the time of diagnosis were significantly higher than those measured at the time of response, with a median (IQR) of 4,825.0 (4,064.0-5,952.0) *vs.* 3,281.0 (2,154.0-4,654.0) pg/mL, Wilcoxon matched-pairs signed rank test *p*-value <0.0001 (**Figure 4.16A**). Similar to MTA2, the AGO2 levels measured at the time of diagnosis were significantly higher than those measured at the time of response, with a median of 114.9 (78.4-180.4) vs. 59.1 (32.8-96.9) pg/mL, Wilcoxon matched-pairs signed rank test *p*-value <0.0001 (**Figure 4.16B**).

In the RRMM cohort, both MTA2 and AGO2 levels measured at the time of response were significantly lower than those measured at the time of relapsed/refractory disease (both *p*-values <0.001, **Figure 4.16C-D**). The median of serum MTA2 levels measured at the time of response and at the time of relapsed/refractory disease were 3,548.0 (2,181.0-4,620.0) and 4,435.0 (3,226.0-5,012.0) pg/mL, respectively. The median of serum AGO2 levels measured at the time of response and at the time of relapsed/refractory disease was 48.3 (30.9-73.9) and 70.1 (47.1-96.9) pg/mL, respectively.

4.3.3 Association between serum MTA2 and AGO2 levels and disease characteristics

To evaluate the effects of serum MTA2 and AGO2 levels on disease characteristics, we analyzed the association between disease features and serum MTA2 and AGO2 levels using the specific cut-offs established for those markers; 4,101.0 pg/mL for MTA2 and 83.0 pg/mL for AGO2. The serum levels at the time of diagnosis and response were used for the analysis in the NDMM and RRMM cohorts, respectively. The patient with a serum biomarker level more than the cut-off is considered a high protein expression group, and those with a serum biomarker level less than or equal to the cut-off are considered a low protein expression group. Characteristics data were analyzed and compared between high and low protein expression groups. The results are shown in **Table 4.12**.

	MTA2 levels						AGO2 levels					
	NDMM cohort		t RRMM cohort		50.00		NDMM cohort		RRMM cohort			
Characteristics	Low	High	<i>p</i> -value	Low	High	<i>p</i> -value	Low	High	<i>p</i> -value	Low	High	<i>p</i> -value
	(n = 7)	(n = 23)		(n = 19)	(p 11)		(n = 8)	(n = 22)		(n = 19)	(n = 11)	
Age, Mean \pm SD	56.0±15.1	59.8±11.1	0.465	60.30±10.3	65.6±8.9	0.167	61.0±13.5	58.2±11.6	0.577	60.6±9.9	68.5±8.5	0.850
Sex, n (%)												
Male	6 (85.7)	10 (43.5)	0.050*	11(57.9)	9 (81.8)	0.180	7 (87.5)	9 (40.9)	0.024*	15 (62.5)	5 (83.3)	0.333
Female	1 (14.3)	13 (56.5)		8 (42.1)	2 (18.2)		1 (12.5)	13 (59.1)		9 (37.5)	1 (16.7)	
ISS stage, n (%)												
I or II	3 (42.8)	11 (47.8)	0.818	4 (21.1)	3 (27.3)	0.698	5 (62.5)	9 (40.9)	0.295	6 (25.0)	1 (16.7)	0.666
III	4 (57.2)	12 (52.2)		15 (78.9)	8 (72.7)		3 (37.5)	13 (59.1)		18 (75.0)	5 (83.3)	
ASCT, n (%)												
ASCT eligible	5 (71.5)	15 (65.2)	0.760	5 (26.3)	5 (45.5)	0.284	4 (50.0)	16 (72.7)	0.243	17 (70.8)	3 (50.0)	0.333
Non-ASCT eligible	2 (28.5)	8 (34.8)		14 (73.7)	6 (54.5)		4 (50.0)	6 (27.2)		7 (29.2)	3 (50.0)	
Treatment, n (%)												
Bortezomib based	N/A	N/A	N/A	3 (15.8)	4 (36.4)	0.199	N/A	N/A	N/A	20 (83.3)	3 (50.0)	0.084
Non-Bortezomib based	N/A	N/A		16 (84.2)	7 (63.6)		N/A	N/A		4 (16.7)	3 (50.0)	
Bone involvement, n (%)												
Positive	3 (42.8)	16 (69.6)	0.199	5 (26.3)	6 (54.5)	0.389	2 (25.0)	17 (77.3)	0.009*	6 (25.0)	5 (83.3)	0.080*
Negative	4 (57.2)	7 (30.4)		14 (73.7)	5 (45.5)		6 (75.0)	5 (22.7)		18 (75.0)	1 (16.7)	

Table 4.12 Association between patient's demographics and disease characteristics and the proteins levels

*, significant *p*-value; ASCT, autologous stem cell transplantation; Ig, immunoglobulin; IQR, inter quartile range; ISS, International Staging System; NDMM, newly diagnosed multiple myeloma; RRMM, relapsed/refractory multiple myeloma, SD, standard deviation.

For MTA2, no significant difference was found between high and low serum MTA2 level groups in terms of age, sex, ISS stage, ASCT eligibility, treatment group and bone involvement features in both NDMM and RRMM cohorts (p-value >0.05). For AGO2, high AGO2 level was frequently observed in females than males in NDMM patients (p-value = 0.024), but this effect was not observed in RRMM patients. Similar to MTA2, no significant difference was found between high and low serum AGO2 level groups in terms of age, ISS stage, ASCT eligibility and treatment group in both NDMM and RRMM cohorts (p-value >0.05). Notably, we found that a high level of AGO2 was associated with bone involvement features in both NDMM and RRMM patients, with a p-value of 0.009 and 0.080, respectively.

4.3.4 Impact of serum MTA2 and AGO2 levels on patient's outcomes

Regarding the treatment response and MM disease progression as events of interest, in the NDMM cohort, the TTR was counted from the start of treatment to the first observation of the response of at least VGPR. The impact of the biomarker levels on patients' TTR was evaluated using the biomarker levels when newly diagnosed. For the RRMM cohort, the PFS was counted after the patient achieved a response of at least VGPR until diagnosis for disease progression, and the levels of the biomarkers at response were used to evaluate the impact on patients' PFS. The OS was not assessed due to the low number of events (deaths) at the time of analysis.

Proportion of patients with high and low MTA2 and AGO2 levels among NDMM and RRMM cohorts are shown in **Figures 4.17A** and **4.17C**. In the NDMM cohort, no significant difference in TTR was observed among patients with NDMM with high and low MTA2 levels. Interestingly, high AGO2 levels were associated with prolonged TTR (median TTR 230 *vs.* 153 days, p = 0.045, HR = 3.00, 95% CI, 1.02 to 8.76) compared with those with low levels (**Figure 4.17B** and **Table 4.13**). In contrast, in the RRMM cohort, high MTA2 levels at response at least VGPR were associated with shorter PFS (median PFS 306 *vs.* 628 days, p = 0.044, HR = 2.48, 95% CI, 1.02 to 6.02) compared with those with low levels. This effect was not observed at high and low AGO2 levels (**Figure 4.17D** and **Table 4.13**). Moreover, univariate Cox regression analysis was used to analyze the independent clinical variables associated with TTR and PFS of patients with MM, including age, ISS stage III vs. I/II, high LDH level, bone involvement features and treatment regimens. No association was observed

between these variables and patients' TTR and PFS in this study population. This implied that high AGO2 and MTA2 levels were independent factors associated with prolonged TTR and shorter PFS among patients with MM (**Figures 4.17E** and **4.17F**).

Figure 4.17 Impact of serum MTA2 and AGO2 levels on patients' outcomes. (A and C) Proportion of patients with high and low MTA2 and AGO2 levels among NDMM and RRMM cohorts. (B and D) Kaplan-Meier plots demonstrating TTR and PFS of patients according to levels of serum MTA2 and AGO2.The *p*-value is that corresponding to the Log-rank test. (E-F) Forest plots of univariate Cox models with probabilities for each factor associated with TTR and PFS of MM based on clinical variables.

Biomarkar	Group	roup p	Time to response (TTR)			n	Progression-free survival (PFS)			
Diomarker	Group	11	HR (95%CI)	HR (95%CI) Median TTR (range), days			HR (95%CI)	Median PFS (range), days	<i>p</i> -value	
MTA2	High	23	0.54 (0.23–1.23)	196 (97–450)	0.145	11	2.16 (1.01–5.11)	306 (119–1,645)	0.044	
	Low	7		308 (108–793)		19		628 (298–2,192)		
AGO2	High	19	2.92 (1.02-8.40)	230 (97-793)	0.045	6	1.16 (0.45–3.04)	625 (141–1,231)	0.758	
	Low	11		153 (108-372)		24		432 (162–219)		

 Table 4.13 Univariate Cox-type cause specific hazard models of the TTR and PFS

A significant *p*-value is showed in bold and italic letter. HR, hazard ratio; CI, confidence interval

4.3.5 Association of MTA2 and AGO2 gene expressions and patients with MM survival using the NCBI GEO data set

Furthermore, the effects of *MTA2* and *AGO2* gene expressions on patients with MM survival were evaluated by analyzing GSE2658¹⁵⁵. No significant difference in OS was observed between patients with high and low *MTA2* expression levels (Logrank test p = 0.455, HR = 1.18, 95% CI, 0.76 to 1.82). Notably, a significantly reduced OS was observed among patients with high *AGO2* expression levels compared with those with low expression levels (Log-rank test p = 0.032, HR = 1.60, 95% CI, 1.04 to 2.46, Figure 4.18).

Figure 4.18 Kaplan-Meier analysis of patient outcome data from the GSE2658 [28] data set (n = 350) demonstrated the OS of patients with MM expressing higher levels of *MTA2* and *AGO2* compared with those with lower expression levels based on the median expression of the cohort.

CHAPTER 5 DISCUSSIONS AND CONCLUSIONS

5.1 Discussion

In the present study, we used LC–MS/MS technique to characterize serum proteomic profiles in all disease states of MM patients and those of age-matched normal controls. In addition, bioinformatics tools were used to analyze the enriched biological functions, interactions and pathways of the identified proteins.

As well-known, blood serum or plasma proteome is a gold mine of disease biomarkers because it contains several low-abundant proteins reflecting the overall state of the disease.^{156, 157} During the disease course, which comes along with inflammation, necrosis, apoptosis and hemolysis, contents of cells may be released into the serum. The presence of those components in the serum reinforces the benefits of using a proteomic approach to discover biomarkers for disease states. Another advantage of using serum as a source for proteomic analysis is the minimally invasive and low-risk sample collection procedure, which also facilitates sequential testing in a simple routine laboratory. However, analysis of this biofluid is highly challenging due to the complexity and wide dynamic range of its proteomes.^{156, 157}

In general, 99% of serum proteins constitute high-abundant proteins, including Alb, Ig, antitrypsin, transferrin, haptoglobin, alpha2-macroglobulin, alpha1-acid glycoprotein and apolipoprotein.¹⁵⁸ Only the remaining 1% contains many low-abundant circulatory secreted proteins that are the potential to be disease-associated biomarkers. In practice, quantitative detection of the low-abundant proteins is quite difficult because the more abundant proteins can often mask the detection of the low-abundant proteins.¹⁵⁸⁻¹⁶⁰ Several high-abundant serum proteins depletion techniques, such as electrophoresis, chromatography and immunoaffinity-based assays, have been employed to reduce sample complexity and to enrich the low-abundant proteins before proteomics analysis.^{159, 160} Although the removals of high-abundant proteins; however, the discovery of serum biomarkers can be obstructed during this process due to protein-protein interactions between some low- and high-abundant proteins.^{161, 162}

Therefore, in this study, we used whole serum protein as a source for proteomics analysis.

A total of 1,738 differentially expressed proteins were identified among the study groups. Of these, 126 proteins were common proteins expressed in all study groups. In concordance with the basic serum protein contents, high-abundant proteins, including Alb, Igs and apolipoproteins, were observed among all groups, with high relative intensity. As compared to normal controls, 81 proteins showed up-regulation, and 45 proteins showed down-regulation in the NDMM group. We found that the proteins involved in the positive regulation of the cell cycle process and the proteins involved in the negative regulation of catalytic activity and cellular proteins metabolic process were down-regulated in the NDMM group. This result suggested that the cell proliferation and cell turnover rates increased during the disease course in MM patients.

In the patients' serum, we found 80 proteins expressed in all states of the disease. The GO functional enrichment analysis results indicated that proteins involved in the microRNAs (miRNAs)-dependent gene expression and RNA processing were significantly up-regulated in the patient's serum. In general, miRNAs are noncoding RNAs that play a critical role in the regulation of global gene expression, and their dysregulation can contribute to the initiation and progression of a variety of cancers.^{163, 164} In MM, several studies have demonstrated the overexpression of miRNAs in transcriptomic level and their association in disease pathophysiology.¹⁶⁵⁻¹⁶⁷ Our finding confirms the alteration of miRNAs at proteomic level in MM patients.

We also found that the proteins involved in the UPS were upregulated in many states of MM patients' serum. The ubiquitin-proteasome pathway represents the major pathway for intracellular protein degradation.¹⁶⁸ Due to the uncontrolled production of immunoglobulins and the high rate of protein synthesis, myeloma cells subsequently required an increased demand for protein turnover and degradation. Thus, the burden of the proteins involved in the UPS is increased in myeloma cells to accelerate protein degradation and prevent the accumulation of misfolded proteins in the cells.¹⁶⁸⁻¹⁷⁰ The proteasome also activates the NF-kB signaling, which promotes the expression of anti-apoptotic factors, cell adhesion molecules, cytokines and growth factors, resulting in increased survival of myeloma cells.¹⁶⁸⁻¹⁷⁰ Therefore, the increasing levels of those

proteins observed in our study are consistent with the disease pathophysiological mechanisms and also confirms the important role of UPS in MM pathogenesis.

Next, we defined the signature proteins of serum obtained from normal, MGUS, NDMM, RESP and RRMM. Almost the signature proteins identified in the disease groups are mainly associated with proteasome activity, regulation of the cell cycle process, signal transduction and programmed cell death. The presence of these proteins was consistent throughout the disease spectrum from MM to RRMM. Although the signature proteins are predominately expressed in each disease stage; however, further investigation of diagnostic and prognostic values of these molecules as the potential biomarker for MM is needed.

Because MM is a disease of the elderly; therefore, we used serum samples obtained from aged-matched healthy donors as the normal control group in this study. However, the impact of aging on expression of these proteins cannot be excluded. Further study with comparison of proteins expression between younger and older is needed to elucidate the age effects on the protein expression. This study clearly demonstrated the alteration of serum proteomics profiles in each stages of MM. These results could serve as useful information for understanding the MM pathogenesis and could be used as the resource for biomarker discovery in the future.

To identify potential serum biomarkers indicating the disease activity, we analyzed the 228 differentially expressed proteins in MM patients. The GO functional, KEGG pathways enrichment, and PPI analyses were employed to discover the potential biomarkers. Our results revealed that 38 proteins, including 23 up-regulated and 15 down-regulated proteins, were considered potential candidate biomarkers. However, only the top 2 candidate proteins, MTA2 and AGO2, were chosen for further validation study.

In general, MTA2 belongs to a member of the family of transcriptional regulators, metastasis tumor-associated (MTA), which plays crucial roles in the regulation of cytoskeleton organization at the transcriptional level. MTA2 is also a central component of the NuRD complex, which plays a role in transcriptional regulation via histone deacetylation and chromatin remodeling.¹⁷¹ MTA2 overexpression has been observed in several carcinomas, including gastrointestinal,

lung, renal, breast and hepatocellular carcinomas, and was associated with tumor invasion capacity, metastasis and unfavorable prognosis.¹⁷¹⁻¹⁷⁶ In gastric cancer, MTA2 expression was regulated by specificity protein 1 (Sp1) at the transcriptional level, and MTA2-knockdown demonstrated impairment invasion and metastasis of gastric cancer cells.¹⁷³ In non-small-cell lung cancer, MTA2 promotes the metastasis of cancer through the inhibition of the cell adhesion molecule epithelial transmembrane glycoprotein (Ep-CAM) and E-cadherin, and its increased expression is associated with poor prognosis.¹⁷⁴ In renal cell carcinoma, increased MTA2 expression was significantly associated with high-grade tumor and was an independent prognostic factor for unfavorable OS.¹⁷⁵ Moreover, in estrogen receptor-alpha–negative breast cancer, elevated MTA2 expression is associated with poor prognosis and enhanced both *in vitro* and *in vivo* tumor metastasis through Rho pathway activation.¹⁷⁶

In hematological malignancies, studies relating to MTA2 are limited. A large sample size study using the whole-genome sequencing (WGS) technique revealed an association of mutation on the MTA2 gene with abnormal clonal hematopoiesis but has no known involvement in myeloid neoplasias.¹⁷⁷ Moreover, the related study using a mouse model has demonstrated the loss of MTA2 leading to defective BM and splenic B cell development.¹⁷⁸ However, studying of role and function of MTA2 involving in MM is inadequate.

The another candidate protein, AGO2 or EIF2C2, is a member of the Argonaute (AGO) protein family, which plays important roles in epigenetic gene regulation via short interfering RNAs (siRNAs) or miRNAs guided gene silencing processes, including RNA interference, translation repression and hetero-chromatinization. Furthermore, AGO2 is found to be a core component of the RNA-induced silencing complex (RISC),¹⁷⁹ and acts as a regulator of miRNAs function and maturation.^{179, 180} AGO2 overexpression has been reported in several carcinomas, including breast, head and neck squamous cells, nasopharyngeal, urothelial, ovarian and colorectal carcinomas.¹⁸¹⁻¹⁸⁵ As a key regulator of miRNAs function and maturation, AGO2 is associated with myeloma cell growth and survival, angiogenesis and drug resistance mechanisms.¹⁸⁶⁻¹⁸⁸ The related study by Zhou Y et al. reported the association between the overexpression of AGO2 and high-risk MM patients. In addition, the silencing of

AGO2 dramatically decreased viability in MM cell lines.¹⁶⁷ More recent study conducted by Misiewicz-Krzeminska I, et al. demonstrated a high level of AGO2 expression was significantly associated with a shorter time to progression in MM patients.¹⁸⁹

In the verification phase, the serum concentrations of MTA2 and AGO2 measured by ELISA were consistent with the results from LC–MS/MS. Those protein levels were significantly higher in the disease-active states, NDMM and RRMM, compared with RESP and control groups. When the diagnostic performance of those biomarkers was evaluated, we found an excellent diagnostic value of both MTA2 and AGO2, with high sensitivity and specificity, to discriminate patients with MM from normal individuals.

In the validation phase, our results confirmed a significant alteration in the serum levels of MTA2 and AGO2 in both NDMM and RRMM cohorts. We further investigated the association between serum MTA2 and AGO2 levels and patient disease characteristics and outcomes. Regardless of the patient treatment regimens, high MTA2 levels measured at response were associated with shorter PFS. High AGO2 levels were frequently observed among females and were associated with IgG and kappa light chain isotypes. Notably, high AGO2 levels were also associated with the occurrence of bone involvement features and were an independent factor associated with prolonged TTR among patients with NDMM. A related study demonstrated that AGO2 overexpression was significantly associated with a shorter PFS among patients with MM.¹⁸⁹ However, this finding was not observed in our study.

The limitations of this study are first, it is a single-center study with a relatively small sample size. Some clinical features, including OS, were not evaluated due to the limited number of event and narrow-following time. Second, cytogenetic abnormalities, which are known factors affecting protein expression, were not investigated in our study. Therefore, further studies with larger sample sizes, completed cytogenetic profiles and analysis of these two biomarkers compared with traditional biomarkers for disease monitoring are suggested.

5.2 Conclusion

In conclusion, this study demonstrated the proteomic approach to characterizing and identifying serum biomarkers among patients with MM. Interestingly, MTA2 and AGO2 proteins were first identified as potential serum biomarkers providing prognostic value and potential in clinical applications. Elevated levels of these biomarkers correlated with disease activity and were associated with adverse outcomes among patients with MM. Nevertheless, validation and standardization of the proposed biomarkers before implementing in clinical practice are recommended.

REFERENCES

1. Röllig C, Knop S, Bornhäuser M. Multiple myeloma. Lancet. 2015;385(9983):2197-208.

2. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516-20.

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.

4. Nau KC, Lewis WD. Multiple myeloma: diagnosis and treatment. Am Fam Physician. 2008;78(7):853-9.

5. Bird SA, Boyd K. Multiple myeloma: an overview of management. Palliat Care Soc Pract. 2019;13:1-13.

6. Becker N. Epidemiology of multiple myeloma. In: T. Moehler, Goldschmidt H, editors. Multiple myeloma. 183. Berlin, Heidelberg: Springer; 2011.

7. Kim K, Lee JH, Kim JS, Min CK, Yoon SS, Shimizu K, et al. Clinical profiles of multiple myeloma in Asia-An Asian Myeloma Network study. Am J Hematol. 2014;89(7):751-6.

8. Cowan AJ, Allen C, Barac A, Basaleem H, Bensenor I, Curado MP, et al. Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016. JAMA Oncol. 2018;4(9):1221-7.

9. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M-V, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. The Lancet Oncology. 2014;15(12):e538-e48.

10. Hillengass J, Moehler T, Hundemer M. Monoclonal gammopathy and smoldering multiple myeloma: diagnosis, staging, prognosis, management. Recent Results Cancer Res. 2011;183:113-31.

Kyle RA, Larson DR, Therneau TM, Dispenzieri A, Kumar S, Cerhan JR, et al.
 Long-termfollow-up of monoclonal gammopathy of undetermined significance. N Engl
 J Med. 2018;378(3):241-9.

Ref. code: 25656212330028ZXU

12. Kyle RA, Remstein ED, Therneau TM, Dispenzieri A, Kurtin PJ, Hodnefield JM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Eng J Med. 2007;356:2582-90.

13. Tiedemann RE, Gonzalez-Paz N, Kyle RA, Santana-Davila R, Price-Troska T, Van Wier SA, et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia. 2008;22(5):1044-52.

14. Jelinek T, Kryukov F, Rihova L, Hajek R. Plasma cell leukemia: from biology to treatment. Eur J Haematol. 2015;95(1):16-26.

15. Kurtin SE. Relapsed or relapsed refractory multiple myeloma. J Adv Pract Oncol. 2013;4(6):7-14.

16. Rajkumar SV, Kumar S. Multiple myeloma diagnosis and treatment. Mayo Clin Proc. 2016;91(1):101-19.

17. Rajkumar SV. Multiple myeloma: 2018 update on diagnosis, risk-stratification, and management. Am J Hematol. 2018;93:1091-110.

Hussain A, Almenfi HF, Almehdewi AM, Hamza MS, Bhat MS, Vijayashankar NP. Laboratory features of newly diagnosed multiple myeloma patients. Cureus. 2019;11(5):e4716.

19. Kastritis E, Terpos E, Moulopoulos L, Spyropoulou-Vlachou M, Kanellias N, Eleftherakis-Papaiakovou E, et al. Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia. 2013;27(4):947-53.

20. Rajkumar SV. Updated diagnostic criteria and staging system for multiple myeloma. Am Soc Clin Oncol Educ Book. 2016;35:e418-23.

21. Perrot A, Corre J, Avet-Loiseau H. Risk stratification and targets in multiple myeloma: from genomics to the bedside. ASCO Ed Book. 2018;38:675-80.

22. Levin A, Hari P, Dhakal B. Novel biomarkers in multiple myeloma. Transl Res. 2018;201:49-59.

23. Hu Y, Chen W, Chen S, Huang Z. Cytogenetic abnormality in patients with multiple myeloma analyzed by fluorescent in situ hybridization. Onco Targets Ther. 2016;9:1145-9.

24. Jian Y, Chen X, Zhou H, Zhu W, Liu N, Geng C, et al. Prognosticimpact of cytogenetic abnormalities in multiple myeloma: a retrospective analysis of 229 patients. Medicine (Baltimore). 2016;95(19):e3521.

25. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467-72.

26. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

27. Boyle EM, Ashby C, Tytarenko RG, Deshpande S, Wang H, Wang Y, et al. BRAF and DIS3 Mutations associate with adverse outcome in a long-term follow-up of patients with multiple myeloma. Clin Cancer Res. 2020.

28. Flynt E, Bisht K, Sridharan V, Ortiz M, Towfic F, Thakurta A. Prognosis, biology, and targeting of TP53 dysregulation in multiple myeloma. Cells. 2020;9(2):287.

29. Weissbach S, Heredia-Guerrero SC, Barnsteiner S, Grosshans L, Bodem J, Starz H, et al. Exon-4 mutations in KRAS affect MEK/ERK and PI3K/AKT signaling in human multiple myeloma cell lines. Cancers (Basel). 2020;12(2):455.

30. Rajkumar SV, Merlini G, San Miguel JF. Haematological cancer: Redefining myeloma. Nat Rev Clin Oncol. 2012;9(9):494-6.

31. Micallef J, Dharsee M, Chen J, Ackloo S, Evans K, Qiu L, et al. Applying mass spectrometry based proteomic technology to advance the understanding of multiple myeloma. J Hemato Oncol. 2013;3:3-13.

32. Zhang TH, Tian EB, Chen YL, Deng HT, Wang QT. Proteomic analysis for finding serum pathogenic factors and potential biomarkers in multiple myeloma. Chin Med J (Engl).2015;128(8):1108-13.

33. Łuczak M, Kubicki T, Rzetelska Z, Szczepaniak T, Przybyłowicz-Chalecka A, Ratajczak B, et al. Comparative proteomic profiling of sera from patients with refractory multiple myeloma reveals potential biomarkers predicting response to bortezomib-based therapy. Pol Arch Intern Med. 2017;127(6):392-400.

34. Turan T, Sanli-Mohamed G, Baran Y. Changes in protein profiles of multiple myeloma cells in response to bortezomib. Leuk Lymphoma. 2013;54(5):1061-8.

35. Dowling P, Hayes C, Ting KR, Hameed A, Meiller J, Mitsiades C, et al. Identification of proteins found to be significantly altered when comparing the serum proteome from multiple myeloma patients with varying degrees of bone disease. BMC Genomics. 2014;15:904.

36. Glavey SV, Naba A, Manier S, Clauser K, Tahri S, Park J, et al. Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia. 2017;31(11):2426-34.

37. Ting KR, Henry M, Meiller J, Larkin A, Clynes M, Meleady P, et al. Novel panel of protein biomarkers to predict response to bortezomib-containing induction regimens in multiple myeloma patients. BBA Clin. 2017;8:28-34.

38. Ribatti D. A historical perspective on milestones in multiple myeloma research.Eur J Haematol. 2018;100(3):221-8.

39. Kyle RA. Multiple myeloma: an odyssey of discovery. Br J Haematol. 2000;111(4):1035-44.

40. Kyle RA, Steensma DP. History of multiple myeloma. Recent Results Cancer Res. 2011;183:3-23.

41. Solly S. Remark on the pathology of mollities ossium. With cases. J R Soc Med. 1844;27:435-61.

42. Bence-Jones H. Papers on chemical pathology. Lancet. 1847;50:88-92.

Rustizky J. Multiples myeloma. Deutsche Zeitschrift für Chirurgie. 1873;3:162 73.

44. Kahler O. Zur symptomalogii des multiple myleoms: beobachtung von albomosurie. Prager Medinische Wochenschrift. 1889;14:45.

45. Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111(6):2962-72.

46. Geschickter CF, Copeland MM. Multiple myeloma. Arch Surg. 1928;16:807-63.

47. Morse D, Dailey RC, Bunn J. Prehistoric multiple myeloma. Bull New York Acad Med. 1974;50:447-58.

48. Longsworth LG, Shedlovsky T, MacInnes DA. Electrophoretic patterns of normal and pathological human blood, serum, and plasma. J Exp Med. 1939;70:399-413.

49. Edelman GM. Biochemistry and the sciences of recognition. J Biol Chem. 2004;279(9):7361-9.

50. Waldenström J. Studies on conditions associated with disturbed gamma globulin formation (gammopathies). Harvey Lect. 1961;56:211-31.

51. Wilson AT. Direct immunoelectrophoresis. J Immunol. 1964;92:431-4.

52. SEER Cancer statistics review: National Cancer Institute; 1975-2016 [Accessed April 8, 2020]. Available from: https://seer.cancer.gov/statfacts/html/mulmy.html.

53. Global Cancer Observatory: International Agency for Research on Cancer, World Health Organization (WHO); 2018 [Accessed April 10, 2020]. Available from: https://gco.iarc.fr/today/data/factsheets/populations/764-thailand-fact-sheets.pdf.

54. Watanaboonyongcharoen P, Nakorn TN, Rojnuckarin P, Lawasut P, Intragumtornchai T. Prevalence of monoclonal gammopathy of undetermined significance in Thailand. Int J Hematol. 2012;95(2):176-81.

55. Bianchi G, Munshi NC. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood. 2015;125(20):3049-58.

56. Anderson KC, Carrasco RD. Pathogenesis of myeloma. Annu Rev Pathol. 2011;6:249-74.

57. Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3:17046.

58. Barwick BG, Gupta VA, Vertino PM, Boise LH. Cell of origin and genetic alterations in the pathogenesis of multiple myeloma. Front Immunol. 2019;10:1121.

59. Pang SHM, de Graaf CA, Hilton DJ, Huntington ND, Carotta S, Wu L, et al. PU.1 is required for the developmental progression of multipotent progenitors to common lymphoid progenitors. Front Immunol. 2018;9:1264.

LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood.
 2008;112(5):1570-80.

61. Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B cell identity and function. Nat Immunol. 2007;8(5):463-70.

62. Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401:556-62.

63. Jacob J, Kelsoe G, Rajewsky K, Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991;354(6352):389-92.

64. Mondello P, Cuzzocrea S, Navarra M, Mian M. Bone marrow microenvironment is a crucial player for myelomagenesis and disease progression. Oncotarget. 2017;8(12):20394-409.

65. Fairfield H, Falank C, Avery L, Reagan MR. Multiple myeloma in the marrow: pathogenesis and treatments. Ann N Y Acad Sci. 2016 Jan;1364(1):32-51.

66. Fowler JA, Edwards CM, Croucher PI. Tumor-host cell interactions in the bone disease of myeloma. Bone. 2011;48(1):121-8.

67. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216-9.

68. Ghobrial IM. Myeloma as a model for the process of metastasis: implications for therapy. Blood. 2012;120(1):20-30.

69. Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM, et al. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood. 2009;114(3):619-29.

70. Sanz-Rodri'guez F, Hidalgo A, Teixido J. Chemokine stromal cell-derived factor-1a modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood. 2001;97(2):346-51.

71. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046-60.

72. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7(8):585-98.

73. Korde N, Maric I. Myelomagenesis: capturing early microenvironment changes. Semin Hematol. 2011;48(1):13-21.

74. Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J. 2018;8(1):7.

75. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood. 1999;93(9):3064-73.

76. Mondello P, Cuzzocrea S, Navarra M, Mian M. Bone marrow microenvironment is a crucial player for myelomagenesis and disease progression. Oncotarget. 2017;8(12):20394-409.

77. Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Wellik L, et al. Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood. 2003;101(5):1715-7.

78. Jelinek T, Paiva B, Hajek R. Update on PD-1/PD-L1 inhibitors in multiple myeloma. Front Immunol. 2018;9:2431.

79. Rosenblatt J, Avigan D. Targeting the PD-1/PD-L1 axis in multiple myeloma: a dream or a reality? Blood. 2017;129(3):275-9.

80. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704.

81. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumorassociated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793-800.

82. Sponaas AM, Moharrami NN, Feyzi E, Standal T, Holth Rustad E, Waage A, et al. PDL1 expression on plasma and dendritic cells in myeloma bone marrow suggests benefit of targeted anti PD1-PDL1 therapy. PLoS One. 2015;10(10):e0139867.

83. Yousef S, Marvin J, Steinbach M, Langemo A, Kovacsovics T, Binder M, et al. Immunomodulatory molecule PD-L1 is expressed on malignant plasma cells and myeloma-propagating pre-plasma cells in the bone marrow of multiple myeloma patients. Blood Cancer J. 2015;5:e285.

84. Tamura H, Ishibashi M, Sunakawa-Kii M, Inokuchi K. PD-L1–PD-1 pathway in the pathophysiology of multiple myeloma. Cancers (Basel). 2020;12(4):924.

85. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698-704.

86. Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23(26):6333-8.

87. Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100-13.

88. Li Y, Wang X, Zheng H, Wang C, Minvielle S, Magrangeas F, et al. Classify hyperdiploidy status of multiple myeloma patients using gene expression profiles. PLoS One. 2013;8(3):e58809.

89. Kumar S, Fonseca R, Ketterling RP, Dispenzieri A, Lacy MQ, Gertz MA, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100-5.

90. Kumar SK, Rajkumar SV. The multiple myelomas – current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15(7):409-21.

91. Rajan AM, Rajkumar SV. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J. 2015;5:e365.

92. Kuehl WM, Bergsagel PL. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 2012;122(10):3456-63.

93. Walker BA, Wardell CP, Johnson DC, Kaiser MF, Begum DB, Dahir NB, et al. Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood. 2013;121(17):3413-9.

94. Popovic R, Martinez-Garcia E, Giannopoulou EG, Zhang Q, Zhang Q, Ezponda T, et al. Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation. PLoS Genet. 2014;10(9):e1004566.

95. Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM, et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet. 1997;16(3):260-4.

96. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101(4):1520-9.

97. Binder M, Rajkumar SV, Ketterling RP, Greipp PT, Dispenzieri A, Lacy MQ, et al. Prognostic implications of abnormalities of chromosome 13 and the presence of multiple cytogenetic high-risk abnormalities in newly diagnosed multiple myeloma. Blood Cancer J. 2017;7(9):e600.

98. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA, et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood. 2020;100:1417-24.

99. Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH, et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood. 1995;86(11):4250-6.

100. Chin M, Sive JI, Allen C, Roddie C, Chavda SJ, Smith D, et al. Prevalence and timing of TP53 mutations in del(17p) myeloma and effect on survival. Blood Cancer J. 2017;7(9):e610.

101. Lode L, Eveillard M, Trichet V, Soussi T, Wuilleme S, Richebourg S, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95(11):1973-6.

102. Neben K, Jauch A, Hielscher T, Hillengass J, Lehners N, Seckinger A, et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol. 2013;31(34):4325-32.

103. Boyd KD, Ross FM, Walker BA, Wardell CP, Tapper WJ, Chiecchio L, et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin Cancer Res. 2011;17(24):7776-84.

104. Zhu YX, Shi CX, Bruins LA, Jedlowski P, Wang X, Kortum KM, et al. Loss of FAM46C promotes cell survival in myeloma. Cancer Res. 2017;77(16):4317-27.

105. Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15):e56-65.

106. Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 2005;10(Suppl 1):117-26.

107. Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9(1):5341.

108. Dib A, Gabrea A, Glebov OK, Bergsagel PL, Kuehl WM. Characterization of MYC translocations in multiple myeloma cell lines. J Natl Cancer Inst Monogr. 2008(39):25-31.

109. Kim SJ, Shin HT, Lee HO, Kim NK, Yun JW, Hwang JH, et al. Recurrent mutations of MAPK pathway genes in multiple myeloma but not in amyloid light-chain amyloidosis. oncotarget. 2016;7(42).

110. Xu J, Pfarr N, Endris V, Mai EK, Md Hanafiah NH, Lehners N, et al. Molecular signaling in multiple myeloma: association of RAS/RAF mutations and MEK/ERK pathway activation. Oncogenesis. 2017;6(5):e337.

111. Demchenko YN, Kuehl WM. A critical role for the NFkB pathway in multiple myeloma. Oncotarget. 2010;1(1):59-68.

112. Vrabel D, Pour L, Sevcikova S. The impact of NF-kappaB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev. 2019;34:56-66.

113. Roy P, Sarkar UA, Basak S. The NF- κ B activating pathways in multiple myeloma. Biomedicines. 2018;6(2):59.

114. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J, et al.
International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412-20.

115. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210-21.

116. Teke HU, Basak M, Teke D, Kanbay M. Serum level of lactate dehydrogenase is a useful clinical marker to monitor progressive multiple myeloma diseases: a case report. Turk J Haematol. 2014;31(1):84-7.

117. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med. 1991;155(12):931-5.

118. Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, et al. Revised International Staging System for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863-9.

119. Anderson KC, Kyle RA, Rajkumar SV, Stewart AK, Weber D, Richardson P, et al. Clinically relevant end points and new drug approvals for myeloma. Leukemia. 2008;22(2):231-9.

120. O'Connell TX, Horita TJ, Kasravi B. Understanding and interpreting serum protein electrophoresis. Am Fam Physician. 2005;71(1):105-12.

121. Willrich MA, Katzmann JA. Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias. Clin Chem Lab Med. 2016;54(6):907-19.

122. Tate J, Bazeley S, Sykes S, Mollee P. Quantitative serum free light chain assay– analytical issues. Clin Biochem Rev. 2009;30:131-40.

123. Siegel D, Bilotti E, van Hoeven KH. Serum free light chain analysis for diagnosis, monitoring, and prognosis of monoclonal gammopathies. Lab Med. 2009;40(6):363-6.

124. Tosi P, Tomassetti S, Merli A, Polli V. Serum free light-chain assay for the detection and monitoring of multiple myeloma and related conditions. Ther Adv Hematol. 2013;4(1):37-41.

125. Rajkumar SV. Treatment of multiple myeloma. Nat Rev Clin Oncol.2011;8(8):479-91.

126. Moreau P, San Miguel J, Sonneveld P, Mateos MV, Zamagni E, Avet-Loiseau H, et al. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv52-iv61.

127. Olszewska-Szopa M, Rzepecki P. Consolidation in multiple myeloma – current status and perspectives. Contemp Oncol (Pozn). 2014;18(5):313-7.

128. McCarthy PL, Holstein SA, Petrucci MT, Richardson PG, Hulin C, Tosi P, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiplemyeloma: A meta-analysis. J Clin Oncol. 2017;35(29):3279-89.

129. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med. 1996;335(2):91-7.

130. Gertz MA, Ansell SM, Dingli D, Dispenzieri A, Buadi FK, Elliott MA, et al. Autologous stem cell transplant in 716 patients with multiple myeloma: low treatment-

related mortality, feasibility of outpatient transplant, and effect of a multidisciplinary quality initiative. Mayo Clin Proc. 2008;83(10):1131-8.

131. Rajkumar SV, Harousseau JL, Durie B, Anderson KC, Dimopoulos M, Kyle R, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117(18):4691-5.

132. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328-e46.
133. Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19:1720-30.

134. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55(2):182-96.

135. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19-50.

136. Sutandy FX, Qian J, Chen CS, Zhu H. Overview of protein microarrays. Curr Protoc Protein Sci. 2013;Chapter 27(1):Unit 27.1.

137. Cumova J, Potacova A, Zdrahal Z, Hajek R. Proteomic analysis in multiple myeloma research. Mol Biotechnol. 2011;47:83-93.

138. Simpson KL, Whetton AD, Dive C. Quantitative mass spectrometry-based techniques for clinical use: biomarker identification and quantification. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(13):1240-9.

139. Yin L. Chondroitin synthase 1 is a key molecule in myeloma cell-osteoclast interactions. J Biol Chem. 2005;280(16):15666-72.

140. Zatula A, Dikic D, Mulder C, Sharma A, Vågbø CB, Sousa M ML, et al. Proteome alterations associated with transformation of multiple myeloma to secondary plasma cell leukemia. Oncotarget. 2017;8(12):19427-42.

141. Raimondi L, De Luca A, Fontana S, Amodio N, Costa V, Carina V, et al. Multiple myeloma-derived extracellular vesicles induce osteoclastogenesis through the activation of the XBP1/IRE1alpha axis. Cancers (Basel). 2020;12(8):2167.

142. Lu CH, Ge F, Liu Z, Li R, Xiao CL, Zeng HL, et al. Detection of abundant proteins in multiple myeloma cells by proteomics. J Proteomics Bioinform. 2010;03(1):5-9.

143. Barceló F, Gomila R, de Paul I, Gili X, Segura J, Pérez-Montaña A, et al. MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance. PLoS One. 2018;13(8):e0201793.

144. Dytfeld D, Łuczak M, Wrobel T, Usnarska-Zubkiewicz L, Brzezniakiewicz K, Jamroziak K, et al. Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy. Oncotarget. 2016;7(35):56726-35.

145. Chanukuppa V, Paul D, Taunk K, Chatterjee T, Sharma S, Kumar S, et al. XPO1 is a critical player for bortezomib resistance in multiple myeloma: A quantitative proteomic approach. J Proteomics. 2019;209:103504.

146. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6(15):13772-89.

147. Noske A, Weichert W, Niesporek S, Roske A, Buckendahl AC, Koch I, et al. Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancer. Cancer. 2008;112(8):1733-43.

148. Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265-75.

149. Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301-19.

150. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731-40.

151. Howe EA, Sinha R, Schlauch D, Quackenbush J. RNA-Seq analysis in MeV. Bioinformatics. 2011;27(22):3209-10.

152. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419-26.

153. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH
5: augmenting protein–chemical interaction networks with tissue and affinity data.
Nucleic Acids Res. 2016;44(D1):D380-4.

154. Lopez-Corral L, Corchete LA, Sarasquete ME, Mateos MV, Garcia-Sanz R, Ferminan E, et al. Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies. Haematologica. 2014;99(8):1365-72.

155. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010;116(14):2543-53.

156. Dunphy K, O'Mahoney K, Dowling P, O'Gorman P, Bazou D. Clinical proteomics of biofluids in haematological malignancies. Int J Mol Sci. 2021;22(15).

157. Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics. 2005;4(4):409-18.

158. Shen Y, Kim J, Strittmatter EF, Jacobs JM, Camp DG 2nd, Fang R, et al. Characterization of the human blood plasma proteome. Proteomics. 2005;5(15):4034-45.

159. Liu Z, Fan S, Liu H, Yu J, Qiao R, Zhou M, et al. Enhanced detection of lowabundance human plasma proteins by integrating polyethylene glycol fractionation and immunoaffinity depletion. PLoS One. 2016;11(11):e0166306.

160. de Jesus JR, da Silva Fernandes R, de Souza Pessoa G, Raimundo IM, Jr., Arruda MAZ. Depleting high-abundant and enriching low-abundant proteins in human serum: An evaluation of sample preparation methods using magnetic nanoparticle, chemical depletion and immunoaffinity techniques. Talanta. 2017;170:199-209.

161. Patel BB, Barrero CA, Braverman A, Kim PD, Jones KA, Chen DE, et al. Assessment of two immunodepletion methods: off-target effects and variations in immunodepletion efficiency may confound plasma proteomics. J Proteome Res. 2012;11(12):5947-58.

162. Tomascova A, Lehotsky J, Kalenska D, Baranovicova E, Kaplan P, Tatarkova Z. A comparison of albumin removal procedures for proteomic analysis of blood plasma. Gen Physiol Biophys. 2019;38(4):305-14.

163. Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

164. Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38.

165. Adamia S, Abiatari I, Amin SB, Fulciniti M, Minvielle S, Li C, et al. The effects of microRNA deregulation on pre-RNA processing network in multiple myeloma. Leukemia. 2020;34(1):167-79.

166. Misiewicz-Krzeminska I, Krzeminski P, Corchete LA, Quwaider D, Rojas EA, Herrero AB, et al. Factors regulating microRNA expression and function in multiple myeloma. Noncoding RNA. 2019;5(1):9.

167. Zhou Y, Chen L, Barlogie B, Stephens O, Wu X, Williams DR, et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci U S A. 2010;107(17):7904-9.

168. Zhang X, Linder S, Bazzaro M. Drug development targeting the ubiquitinproteasome system (UPS) for the treatment of human cancers. Cancers (Basel). 2020;12(4):902.

169. Lub S, Maes K, Menu E, De Bruyne E, Vanderkerken K, Van Valckenborgh E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget. 2016;7(6):6521-37.

170. Cao B, Mao X. The ubiquitin-proteasomal system is critical for multiple myeloma: implications in drug discovery. Am J Blood Res. 2011;1(1):46-56.

171. Covington KR, Fuqua SA. Role of MTA2 in human cancer. Cancer Metastasis Rev. 2014;33(4):921-8.

172. Toh Y, Nicolson GL. The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin Exp Metastasis. 2009;26(3):215-27.

173. Zhou C, Ji J, Cai Q, Shi M, Chen X, Yu Y, et al. MTA2 promotes gastric cancer cells invasion and is transcriptionally regulated by Sp1. Mol Cancer. 2013;12(1):102.

174. Zhang B, Zhang H, Shen G. Metastasis-associated protein 2 (MTA2) promotes the metastasis of non-small-cell lung cancer through the inhibition of the cell adhesion molecule Ep-CAM and E-cadherin. Jpn J Clin Oncol. 2015;45(8):755-66.

175. Chen YS, Hung TW, Su SC, Lin CL, Yang SF, Lee CC, et al. MTA2 as a potential biomarker and its involvement in metastatic progression of human renal cancer by miR-133b targeting MMP-9. Cancers (Basel). 2019;11(12):1851.

176. Covington KR, Brusco L, Barone I, Tsimelzon A, Selever J, Corona-Rodriguez A, et al. Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Res Treat. 2013;141(3):375-84.

177. Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130(6):742-52.

178. Lu X, Chu CS, Fang T, Rayon-Estrada V, Fang F, Patke A, et al. MTA2/NuRD regulates B cell development and cooperates with OCA-B in controlling the pre-B to immature B cell transition. Cell Rep. 2019;28(2):472-85 e5.

179. Ye Z, Jin H, Qian Q. Argonaute 2: a novel rising star in cancer research. J Cancer. 2015;6(9):877-82.

180. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15(2):185-97.

181. Li P, Meng J, Zhai Y, Zhang H, Yu L, Wang Z, et al. Argonaute 2 and nasopharyngeal carcinoma: a genetic association study and functional analysis. BMC Cancer. 2015;15:862.

182. Yang FQ, Huang JH, Liu M, Yang FP, Li W, Wang GC, et al. Argonaute 2 is up-regulated in tissues of urothelial carcinoma of bladder. Int J Clin Exp Pathol. 2013;7(1):340-7.

183. Vaksman O, Hetland TE, Trope CG, Reich R, Davidson B. Argonaute, Dicer, and Drosha are up-regulated along tumor progression in serous ovarian carcinoma. Hum Pathol. 2012;43(11):2062-9.

184. Casey MC, Prakash A, Holian E, McGuire A, Kalinina O, Shalaby A, et al. Quantifying Argonaute 2 (Ago2) expression to stratify breast cancer. BMC Cancer. 2019;19(1):712.
185. Papachristou DJ, Korpetinou A, Giannopoulou E, Antonacopoulou AG, Papadaki H, Grivas P, et al. Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal carcinomas. Virchows Arch. 2011;459(4):431-40.

186. Wu S, Yu W, Qu X, Wang R, Xu J, Zhang Q, et al. Argonaute 2 promotes myeloma angiogenesis via microRNA dysregulation. J Hematol Oncol. 2014;7:40.

187. Allegra A, Ettari R, Innao V, Bitto A. Potential role of microRNAs in inducing drug resistance in patients with multiple myeloma. Cells. 2021;10(2):448.

188. Xu Q, Hou YX, Langlais P, Erickson P, Zhu J, Shi CX, et al. Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival. BMC Cancer. 2016;16:297.

Misiewicz-Krzeminska I, de Ramon C, Corchete LA, Krzeminski P, Rojas EA,
 Isidro I, et al. Quantitative expression of Ikaros, IRF4, and PSMD10 proteins predicts
 survival in VRD-treated patients with multiple myeloma. Blood Adv. 2020;4(23):6023 33.

APPENDICES

APPENDIX A ETHICAL APPROVAL STATEMENTS

1. Certificate of Approval provided by Institutional Review Board Royal Thai

Ammy Medical Department, Bangkok, Thailand.

RL 01_2560

คณะอนุกรรมการพิจารณาโครงการวิจัย กรมแพทย์ทหารบก

317/5 ถนนราชวิธี เขตราชเตวี กรุงเทพฯ 10400

# IRBRTA 433 /2563	รพัฒโครงการ: 5076h/62
ชื่อโครงการวิจัย :	การวิเคราะห์โปรพีโอบิกลัของผู้ป่วยคนไชยที่เป็นโรคมะเร็จเบิดเสือคชนิดปัยอัโสมา
	[Proteomics profiling of Thai patients with multiple myeloma]
เองที่โครงการวิจัย :	
ชื่อผู้วิจัยหลัก:	ร้อยอก ขอภาค อภิพงศ์รัตน์
สังกัดหน่วยงาม :	ດອະອາຢຸຣຄຮຣນ ໂຮສະຍານາສະຮະນອງຄູເຄລົ້າ
สถามที่ทำการวิจัย:	1. พ้องปฏิบัติการโฟฟะวิทยาพิเศษ กองอายุธกรรม โรสหยาบาลพระมงกุฎเกล้า
	 พื้อเปฏิบัติการเทคนิคการแพทย์ คณะสหเวขศาสคร์ มหาวิทยาลัยธรรมศาสคร์
	 ห้องปฏิบัติการโปรติโออิกส์ สำนักงานพัฒนาวิทยาศาสตร์และเทคโบโลยีแห่งชาติ (สวทย)
เอกสารรับรอง :	
(1) แบบรายงานการส่งไ	คระช่างการวิจัยเพื่อพิจารณา ฉบับที่ 2 ลงวันที่ 25 กุมภาพันธ์ 2563
(2) โครงร่างการวิจัยอย่	ับที่ 2 ลงวันที่ 25 กุมภาพันธ์ 2563
(3) เอกสารขึ้นจะข้อมูลเ กมกาพันธ์ 2563	กผู้เข้าร่วมโครงการวิจัย และเหน้าสือแสดงเจคนายินขอมเข้าร่วมการวิจัย ฉบับที่ 2 องวันที่ 25
(4) แบบนับทึกซ์ละส จ	กับที่ 2 ลงวันที่ 25 กมกาพันธ์ 2563
(5) ประวัติผู้วิจัย ร.ค.ศ.	กกค. นกิพงศ์วิตน์ ฉบับที่ 2 ละวันที่ 25 กมกาพันธ์ 2563
(6) ประวัติผู้ร่วมวิจัย พ.	ด.กานสิษญ์ ประยงค์รัดน์ ฉบับที่ 2 องรับที่ 25 กุมภาพันธ์ 2563
(7) ประวัติที่บริกษา พล	.ต.พญิง คร.อิอยภิพย์ ณ กลาง ฉบับที่ 2 ลงวันที่ 25 กุมภาพันธ์ 2563
ขอรับธองว่าโครอาช	เด้งกล่าวข้างพื้นได้ม่านการพิจารณาวับรองจากคณะอนุกรรมการพิจารณาโครงการวิจัยกรม
แพทย์ทหารบกว่าสอดคล้องกับ	แนวทางจรียรรมสากล ฟัแก่ ปฏิญญาเตลซิลที่ รายงานถอมอล์แนวทางจรียธรรมสากล
สำหรับการวิจัยในมนพย่างออน	maxค์กรงกากค้านวิทยาศาสตร์การแพทย์ (COMS) และแนวทางการปลีบัติการวิจัยที่ดี

(CH GCP)

วันที่รับรองด้ามจริยธรรมของโครงร่างการวิจัย วันอิ้มสุดการรับรอง: ความอี่ของการส่งธายงานความก้าวหน้าของการวิจัย: 28 มีนาคม 2563 27 มีนาคม 2564 1 ปี

พันเอก ຫານີສາຄ)

ປະະຣາບຄຸດແອບທະງານກາງສິ່ງແລະໂຄຣະກາງໃຫ້ຍ ການແຫກຍ໌ກທາງບາ 2. Certificate of Exemption provided by The Human Research Ethics Committee of Thammasat University (Science), HREC-TUSc.

ScF 03_02 (Eng)

The Human Research Ethics Committee of Thammasat University (Science), (HREC-TUSc) Room No. 110, Piyachart Building, 1st Floor, Thammasat University Rangsit Campus, Prathumthani 12121, Thailand, Tel: 0-2986-9213 ext.7358 E-mail: ecsctu3@Staff.tu.ac.th

Certificate of Exemption

COE No. 015/2564

 Project No.
 : 085/2564

 Protocol Title
 : Proteomics profiling of Thai patients with multiple myeloma

 Principle Investigator
 : DOLLAPAK APIPONGRAT

 Place of Proposed Study/Institution: Faculty of Allied Health Sciences, Thammasat University

The Human Research Ethics Committee of Thammasat University (Science), Thailand, has approved the above study project, in accordance with the compliance to the Declaration of Helsinki, the Belmont report, CIOMS guidelines and the International practice (ICH-GCP).

The Human Research Ethics Committee of Thammasat University (Science), decided to exempt the above study. These decision has been reported in 8/2564 meeting.

w

Labran Linkt.

Signature: (Assoc. Prof Laksana Laokiat, Ph.D.) Secretary of The Human Research Ethics Committee of Thammasat University (Science)

Date of issue : 5 August 2021

The approval documents including

1) Research proposal

2) Principal investigator's Curriculum Vitae

APPENDIX B

ACCEPTANCE LETTER FOR PUBLICATION

This study has been accepted for publication in the PLOS ONE journal.

Gmail Dollapak Apipongrat <dollapak.d@allied.tu.ac.th> Notification of Formal Acceptance for PONE-D-22-23313R1 -[EMID:3691f22f95e17f7f] 1 ข้อความ PLOS ONE <em@editorialmanager.com> 21 พฤศจิกายน 2565 20:05 ตอบกลับไปยัง: PLOS ONE <plosone@plos.org> ถึง: Dollapak Apipongrat <dollapak.d@allied.tu.ac.th> You are being carbon copied ("cc:'d") on an e-mail "To" "Oytip Nathalang" oytipntl@hotmail.com CC: "Dollapak Apipongrat" dollapak.d@allied.tu.ac.th, "Sittiruk Roytrakul" sittiruk@biotec.or.th, "Kannadit Prayongratana" kanadit.pmk@gmail.com, "Mongkon Charoenpitakchai" dr.mongkon@gmail.com, "Kamphon Intharanut" kamphon.int@gmail.com, "Chonlada Laoruangroj" amchon.25@gmail.com, "Panachai Silpsamrit" morpanachai@gmail.com PONE-D-22-23313R1 Serum proteomic profiling reveals MTA2 and AGO2 as potential prognostic biomarkers associated with disease activity and adverse outcomes in multiple myeloma Dear Dr. Nathalang: I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department. If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org If we can help with anything else, please email us at plosone@plos.org. Thank you for submitting your work to PLOS ONE and supporting open access. Kind regards, PLOS ONE Editorial Office Staff on behalf of Dr. Klaus Roemer Academic Editor PLOS ONE

In compliance with data protection regulations, you may request that we remove your personal registration details at any time. (Use the following URL: https://www.editorialmanager.com/pone/login.asp?a=r). Please contact the publication office if you have any questions.

BIOGRAPHY

Name	Captain Dollapak Apipongrat
Educational Attainment	2009: Bachelor of Science
	(Medical Technology) Second Class Honours
	2019: Master Degree of Medical Technology
	(M.MT)
Scholarship	2019: The Excellent Research Graduate
	Scholarship – EreG Scholarship Program
	Under the Memorandum of Understanding
	between Thammasat University and the
	National Science and Technology
	Development Agency (NSTDA)

Publications

- Apipongrat D, Police P. Laboratory detection of lupus anticoagulant. RTA Med J.2019;72(4):271-7.

- Apipongrat D, Numbenjapon T, Prayoonwiwat W, Arnutti P, Nathalang O. Association between *SLC44A2* rs2288904 polymorphism and risk of recurrent venous thromboembolism among Thai patients. Thrombo Res. 2019;174:163-5.

- Apipongrat D. The *JAK2V617F*, *CALR* and *MPL* gene mutations in myeloproliferative neoplasms. Asian Arch Pathol. 2021:3(5);5-12.

- Apipongrat D, Numbenjapon T, Nimmanon T, Arnutti P. *JAK2, CALR, MPL*, and *ASXL1* mutations in 136 Thai patients with Philadelphia-negative myeloproliferative neoplasms and their correlations with clinical outcomes. J Med Assoc Thai 2021;104:1-12.

- Apipongrat D, Police P, Lamool R, Butthep P, Chantkran W. Validation of high concentrated thrombin time assay for unfractionated heparin monitoring. J Clin Lab Anal. 2022;36:e24695.