

REAL-TIME IMAGE PROCESSING FOR PRODUCTIVITY

TRACKING

BY

TITH VONG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

(ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2022

Ref. code: 25656322040095KJN

(1)

Thesis Title REAL-TIME IMAGE PROCESSING FOR

PRODUCTIVITY TRACKING

Author Tith Vong

Degree Master of Science (Engineering and Technology)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Thesis Advisor Associate Professor Chawalit Jeenanunta, Ph.D.

Academic Years 2022

ABSTRACT

 The production planning manager could not keep track of real-time data in the

production line. They could not identify the issue until a few days later. The problem in the

production line can make products produce less or more than demand. It makes the company

waste time and money. The worker counted the shoe without any timestamp and noted it on the

paper note, which is unmanageable and easy to lose or damage. This proposal proposes shoe

counting with a timestamp to help work count products automatically. We use python

programming language and OpenCV2, object training by YOLOv4-tiny, to make the system

recognize the object “shoe.” Then, the detected shoes from camera streaming will count by using

a 2-point intersection of each center point algorithm. There are 106 images selected among 40

shoe models to train the approach, and then images will separate into 80 training images, 16

validation images, and 10 testing images. The 10-fold algorithms are applied to a 10-times shuffle

of training, validation, and testing images. This application evaluates counting and timestamp

accuracy by comparing manual and system counting reports. After evaluation, our system

achieves 99 percent of shoe counting, then 80 percent of timestamp extraction, and it can correctly

detect and count another untrained shoe model. This approach reveals that our proposed method

is suitable for counting objects in real-time.

Keywords: Object counting with timestamps, 2-points intersection, Real-time object

counting, 10-fold algorithms, YOLOv4-tiny.

Ref. code: 25656322040095KJN

(2)

ACKNOWLEDGEMENTS

We appreciate all CPL (Safety shoe industry Group) and Smart Sense

Company’s staff and CEO for their corporation by providing proper camera streaming

data from the industry’s floor plan. This approach is mainly supported by the Centre of

Excellence in Logistics and Supply Chain Systems Engineering and Technology (CoE

LogEn), Sirindhorn International Institute of Technology, Thammasat University. All

of these will be hard to achieve without the involvement of all committee members.

Tith Vong

Ref. code: 25656322040095KJN

(3)

TABLE OF CONTENTS

 Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (2)

LIST OF TABLES (6)

LIST OF FIGURES (7)

LIST OF SYMBOLS/ABBREVIATIONS (9)

CHAPTER 1 INTRODUCTION

1.1 General Statement of Image Processing and its Benefit 1

1.2 Existing Model Analyze 2

1.3 Purpose of Application 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Introduction to YOLO 4

2.2 Related Work 5

2.3 Yolov4 Object Detection and Its Framework with Timestamp 5

CHAPTER 3 PROPOSE SOLUTIONS & ALGORITHMS 7

3.1 Company’s Floor Plan Study 7

3.2 Problem Statement 7

3.3 System Architecture and Algorithms 8

3.3.1 General Physical Architecture 8

3.3.2 System Model Design 9

Ref. code: 25656322040095KJN

(4)

3.4 Object Detection with Yolo 11

3.4.1 10-Fold Best Training Data Selection 13

3.4.2 The 2-points Intersection for Counting Algorithms 14

3.4.3 Timestamp Extraction Technique from Previous Task 15

3.5 Workflow and Propose Technique 17

3.5.1 Label Technique 17

3.5.2 Object Training Algorithms 18

3.5.2.1 Model Object Training Iteration 18

3.6 Object Detection and Counting Performance Measurement 19

3.6.1 Counting Performance with Timestamp Extraction 19

3.6.2 Real-time Counting Performance 20

3.7 Real-time Shoes Counting with Timestamp 20

3.8 Constraints May Affect the Counting System 24

CHAPTER 4 SYSTEM EVALUATION & PLANNING 25

4.1 Dataset 25

4.2 Experimental Result 26

4.2.1 Shoe Object Training 26

4.2.2 Unseen Shoes in Object Detection 29

4.2.3 Object Counting with Timestamp Result 29

4.2.4 System Evaluation Test 30

4.2.5 Real-time Evaluation Test 31

4.3 Cycle Time and Flow Time Calculation 32

CHAPTER 5 PLANIFICATION 35

5.1 Project Development Planning 35

Ref. code: 25656322040095KJN

(5)

CHAPTER 6 CONCLUSION 36

6.1 Application Summarize 36

REFERENCES 37

APPENDICES

APPENDIX A 40

APPENDIX B 42

BIOGRAPHY 43

Ref. code: 25656322040095KJN

(6)

LIST OF TABLES

Tables Page

3.1 List of Model Technology Chosen 9

4.1 Untrain Tested Data for 2 Minutes Video Clip 25

4.2 Object Detection Model Untrain Evaluation 29

4.3 Manuel and System Object Counting with Timestamp Evaluation 30

4.4 Result of 15 Videos Evaluation, Du: Duration, Co: Count, EP: Evaluation 30

4.5 The 4 hours of Real-time Shoe Object Counting Evaluation Report 31

Ref. code: 25656322040095KJN

(7)

LIST OF FIGURES

Figures Page

1.1 Machine Learning Model Comparison 2

2.1 Yolo Family Timeline 4

3.1 Station Case-study Process Explanation 7

3.2 Shoe Detection Event Trigger 8

3.3 Model Design Workflow 10

3.4 YOLO Object Detection Model 11

3.5 Real-time Object Detection Flow Chart 12

3.6 YOLOv4-Tiny.Conv29 Darknet Framework 13

3.7 10-fold Data Cross-Validation Processing 13

3.8 Object Counting Technique for 2-point Intersection Solution 14

3.9 Time Extraction in Video Frame 15

3.10 Video Time Extraction Flowchart 16

3.11 Shoes Object Label Technique 17

3.12 The System Training Model for the Shoe Object 18

3.13 Recall and Precision of Object Training Graph 19

3.14 Real-time Object Counting Process with Server Time Return 21

3.15 Actual Case Applied for Object Counting with Proposed Algorithms 22

3.16 Optimization of Resource Consumption and Broken Constraint 23

3.17 Worker’s Behavior Errors that can Affect the Counting System 24

4.1 Training Dataset & its Preprocessing Properties 25

4.2 Working Time Interval 26

4.3 Loss Graph During Training 27

4.4 Input Configuration File Detail 27

4.5 Confusion Matrix Result True/False Negative/Positive Graph 28

4.6 Shoe’s Recall and Precision Result Graph 28

4.7 Train & Untrain Shoe Identify 29

4.8 Quality Control Graph 32

4.9 Standard Deviation Graph 33

Ref. code: 25656322040095KJN

(8)

5.1 System Planification 35

Ref. code: 25656322040095KJN

(9)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

MQTT Message Queue Telemetry Transport

VDO Video

RSTP Rapid Spinning Tree Protocol

YOLO You Only Look Once

GPU Graphics Processing Unit

CPU Central Processing Unit

CSP Cross-State-Partial

RPN Region Proposal Network

FPS Frame Per Second

OT Over-Time

IP Internet Protocol network

PN Positive and Negative

API Application Programming Interface

CNN Convolution Neural Network

DNN Deep Neural Network

ID Identification

Ref. code: 25656322040095KJN

1

CHAPTER 1

INTRODUCTION

Image Processing is one of the leading marketing technologies used to help

humans in many fields such as medicine, industrial surveillant, military aerospace, etc.

Nowadays, many industries have applied Image Processing to support their work. It

assists the firm in saving time and money, improves working more standardized, and

improves the product’s quality. Many industries in Thailand keep updating their

company from industrial version 2.0 to automation with the help of an AI control

system. As our shoes industrial case study, the production process still uses a paper

note, and the planner gets the updated report the next day.

1.1 General Statement of Image Processing and its Benefit

Image processing plays an essential role in this automation world of object

recognition. The speed and accuracy of real-time object detection are significantly

improved. Technically, image processing has been applied for many purposes, such as

military, medical study, robots, vision control, remote sensing, etc. In many fields,

object detection frameworks have been practiced for different objectives. Related to the

object counting concept, we notify that it has been applied to count various objects such

as humans, cars, cells, rocks, and other products by using image processing. In this

proposed application, YOLOv4-tiny will introduce to train our object “shoe.”

Based on Bochkovskiy, Wang, and Liao (2020), the low-budget company could

not afford a high computation power for a real-time object detector with a high frame

rate. Real-time object counting becomes more critical to an embedded system for

helping humans reduce their tasks. Ren, Wang, Fang, Song, and Djahel (2020) used a

YOLO framework with a fire layer of Squee to measure humans in the subway. Doan

and Truong (2020) applied YOLOv4-tiny to count vehicles on the countryside’s roads.

Even though many image-counting approaches include a human walkthrough, cars, and

products, giving the exact timestamp when the object is detected using a low-

computation device is still a hot topic to discuss. The model should be flexible and

Ref. code: 25656322040095KJN

2

consistent enough to reduce the complexity and standardize the working behavior of

the worker.

1.2 Existing Model Analyze

Figure 1.1 Machine Learning Model Comparison

To choose the best suitable and compatible technology with our application, we

need to test every possible asset with a higher outcome during the neural network model

comparison of EfficientDet, RetinaNet, ATSS, ASFF, etc. We identified that each

machine learning model has its weak and robust points depending on the application of

its specialist.

➔ Below part is an explanation of each benefit of the applied method:

- EfficientDet needs more resources to scale up the accuracy. At the same

time, Yolo-V4 Tiny was designed to produce higher accuracy, faster detection, and low

resource consumption, which is also more appropriate for real-time detection.

- RetinaNet usually is applied with a single-stage detection which

consumes fewer resources but low-accuracy detection level.

- ATSS stands for Adaptive Training Sample Selection, and it selects

positive and negative sampling based on the characteristic of the object.

- ASFF comes from the word Adaptively Spatial Feature Fusion is used

to separate the different scales of the input image as a pyramid structure, and it is also

Ref. code: 25656322040095KJN

3

applied to the single-shot detector, which is not the most suitable with our real-time

application.

1.3 Purpose of Application

Our goal is to design a low computation real-time image counting system with

a timestamp for a shoe manufacturer to help them enhance their production efficiency

with fewer counting errors and visualize the real-time data update. The problem in the

production line can make shoe production unstable to the production plan. The planner

and project manager would like to know the detail of the production flow in the factory.

Then they can identify the issue more clearly (Intalar, Chumnumporn, Jeenanuta, &

Tunpan, 2021). Therefore, this proposal will propose an MQTT protocol to send real-

time counting shoes with timestamps to the planner. The workflows are divided into

four main steps: choose a suitable image covering 40 types of shoes and then legal

theirs’s data. We choose the best training dataset using the 10-folds technique to shuffle

the total dataset into 10 different data sets. Then, the Convolution network model-29

and darknet-23 framework were applied for each collection of shuffle data. Next, we

compared and chose the best result with the precision and recall value of each

training—the outputs of configuration files and hyperparameter optimization with

OpenCV2 and a python code. Our counting algorithms will convert to coding, and then

we test it with manually recorded Video first. Next, we evaluate the proposed system

in real-time with timestamps whenever the shoes pass the counting line. The system

will publish shoe counts with a timestamp message using the MQTT protocol with a

minicomputer called jetson nano for every detected shoe triggered whenever the shoe

moves across the counting line.

This thesis report is divided into the following parts: Abstraction, Introduction,

and understanding of the case study problem statement. Real-time object detection

technique with a server’s timestamp then illustrated Literature review for their method

improvement and limitations. Next, the workflow of real-time object counting with low

computation power. This report will also explain deeply related to the technique staff,

such as flow chart, pseudo code, and general system physical architecture.

Ref. code: 25656322040095KJN

4

CHAPTER 2

 LITERATURE REVIEW

Image processing technology has been significantly updated for a decade. Many

open-source frameworks are used for object detection, such as EfficientDet, YOLOv4,

YOLOv5, ATSS, ASFF, etc.

2.1 Introduction to YOLO

Figure 2.1 Yolo Family Timeline

YOLO (You only look once) was introduced in 2016 for real-time object

detection with high speed and accuracy with high frame rate video. YOLO separate into

5 versions, and it is proposed from 2015 to 2020. The first version of YOLO was

presented by Redmond et al. in 2015 to detect a real-time object. The authors used end-

to-end neural networks to classify detection platforms in 2016. Redmon and Farhadi

(2016) also proposed YOLO9000 to fix the main problem using Darknet-19 to detect

smaller objects with more accurate localization. Redmon and Farhadi (2018) enhanced

the model and convolutional network of YOLOv3 with an incremental improvement of

106 layers on CSPDarknet-53. A Year After, Jocher, Stoken, and Borove (2020)

developed the YOLOv4 model to increase the speed and accuracy of real-time object

detection with a higher frame rate of up to 65 FPS. YOLOv4-tiny was also introduced

Ref. code: 25656322040095KJN

5

to detect real-time objects with a higher frame rate suitable for low computation power

(Bochkovskiy, Wang, & Liao, 2020).

2.2 Related Work

Ren, Wang, Fang, Song, and Djahel (2020) used a fire layer of Squee to create

more bounding boxes, and the counting technique moved left out of the frame to count

people in the subway. Doan and Truong (2020) proposed their approach with YOLOv4-

tiny to count vehicles on countryside roads using DeepSort algorithms to define new

objects with the new Identity tracking that appeared in the frame. Covavisaruch and

Saengpanit (2004) applied Coarse Detection to detect timestamps with a bounding box

and the Fine Detection technique to locate each digit of a timestamp in that frame.

Covavisaruch and Saengpanit (2004) delete background portions in the video clip for

timestamp extraction.

2.3 Yolov4 Object Detection and Its Framework with Timestamp

This proposed model obtained a good result for the loss function. Meanwhile,

Alsanabani, Saeed, Al-Mkhlafi, and Albishari (2021) mentioned that the convolutional

layer’s deduction in the backbone and replaced residual-block to CSP block layer to

increase detection accuracy. Zhe Li et al. used time annotation to train a segmentation

model to predict action labels for every frame in the Video. Li, Abu Farha, and Gall

(2021) also proposed frame-wise labels to solve the limitation of frame annotation. The

multi-stage temporal convolutional network is a segmentation model that applies

parallel stages for the first stage with 5 kernel-size and 3 kernel-size for other stages

(Li, Abu Farha, & Gall, 2021). Yang, Xie, and Qu (2021) designed a model

improvement of YOLOv4 called Aircraft-YOLOv4. The authors used a large-scale

network and RPN (Region Proposal Network) with UCAS-AOD for Aircraft real-time

object detection (Yang, Xie, & Qu, 2021). The authors attempted to change the residual

structure in the backbone. Mathematic equations are applied with deep separatable

convolution to improve the performance of real-time detection accuracy (Yang, Xie, &

Qu, 2021). Jiang, Zhao, Li, and Jia (2020) used the ResBlock-D module in its network

instead of CSPBlock modules for computation complexity deduction. Alsanabani,

Saeed, Al-Mkhlafi, and Albishari (2021) illustrated that the CSPBlock module could

Ref. code: 25656322040095KJN

6

provide more detection accuracy; it may reduce detection speed due to the complex

network. The author increases accuracy by adding “residual network blocks” into

ResBlock-D. Biradar, Gupta, Mandal, and Vipparthi (2019) applied a two-stage

technique for timestamp anomaly detection. The author used this proposed system to

detect a vehicle with a timestamp in a traffic light from a video clip (Biradar, Gupta,

Mandal, & Vipparthi, 2019).

Ref. code: 25656322040095KJN

7

CHAPTER 3

PROPOSE SOLUTIONS & ALGORITHMS

3.1 Company’s Floor Plan Study

Figure 3.1 Station Case-study Process Explanation

During the data collection stage, we need to understand the correct part of the

process workflow inside the company. The Figure above explains how the shoes are

produced in that station; the machine’s behavior is passing the shoe on each tray

through each process from the input to the output. The input point is lasting_in, and the

output point is lasting_out. In the Lasting station, we decided to install two cameras at

the position in and out, as shown as camera_in and camera_out. We can place a

maximum of 4 pairs of shoes on each tray. Our purpose is to count the number of shoes

that get in and get out with the timestamp. This counting method with timestamp can

help us visualize the product flow of the cycle and flow time of each shoe pair.

3.2 Problem Statement

Inside the case study’s factory, workers typically count shoes by noticing down

on paper from one process to another and submitting reports later to the plan manager.

Sometimes, workers miss counting caused of the complexity of the task, and it requires

at least two staff; one staff work on the shoe process, and the other one count and note

down the shoe. Using a paper form, sometimes the report is easy to lose or damage.

Ref. code: 25656322040095KJN

8

The plant manager cannot visualize the production flow in real time because the

information hasn’t been updated on time, and there is no timestamp record. It takes

more time to calculate that report. In these cases, the production will be more delayed,

making customers unsatisfied.

3.3 System Architecture and Algorithms

A system architecture can help us understand the whole process of the designed

system. We can also identify the required flow of each use case by preventing the cost

of complexity in the organization. A transparent system design needs a good

architecture design.

3.3.1 General Physical Architecture

Figure 3.2 Shoe Detection Event Trigger

▪ (1) is used to connect to the broker and notify (2) when shoes are count

▪ (2) is a host broker; it publishes messages of counted shoes to the client

▪ (3) is the application platform that shows data as a graph or table to the user

*Time interval of the case study station starts from 8:00 AM until 5:00 PM

The camera has been set to work and recording at 8:00 AM daily. After

receiving the data, our proposed program will execute the startup service of our

counting application, which will count every shoe that passes the counting line. Then it

will publish a message to the broker, and next, the broker needs to host the broadcast

Ref. code: 25656322040095KJN

9

message separately by topic name. Whenever the client subscribes correctly to follow

the topic published by the broker, the client will receive a kind of data as shown in (3).

This process will repeatedly send and receive until the system is offline at 5:00 PM.

3.3.2 System Model design

1. Technology Usage definition:

 At this point, we will get to know the technology part in the context of why we

chose that type of that platform to apply in our proposed system.

Table 3.1 List of Model Technology Chosen

Technology Icon Name Definition Apply For

RoboFlow
It is a tool used for

computer vision tasks

Object labeling

platform

10-Folds

Algorithms

It is a cross-validation

process of best data

selection

Data shuffling of 10

different set

Yolo You Only Look Once

Object Training

Technique

Darknet

Framework

It is an open-source

neural network

framework

Fast object training

computation with

GPU

Python,

OpenCV

Is an interpreter, OOP

programming

language

DNN network for

object detection and

counting program

Tesseract

OCR

It is a character

recognition engine

under the Apache

license

Video clip’s

timestamp extraction

Jetson

nano

It is a single mini-

board computer

Onside object

counting computation

Ref. code: 25656322040095KJN

10

CUDA

GPU

Graphic Processing

Unit

Helping computation

faster

2. Detail Workflow:

Figure 3.3 Model Design Workflow

The architecture model workflow of a system played an essential role in giving

a specific purpose of the research with a road map on the technical study and starting

from collecting data from the company’s floor plan with the help of openAPI and rstp

after we installed the camera directly onside. Then, we can access the streaming data.

Initially, we need to record some vital video that summarizes all types of shoes. After

that, we use the roboflow web platform to label our image with the specific class

coordinate. Additionally, we use 10-fold algorithms to shuffle and divide 1 set of data

into ten groups. Next, we applied each collection of the shuffle data to train by using a

yolov4-tiny technique with darknet framework to train it on the GPU of collab-engine.

At the end of the training, we will select one of the best training sets by comparing the

loss graph function and the confusion matrix of its recall and precise result. With the

help of OpenCV, we input this training neural to the proposed system, and we also

applied coding to make the system able to detect shoes and generate the center point of

each shoe detected. As a detailed block, the 2-point intersection equation was used for

object counting with a time server from RSTP data. All the trigger events when the

shoes are counted will store in a .csv file for daily reports and send to the client side

who subscribes to the same topic using MQTT. The last process, the system counting

Ref. code: 25656322040095KJN

11

report, needs to compare with the manual report to evaluate the reliability of our

proposed application at the end of regular working hours.

Moreover, it will explain how our proposed methods are essential to help the

shoe industry measure their products within a specific timestamp with low-computation

resource consumption.

3.4 Object Detection with YOLO

Yolo is an image processing algorithm that uses a convolution neural network

to detect real-time objects with high speed and accuracy. It is proposed to apply with

the small-scale and low-computation device. There are three crucial components in the

Yolo framework (1) residual blocks, (2) bounding box regression, and (3) intersection

over the union known as IOU. Below parts is the definition of each component in detail:

(1) Residual blocks: divided image into the grid (SxS)

(2) Bounding box regression: box outline that specific object detection

(3) Intersection over the Union (IOU): describe the overlapping object and

make a perfect object detection boundary.

Starting from loading an input image, the model will divide the whole picture

into grid blocks and then run over pre-processing training data of the “shoe” object to

generate a sample bounding box regression. Next, the model will find the highest

bounding box overlap on each other with the best probability detection. Finally, the

output image of the detection process will generate the latest bounding box of each

object detected with confidential rate detection, as shown in Figure below.

Figure 3.4 YOLO Object Detection Model

Ref. code: 25656322040095KJN

12

The accuracy of the counting system is the critical value of our proposed

technique, so object detection with a high confidential rate must achieve. The training

image will import into the training system, and then the system needs to train ten times

with shuffle data of 10-folds. The system reads streaming Video from the industry’s

floor plan, and then the system needs to perform specific computations on GPU. Next,

training outputs with configuration files are imported to the OpenCV project along with

DNN-network to detect objects. If a shoe object is detected with a confidential threshold

more significant than 0.7, the system will draw the bounding box of each object seen in

the frame. With the proposed technique of 10-folds algorithms, our system can detect

unseen shoes.

Figure 3.5 Real-Time Object Detection Flow Chart

YoloV4 uses the backbone components CPSDarknet53 and other features of a

YoloV3 extension update. YoloV4-tiny is a compressed version of YoloV4. It aims to

simplify the network structure and cut down unusual parameters to make it flexible and

suitable with the embedded device as a minicomputer (raspberry pi, jetson).

Ref. code: 25656322040095KJN

13

Figure 3.6 YOLOv4-Tiny.Conv29 Darknet Framework

- Backbone: CSPDarknet53 contains 29 convolutional layers 3 × 3

- Neck: SPP, PAN

- Head: Yolov3 (Dese Prediction, Sparse Prediction)

Bochkovskiy, Wang, and Liao (2020) Model parameter:

- Image processing [N x C x H x]

3.4.1 10-Fold Best Training Data Selection

K-folds is a cross-validation method used in many fields of machine learning

techniques. 10-Folds is recognized as one of the best sequences of data shuffling

technique by comparing the bias of each model of the predictive modeling. There are

three different types of data (1) training, (2) validation, and (3) testing.

Figure 3.7 10-fold Data Cross-Validation Processing

In the process of the 10-fold model, data between training, testing, and

validation will shuffle without duplication, and it estimates the model on each bundle

set. This proposed technique can help design a training model with unseen data. Each

Ref. code: 25656322040095KJN

14

bundle of 10 sets of the output will simply apply to the same training system as shown

in 3.5.2 Object Training Algorithms.

3.4.2 The 2-points Intersection for Counting Algorithms

After the shoes are detected, the system must count every shoe that passes the

counting line. There are two critical components for this proposed counting system,

generate the center of shoes detected and draw two counting lines at the suitable area,

as illustrated in Figure 3.8.

Figure 3.8 Object Counting Technique for 2-Point Intersection Solution

*System behavior: Shoe Object move left to counting line

Definition:

 : Center point of object shoe detected

 : Counting line intersected point

I (x, y): object shoe CenterPoint

y = ax + b (linear equation) (3.1)

Ix =
𝑥𝑎+𝑥𝑏

2
, Iy =

𝑦𝑎+𝑦𝑏

2
 => I (x, y) (object center point) (3.2)

Ax + By = C (3.3)

The below pseudo code parts are detailed technical explanations of each process

step by step. The answer is based on the code concept structure of an application with

a python programming project. We also implemented some technical work with the

OpenCV framework.

A(x, y)

B(x, y)

C(x, y)

D(x, y)

Detection object

dfsfs
Counting line

I(x, y)

Move right to
left

Ref. code: 25656322040095KJN

15

PYTHON PSEUDO CODE: Object Counting algorithm1

- We assume that we have AB, CD and A(1, 1), B(4, 5), C(1,7), D(3, 5)

- Draw CD as in frame frame[150:300, 690:700, 1:]

- Create Blank Array 1 dimension from video frame using NumPy.zero(frame.

shape, dtype=numpy.uint8)

- Create a Center of AB for each object detection by cv2.circle(Blank Array, (Ix,

Iy), thickness, color, -1)

- While Video is reading:

o Sum the Total blank of the detection line position in the video frame as

NumPy.sum (blank[line_coordinate])

o If Total blank > 0 => object touches the line

o Then count one object at that time

o Else => object does not touch the line

o Then re-test another object until the object is detected and counted or

the program ends.

3.4.3 Timestamp Extraction Technique from Previous Task

Figure 3.9 Time Extraction in Video Frame

The timestamp for each shoe object detection was extracted from the Video clip.

The system will provide counting data when the shoe object passes through the line at

the exact timestamp from each testing video clip in the specific frame. For detail, it will

present in Figure 3.10. A broker time server replaced this timestamp extraction from

the Video. The below flow chart will introduce the concept flow of how the system

extracts the timestamp from the recorded input video.

Ref. code: 25656322040095KJN

16

Figure 3.10 Video Time Extraction Flowchart

In the beginning, the system will read the input video. When the object ‘shoe’

moves across the counting line, the system will capture that frame and call the extract

image function. In that function, first, we set the position of the timestamp in the

structure at the up-left corner to minimize the computation cost. We applied the

TessaractOCR engine to separate text and numbers. When we get the digit number, we

need to split every two digits as the time format, and finally, the system will return that

extracted time text to the request calling function. The below part is a detailed

explanation using pseudo code step by step.

PYTHON PSEUDO CODE: Time extraction algorithm2

- We assume that the Video is loaded and gets its frame

- Link tesseract cmd by using by tesseract package

- While the center of the shoe object is intersected line:

o Resize the frame for specific time location

img2 = imutils.resize(img)

o Read image to data for img2 with only digits configuration cmd,

 pytes.image_to_data(img2, config)

o segmentation and split text to data

- return extraction text result

Ref. code: 25656322040095KJN

17

In the case of Real-Time application: when we applied the system to be real-

time by using the MQTT framework, a timestamp was provided by the time server

whenever the shoes had passed the detection line. It may also delay sometime due to

the connection latency is not stable.

3.5 Workflow and Propose Technique

The problem statement clearly shows that the shoe industry needs a production

tracking system to help them keep tracking their production line in real-time and reduce

counting problems generally made by workers. This research is proposed to solve the

problem with the detection line to count the object “shoes” with a timestamp. The

following part will explain in more detail.

3.5.1 Label Technique

After selecting all shoes in each photo, we need to export that dataset as a

darknet framework for training purposes. The output file from this export contains the

coordination of each shoe object with its coordinates, as shown in Figure 3.11 Roboflow

is encouraged to label the coordination of the shoe object in each photo. Import data

and class with the below properties:

- Image size 416x416

- No rotation slips

- None auto-orientation

Figure 3.11 Shoes Object Label Technique

Ref. code: 25656322040095KJN

18

3.5.2 Object Training algorithms

There are eighty labels and images, sixteen validations, and ten testing images,

which need to be imported to the Jupiter Notebook program to practice ten folds

algorithms by shuffling all input data into 10 sets. We train our system with the

YOLOv4-tiny darknet framework using a python programming language with the

OpenCV2 library. Then, the system used a detector train from the YOLOv4-darknet-

23 framework to prepare each 10 sets of training data with YOLOv4-tiny convolution

network model 29, and we need to set up some values in the configuration file as shown

in 3.12 Then we need to compare the precision and recall of each output and choose

only the best weight with the best result.

Figure 3.12 The System Training Model for the Shoe Object

3.5.2.1 Model object Training iteration

Bochkovskiy, Wang, and Liao (2020) proposed two-stage detector was used to

find the optimal balance of network resolution, convolution layer, and other parameters.

Then proposed system will select an additional block to improve the receptive field by

using a different backbone for different detector levels. The authors used YOLOv4 with

SPP, PAN, and SAM to enhance performance with a high frame detection rate. Figure

3.4 shows how the object generates each bounding box.

Ref. code: 25656322040095KJN

19

Figure 3.13 Recall and Precision of Object Training Graph

A high Recall and precision can verify that the proposed model can be realistic

and best practice in real-life applications because the system will rarely produce a high

detection bias. As the Figure above, the probability of our training result almost reaches

the total score. The recall helps us identify the system’s correctness based on True-

Positive.

3.6 Object Detection and Counting Performance measurement

3.6.1 Counting performance with timestamp extraction

From the previous tasks of Ren, Wang, Fang, Song, and Djahel (2020), we

tested 8 video clips of 5 min. We drew the counting line at the exact position where

workers usually start to count the shoe manually. We compared the actual system

counting amount with the manual count from each recorded Video with a timestamp on

the video frame. We separate the quality of the evaluation into three types:

- 1st P status means the counting amount of manual count and system count is

the same, and the manual timestamp matches the extraction timestamp.

- 2nd T status means the counting amount of both systems is matched, but the

timestamp can be slightly different

Ref. code: 25656322040095KJN

20

- 3rd F status means 100% of counting match, but the timestamp is greater

than +-3 sec

3.6.2 Real-time Counting Performance

The system daily connects to the camera based on the time interval from 8:00

AM to 12:00 PM. Our proposed system will count the shoes with a timestamp and then

save it to a .csv file. At the same time, we also use that streaming video to do manual

count with a camera time frame and note it on paper. We compare the total pair of shoes

from the system and report file. So, we will know how many shoes our proposed system

cannot detect.

3.7 Real-time Shoes Counting with Timestamp

PYTHON PSUESDO CODE: Object detection algorithm3

- Import numpy, datetime, cv2, pytesseract, imutils

- Using cv2 to load Video

- net = load configuration, weight file to dnn-network

- create a dnn-detection model with a net parameter

- While True:

o Extract classid, score, and box from model detection

o Then draw a rectangular bounding box with a circle center containing blank

frame line detection.

o If Video = END

o Then END the program

o Else: counting each object with

o Then: If the Object touches the line by algorithms1

o Then: count 1, extract the timestamp from that frame

o Return: 1 object count with specific detected time.

Ref. code: 25656322040095KJN

21

Figure 3.14 Real-time Object Counting Process with Server Time Return

The system connected with real-time streaming Video, and the counting line

was drawn in the proper position in the frame, shown in Figure 3.14. We proposed that

position because the machine moved forward and temporarily stopped before the

counting line. Next, the system accepts only the object “shoes,” which has a more

significant threshold than 0.7. When the object is detected, our system will draw the

center point of that object. We aimed to find the union point of the detected object and

the counting line using the Figure 3.16 algorithm. If the detected object moves to touch

the 1st line, the 2nd line of the counting line will appear, and then the system will count

that object whenever it continues to pass 2nd with a timestamp. The counting data will

suddenly be published to the Dx-server, the MQTT broker.

Ref. code: 25656322040095KJN

22

Figure 3.15 Actual Case Applied for Object Counting with Proposed Algorithms

We got a 420x420 image frame of HD resolution from camera streaming. In the

actual case study in the manufacturing floor plan, the counting lines are separated into

two parts, UP (Yellow) and DOWN(Red), as shown in Figure 3.15. The objects in the

upper area will count when it moves to touch the yellow line, the same process with the

red line. Whenever the shoe is counted, the system publishes data with a timestamp to

the broker, and then it will repeat this action until losing the camera’s connection.

Finally, the planner can collect these data with a CSV file or use our proposed system

design, as shown in appendix A, to see the real-time update. 2-line for object counting

is proposed to solve some problems caused by workers placing the shoe incorrectly or

unstandardized on the conveyor.

The concept method above has been changed for real-time application due to

resource consumption and the constraint broken. So, we need to identify and optimize

the root cause of the resource overflow or any interrupt errors during production time.

All these errors can lead to the counting problem. The root cause of over-resource

consumption caused by the input frame and unwanted object detection process and shoe

object detection accuracy rate drop-down was troubled due to the working behavior of

workers. The Figure below will explain how our challenge can be our opportunity to

solve the problem simply.

Ref. code: 25656322040095KJN

23

Figure 3.16 Optimization of Resource Consumption and Broken Constraint

- (1) shoe counting await area, which divides into the yellow and red area

- (2) verify counting line, which passed the Boolean to (3) line to appear

- (3) confirm the counting line, which the shoe is finally count

For real-time objects, the counting technique is quite a challenging task to

achieve. The system also makes the time latency due to network connection problems,

computation resources, and other issues generally caused by workers’ working

behavior. We try to minimize the dimension from HD input to the new frame, in which

the counting line position is set to the middle of the image frame, and its width is from

the length of 3 detection objects. Then, the system will need to restart every 4 hours to

load a new resource after the counting data are saved to a .csv file and sent back to

clients as an MQTT service. The system will publish a message from the message queue

protocol with time server time whenever the shoe passes the second counting line (3).

The distance between both lines (2) & (3) was designed to prevent some detection errors

during counting. It can play a role in regenerating the object center point verification.

Sometimes, one object can generate two center points due to the constraint being

broken, as shown in 3.8 below.

Ref. code: 25656322040095KJN

24

3.8 Constraints May Affect the Counting System

Figure 3.17 Worker’s Behavior Errors that can Affect the Counting System

The constraint is a rule that can make the system work with less error. Working in

an actual factory, different workers have different work habits, so to make our counting

system can count shoes smoothly, we need to study and define some constraints for the

worker to obey, as shown in Figure 3.8.

Constraints explanation:

- (1) object shoe placed not as a pair

- (2) each pair of shoes is placed too near to the other

- (3) Workers took shoes before they passed the counting line, and in some

cases, our system detects the worker’s head as shoes

Ref. code: 25656322040095KJN

25

CHAPTER 4

SYSTEM EVALUATION & PLANNING

4.1 Dataset

Figure 4.1 Training Dataset & its Preprocessing Properties

We recorded excellent videos through the online Rapid Spanning Tree Protocol

for our system evaluation. We trained our system with 106 images of 40 types of shoes

which were selected from many recorded videos. We separated data into 80 training,

16 validations, and 10 image tests. We also recorded 2 minutes of video clips to test

untrained shoe objects.

Table 4.1 Untrain Tested Data for 2 Minutes Video Clip

N Video Duration Frame Rate
Shoe Amount

Count

Unseen Shoe

Count

1 L_V 1 2 min 13.75 10 3

2 L_V 2 2 min 13.75 12 2

3 L_V 3 2 min 13.73 11 2

4 L_V 4 2 min 13.70 13 0

5 L_V 5 2 min 13.70 15 3

6 L_V 6 2 min 13.73 11 5

7 L_V 7 2 min 13.73 15 5

After testing the counting system with the input of 15 video clips from the

previous proposal tasks, we tried to apply the Real-time video image streaming from

station lasting_in and lasting_out, which was installed at the object’s visible position

Ref. code: 25656322040095KJN

26

and can be accessible by rapid spanning tree protocol as an IP camera through the

network. Our streaming video input dimension is 320 pixels, and a .csv file with the

exact shoes detection amount and timestamp will provide every 4h, twice a day, as

shown in the graph below, except OT.

- 1h: is usually the afternoon resting time

- 3h: is normally working overtime

Figure 4.2 Working Time Interval

4.2 Experimental Result

This part illustrates the performance test of our application’s implementation

for object counting with the timestamp and the comparison between manual and camera

counts. We used 15 video clips to evaluate our proposed approach’s performance, as

shown in Table 4.4. At the end of this part, our system will define the critical attribute

for report comparison of Manual and System counting for real-time application.

4.2.1 Shoe object training

Our approach got 90% true-positive and 10% false-positive, so the system rarely

confused to detect another object as a shoe. We also got a confidentiality rate of 0.995

for each shoe that appears in the detection frame. The percentage of precision and recall

is almost perfect. Figure 4.3 will display a curve of loss function for each iteration

training. When the training process reached the 2400th iteration, the YOLOv4-tiny

convolution network 29 model’s convolution network performed well, making the line

go to zero point. The critical point of the customize training attribute of the YOLOv4

configuration file with one-shoe class detection must be to set the batch size to 64 to

increase the computation power with GPU and the subdivisions to 24 for memory

capacity running. The system will use more resources if subdivisions become smaller.

Then, we load the input image with 416 x 416 dimensions. We chose 6000 iterations to

train our proposed object detection with Darknet-23. We set the running steps to 80%

maximum batch size to 4800 and 5400. At the end of the configuration file editing, we

added the filter to 32 for several layer outputs. The outcome of our proposed

8:00 12:00

13:00 17:00

1h

20:00

3h

Ref. code: 25656322040095KJN

27

configuration value will make detection accuracies up to 99% for trained objects and

85% for untrained shoe models. We have also considered choosing the number of

thresholds > 0.7. So, the system rarely detects objects such as the worker’s head and

conveyor’s hanger as shoes.

Figure 4.3 Loss Graph During Training

Figure 4.4 Input Configuration File Detail

Ref. code: 25656322040095KJN

28

Figure 4.5 Confusion Matrix Result True/False Negative/Positive Graph

The confusion matrix helps us verify our prediction’s correctness and compare

the result with the actual value. In the case of the Figure above, we saw that our

proposed training model could achieve 90% True Positive, which means that the system

rarely detects another object as a shoe. Other 10% of the False Positive verification is

usually caused by the distance and the color of some image area, which made the system

false to separate which object is a shoe. For example, the hanger is sometimes detected

as a shoe. Anyway, even if the False Positive occurred, some of the confidential rates

of that object are still lower than 0.7

Figure 4.6 Shoe’s Recall and Precision Result Graph

Ref. code: 25656322040095KJN

29

4.2.2 Unseen shoes in object detection

An untrained object means that the object shoe model is not in the group of 40

models of 106 training images. Our system is also supposed to train that model to

reduce shoe detection issues when the shoe company starts to produce a new model.

Figure 4.7 Train & Untrain Shoe Identify

Table 4.2 Object Detection Model Untrain Evaluation

*MC: Manual Count, * SC: System Count

There are about 5 shoe models detected with a low confidential threshold. These

5 models were verified as the untrained shoe in our video recording clip 6 (L_V6).

Sometimes, untrained object shoes can also affect our proposed counting system, but

most likely, as shown in Table 4.2.2 above, our system still achieves almost 85% for

untrained object detection. There were also cases where miscounting was caused by

broking constraints, as shown in Figure 3.8.

4.2.3 Object Counting with Timestamp Result

In this part, we will see how our proposed system evaluates the time that a shoe

object is counted by comparing Manual Count with System Count, as below table.

Testing

VDO

Duration

(min)

Trained Shoes Average

Threshold of

train shoes

Untrained

Shoes
Average

Threshold of

Untrain shoes

Total count

Manual/

System *MC *SC *MC *SC

 L_v1 2 7 7 0.99 3 3 0.70 10/10
L_v2 2 10 10 0.99 2 2 0.75 12/12
L_v3 2 9 9 0.99 2 2 0.74 11/11
L_v4 2 13 13 0.99 0 0 0.73 13/13
L_v5 2 12 12 0.99 3 3 0.70 15/15
L_v6 2 6 6 0.99 5 4 0.65 11/10

L_v7 2 10 10 0.99 5 5 0.75 15/15

Ref. code: 25656322040095KJN

30

Table 4.3 Manuel and System Object Counting with Timestamp Evaluation

 Manuel System System Count
Count

(c)

Timestamp

(t)

N Type Count Timestamp Count Timestamp P/T/F P/T/F

1 Shoe 1 10:01:10 1 10:01:10 Pc Pt

2 Shoe 1 10:01:57 1 10:01:57 Pc Pt

3 Shoe 1 10:02:00 1 10:02:05 Pc Tt

4 Shoe 1 10:02:50 1 10:02:50 Pc Pt

Total 4 4 Pc Pt

We divide our system evaluation status into 3 fundamental values, such as P:

Perfect match, which means that the manual count matches the System count. T status

represents matching counting, but the result has 1-minute different conditions. (F

status) refers to the mismatch condition. As a result, our proposed system performs well

with a timestamp. This technique was also applied in section 4.2.5.

4.2.4 System Evaluation Test

The manual and camera result comparison illustrates that our proposed system

performed very well with shoe counting with constraint time ±3 seconds. However,

sometimes our application also met F status for timestamp evaluation. The detail of the

15 videos evaluation test is shown in the below table.

Table 4.4 Result of 15 Videos Evaluation, Du: Duration, Co: Count, EP: Evaluation

N
Video

Name
System Performance Parameter EP

P (%) T (%) F% > ±3 Co % Ram % Cpu

1 L_v1 56.2 43.7 0 28/28 2 65

2 L_v2 70 30 0 14/14 2 61

3 L_v3 13.3 86.6 0 22/22 3 64

4 L_v4 13.3 80 6.6 19/19 1 65

5 L_v5 12.5 68.7 18.5 23/23 2 66

6 L_v6 50 50 0 19/19 2 65

7 L_v7 100 0 0 7/7 2 62

 8 L_v8 29 71 0 26/26 2 60

9 L_v9 80 20 0 22/22 2 61

10 L_v10 50 50 0 10/10 3 60

11 L_v11 25.7 64.3 10 16/16 2 61

12 L_v12 31.25 62.5 6.25 22/22 2 60

13 L_v13 60 40 0 25/25 1 63

14 L_v14 100 0 0 22/22 2 60

15 L_v15 40 60 0 27/27 1 61

Ref. code: 25656322040095KJN

31

The system achieved 99% object counting accuracy, then 70.0% for perfect

match (P status) timestamp and 20.0 % for (T status), and 10% for (F status). Our

proposed approach still has some limitations. It produced an F status because the

recorded video clips have low resolution, usually messed up because of an internet

connection problem during video streaming. Our device’s computation uses GTX960M

VGA, 4GB of Ram, direct X = 12 with CPU Intel Core i.7

4.2.5 Real-time Evaluation Test

We applied our proposed approach with jetson-nano, installed onside with a

Camera station. We tested our real-time performance by counting shoes every 4h from

8 AM until noon with Jetson-nano computation with 4GB of Ram, Maxwell GUP:

921MHz + ARM Cortex-A57: 1.43GHz, 16GB storage

Table 4.5 The 4 hours of Real-time Shoe Object Counting Evaluation Report

Date Station
Manual

Count (pair)

System

Count (pair)
Missing

04 July 2022

Lasting_Out

540 540 0

05 July 2022 500 500 0

06 July 2022 490 485 -5

07 July 2022 480 480 0

=> The Missing shoes: The identification of miss counting reason is divided into 2

cases (Human and System).

- Human case: worker broke the constraint as shown in section 3.4, and the

Camera position has been moved, or the worker put things to block camera vision, etc.

- System case: untrained shoe model with less than 0.7 thresholds, detect

another object as shoe, and in the rare case, resource overheats caused by long-term

processing.

Ref. code: 25656322040095KJN

32

4.3 Cycle Time and Flow Time Calculation

Figure 4.8 Quality Control Graph

Flow Time and Cycle time graphs are essential to our design system outcome.

This graph can let the planner track the production flow and the problem during

production. There is a sample formula for flow time and cycle time, as shown below:

(1) Cycle time input = input time of current unit – input time of the previous

unit

(2) Cycle time output = output time of current unit – output time of the previous

unit

Ref. code: 25656322040095KJN

33

We can also calculate the mean and standard deviation (SD) of each data

receiving graph above:

 Mean: =
∑ 𝑥𝑖

𝑁
𝑖=1

n

 Standard deviation (SD): 𝑠𝑞𝑟𝑡 (
𝑠𝑢𝑚((−𝑀𝑒𝑎𝑛)2)

𝑛−1
)

Where:

 𝑥𝑖 ∶ 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑎𝑡 𝑎𝑡 𝑖𝑡ℎ 𝑖𝑡𝑒𝑚

𝑛 ∶ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

(1) 3 SD line: upper line = avg + 3*sd, lower line = avg - 3*sd

(2) 2 SD line: upper line = avg + 2 *sd, lower line = avg – 2*sd

(3) 1 SD line: upper line = avg + 1*sd, lower line = avg-1*sd

Figure 4.9 Standard Deviation Graph

July August

September October Time

Now

Ref. code: 25656322040095KJN

34

FLOW CHART OF ONE MACHINE FORMULA:

(1) Flow time = output time – input time

Sample Explanation:

 FLOW CHART OF TWO MACHINE FORMULA

(2) Flowtime = output time – input time

Ref. code: 25656322040095KJN

35

CHAPTER 5

PLANIFICATION

5.1 Project Development Planning

 Figure 5.1 System Planification

This planification helps us achieve the application development separate a

straightforward task and deadline. It was divided into five different phases. We start

with the design system and the system requirement and then choose the best technology

suitable for our development. Next, we need to design our machine-learning model with

applied counting algorithms. Ultimately, we will break down all tasks and develop an

application with specific time feature release expectations to let the client test. If any

changes or errors happen, we will have more time to fix them.

Ref. code: 25656322040095KJN

36

CHAPTER 6

CONCLUSION

6.1 Application Summarize

This research applied YOLOv4-tiny with DNN in the OpenCV framework to

make shoe detection more accurate while using a 2-point intersection algorithm to count

the object and the Mqtt message protocol and time server for a real-time counting

system. The object detection threshold is a crucial point of object counting accuracy,

so we applied our selected 106 images with 10-folds algorithms, which shuffle data into

10 packages. Yolo-Darknet-23 with Convolution neural model 29th to train 10 times

with different training data of that 10 packages output. The system illustrated that our

proposed training model could detect an untrained object, as shown in section 4.2.2.

 We evaluated our system with 4h real-time evaluation. Our system got 99%

accuracy of object counting, while 90% of timestamps and the design system able to

detect 90% of unseen training shoes during the production process. Anyways, the

system needs more resources for computation for the whole day. So, our proposed

method of frame detection area reduction and streaming dimension input should be

deducted to make our suggested solution use resources more efficiently. Table 4.2.4

illustrates that this proposed technique is suitable for a low-computation device such as

Raspberry Pi4 or Jetson Nano for a real-time counting system.

However, counting with timestamps sometimes does not match the actual case

due to the network latency for long-hour detection and counting. In the following tasks,

we will try to optimize the computation resource, which makes our system can work

more robustness. We will also train the worker to interact with our proposed system.

Ref. code: 25656322040095KJN

37

REFERENCES

Alsanabani, A., Saeed, S.A., Al-Mkhlafi, M., & Albishari, M. (2021). A Low Cost and

Real Time Vehicle Detection Using Enhanced YOLOv4-Tiny. 2021 IEEE

International Conference on Artificial Intelligence and Computer Applications

(ICAICA), 372-377.

Bochkovskiy, A., Wang, C., & Liao, H. (2020). YOLOv4: Optimal Speed and Accuracy

of Object Detection. arXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.

10934

Biradar, K. M., Gupta, A., Mandal, M., & Vipparthi, S. K. (2019). Challenges in Time-

Stamp Aware Anomaly Detection in Traffic Videos. IEEE Computer Vision and

Pattern Recognition Workshops (CVPRW-2019). https://doi.org/10.48550/

arXiv.1906.04574

Covavisaruch, N., & Saengpanit, C. (2004). Time Stamp Detection and Recognition in

Video Frames. The 2004 Internation conference on Image Science, System

and Technology (CISST 2004), Las Vegas, Nevada, USA

Doan, T., & Truong, M. (2020). Real-time vehicle detection and counting based on

YOLO and DeepSORT. 2020 12th International Conference on Knowledge and

Systems Engineering (KSE), 67-72.

Intalar,N.,Chumnumporn,K.,Jeenanunta,C. & Tunpan,A.(2021).Towards Industry 4.0:

digital transformation of traditional safety shoes manufacturer in Thailand with

a development of production tracking system. Engineering Management in

Production and Services,13(4) 79-94. https://doi.org/10.2478/emj-2021-0033

Jocher, G., Stoken, A., Borove, J., et al. (2020). Utralytics/YOLOv5: Bug Fixed

and Performance improvement. Zennodo. https://zenodo.org/record/

4154370#.Y5PSKy8RppQ

Jiang, Z., Zhao, L., Li, S., & Jia, Y. (2020). Real-time object detection method based

on improved YOLOv4-tiny. Journal of Network Intelligence, Volume 7,

Number 1, February 2022. https://doi.org/10.48550/arXiv.2011.04244

Li, Z., Abu Farha, Y., & Gall, J. (2021). Temporal Action Segmentation from

Timestamp Supervision. 2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 8361-8370.

Ref. code: 25656322040095KJN

38

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once:

Unified, Real-Time Object Detection. arXiv:1506.02640. https://doi.org

/10.48550/arXiv.1506.02640

Ren, P., Wang, L., Fang, W., Song, S., & Djahel, S. (2020). A novel squeeze YOLO-

based real-time people counting approach. International Journal of Bio-

Inspired Computation, 16, 94-101.

Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 6517-6525.

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement.

arXiv:1804.02767, 1. https://doi.org/10.48550/arXiv.1804.02767

Yang, Y., Xie, G., & Qu, Y. (2021). Real-time Detection of Aircraft Objects in Remote

Sensing Images Based on Improved YOLOv4. 2021 IEEE 5th Advanced

Information Technology, Electronic and Automation Control Conference

(IAEAC), 5, 1156-1164.

Ref. code: 25656322040095KJN

39

APPENDICES

Ref. code: 25656322040095KJN

40

APPENDIX A

REAL-TIME OBJECT TRACKING ON LASTING STATION (IN-

OUT)

Dashboard 1: IoT Dashboard

1. Users can compare planning with actual production graphs for each product

SKU.

2. Users can see overall production planning compared with actual

3. Users can see the production planning graph compared with real projects

monthly

4. And users can also see the machine’s temperature, IoT data, their customer’s

overall production order, etc.

Ref. code: 25656322040095KJN

41

Dashboard 2: Machine view dashboard

1. Users can select each station they want to visual

2. User can see the number of production planning + Actual amount + defective

product

3. User can see the machine report with cycle time + flow time graph

4. User can see the machine’s OEE

5. User can use a visual camera on that station the counting product IN and OUT

along with the defective product in real-time.

Ref. code: 25656322040095KJN

42

APPENDIX B

CYCLE TIME AND FLOW TIME WITH PARETO CHART ON

QUALITY CONTROL SYSTEM

Dashboard 3: Machine view (Quality Control Check)

1. Users can check the problem with the Pareto chart for each station with a video

clip recorded during the trial, and then they can report that problem to the plan manager.

Ref. code: 25656322040095KJN

43

BIOGRAPHY

Name Tith Vong

Education 2014: Bachelor of Engineering (Computer Engineering)

Institute of Technology of Cambodia

Publication

T. Vong, C. Jeenanunta, A. Tunpan, and N. Sirimarnkit, “The Low Computation and

Real-Time Shoe Detection with Timestamp for Production Tracking in Shoe

Manufacturing,” 2021 16th International Joint Symposium on Artificial

Intelligence and Natural Language Processing (iSAI-NLP), 2021, pp. 1-5, doi:

10.1109/iSAI-NLP54397.2021.9678163.

Ref. code: 25656322040095KJN

