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ABSTRACT 

 

 The production planning manager could not keep track of real-time data in the 

production line. They could not identify the issue until a few days later. The problem in the 

production line can make products produce less or more than demand. It makes the company 

waste time and money. The worker counted the shoe without any timestamp and noted it on the 

paper note, which is unmanageable and easy to lose or damage. This proposal proposes shoe 

counting with a timestamp to help work count products automatically. We use python 

programming language and OpenCV2, object training by YOLOv4-tiny, to make the system 

recognize the object “shoe.” Then, the detected shoes from camera streaming will count by using 

a 2-point intersection of each center point algorithm. There are 106 images selected among 40 

shoe models to train the approach, and then images will separate into 80 training images, 16 

validation images, and 10 testing images. The 10-fold algorithms are applied to a 10-times shuffle 

of training, validation, and testing images. This application evaluates counting and timestamp 

accuracy by comparing manual and system counting reports. After evaluation, our system 

achieves 99 percent of shoe counting, then 80 percent of timestamp extraction, and it can correctly 

detect and count another untrained shoe model. This approach reveals that our proposed method 

is suitable for counting objects in real-time. 

 

Keywords: Object counting with timestamps, 2-points intersection, Real-time object 

counting, 10-fold algorithms, YOLOv4-tiny. 
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CHAPTER 1 

INTRODUCTION 

 

Image Processing is one of the leading marketing technologies used to help 

humans in many fields such as medicine, industrial surveillant, military aerospace, etc. 

Nowadays, many industries have applied Image Processing to support their work. It 

assists the firm in saving time and money, improves working more standardized, and 

improves the product’s quality. Many industries in Thailand keep updating their 

company from industrial version 2.0 to automation with the help of an AI control 

system. As our shoes industrial case study, the production process still uses a paper 

note, and the planner gets the updated report the next day. 

 

1.1 General Statement of Image Processing and its Benefit 

Image processing plays an essential role in this automation world of object 

recognition. The speed and accuracy of real-time object detection are significantly 

improved. Technically, image processing has been applied for many purposes, such as 

military, medical study, robots, vision control, remote sensing, etc. In many fields, 

object detection frameworks have been practiced for different objectives. Related to the 

object counting concept, we notify that it has been applied to count various objects such 

as humans, cars, cells, rocks, and other products by using image processing. In this 

proposed application, YOLOv4-tiny will introduce to train our object “shoe.” 

Based on Bochkovskiy, Wang, and Liao (2020), the low-budget company could 

not afford a high computation power for a real-time object detector with a high frame 

rate. Real-time object counting becomes more critical to an embedded system for 

helping humans reduce their tasks. Ren, Wang, Fang, Song, and Djahel (2020) used a 

YOLO framework with a fire layer of Squee to measure humans in the subway. Doan 

and Truong (2020) applied YOLOv4-tiny to count vehicles on the countryside’s roads. 

Even though many image-counting approaches include a human walkthrough, cars, and 

products, giving the exact timestamp when the object is detected using a low-

computation device is still a hot topic to discuss. The model should be flexible and 
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consistent enough to reduce the complexity and standardize the working behavior of 

the worker. 

 

1.2 Existing Model Analyze 

 
Figure 1.1 Machine Learning Model Comparison 

 

To choose the best suitable and compatible technology with our application, we 

need to test every possible asset with a higher outcome during the neural network model 

comparison of EfficientDet, RetinaNet, ATSS, ASFF, etc. We identified that each 

machine learning model has its weak and robust points depending on the application of 

its specialist.  

➔ Below part is an explanation of each benefit of the applied method:  

- EfficientDet needs more resources to scale up the accuracy. At the same 

time, Yolo-V4 Tiny was designed to produce higher accuracy, faster detection, and low 

resource consumption, which is also more appropriate for real-time detection.  

- RetinaNet usually is applied with a single-stage detection which 

consumes fewer resources but low-accuracy detection level.  

- ATSS stands for Adaptive Training Sample Selection, and it selects 

positive and negative sampling based on the characteristic of the object.  

- ASFF comes from the word Adaptively Spatial Feature Fusion is used 

to separate the different scales of the input image as a pyramid structure, and it is also 
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applied to the single-shot detector, which is not the most suitable with our real-time 

application.  

 

 

1.3 Purpose of Application 

Our goal is to design a low computation real-time image counting system with 

a timestamp for a shoe manufacturer to help them enhance their production efficiency 

with fewer counting errors and visualize the real-time data update. The problem in the 

production line can make shoe production unstable to the production plan. The planner 

and project manager would like to know the detail of the production flow in the factory. 

Then they can identify the issue more clearly (Intalar, Chumnumporn, Jeenanuta, & 

Tunpan, 2021). Therefore, this proposal will propose an MQTT protocol to send real-

time counting shoes with timestamps to the planner. The workflows are divided into 

four main steps: choose a suitable image covering 40 types of shoes and then legal 

theirs’s data. We choose the best training dataset using the 10-folds technique to shuffle 

the total dataset into 10 different data sets. Then, the Convolution network model-29 

and darknet-23 framework were applied for each collection of shuffle data. Next, we 

compared and chose the best result with the precision and recall value of each 

training—the outputs of configuration files and hyperparameter optimization with 

OpenCV2 and a python code. Our counting algorithms will convert to coding, and then 

we test it with manually recorded Video first. Next, we evaluate the proposed system 

in real-time with timestamps whenever the shoes pass the counting line. The system 

will publish shoe counts with a timestamp message using the MQTT protocol with a 

minicomputer called jetson nano for every detected shoe triggered whenever the shoe 

moves across the counting line. 

This thesis report is divided into the following parts: Abstraction, Introduction, 

and understanding of the case study problem statement. Real-time object detection 

technique with a server’s timestamp then illustrated Literature review for their method 

improvement and limitations. Next, the workflow of real-time object counting with low 

computation power. This report will also explain deeply related to the technique staff, 

such as flow chart, pseudo code, and general system physical architecture.   
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CHAPTER 2 

 LITERATURE REVIEW 

 

Image processing technology has been significantly updated for a decade. Many 

open-source frameworks are used for object detection, such as EfficientDet, YOLOv4, 

YOLOv5, ATSS, ASFF, etc. 

 

2.1 Introduction to YOLO 

 

Figure 2.1 Yolo Family Timeline 

 

YOLO (You only look once) was introduced in 2016 for real-time object 

detection with high speed and accuracy with high frame rate video. YOLO separate into 

5 versions, and it is proposed from 2015 to 2020. The first version of YOLO was 

presented by Redmond et al. in 2015 to detect a real-time object. The authors used end-

to-end neural networks to classify detection platforms in 2016. Redmon and Farhadi 

(2016) also proposed YOLO9000 to fix the main problem using Darknet-19 to detect 

smaller objects with more accurate localization. Redmon and Farhadi (2018) enhanced 

the model and convolutional network of YOLOv3 with an incremental improvement of 

106 layers on CSPDarknet-53. A Year After, Jocher, Stoken, and Borove (2020) 

developed the YOLOv4 model to increase the speed and accuracy of real-time object 

detection with a higher frame rate of up to 65 FPS. YOLOv4-tiny was also introduced 
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to detect real-time objects with a higher frame rate suitable for low computation power 

(Bochkovskiy, Wang, & Liao, 2020).  

 

2.2 Related Work 

Ren, Wang, Fang, Song, and Djahel (2020) used a fire layer of Squee to create 

more bounding boxes, and the counting technique moved left out of the frame to count 

people in the subway. Doan and Truong (2020) proposed their approach with YOLOv4-

tiny to count vehicles on countryside roads using DeepSort algorithms to define new 

objects with the new Identity tracking that appeared in the frame. Covavisaruch and 

Saengpanit (2004) applied Coarse Detection to detect timestamps with a bounding box 

and the Fine Detection technique to locate each digit of a timestamp in that frame. 

Covavisaruch and Saengpanit (2004) delete background portions in the video clip for 

timestamp extraction.  

 

2.3 Yolov4 Object Detection and Its Framework with Timestamp 

This proposed model obtained a good result for the loss function. Meanwhile, 

Alsanabani, Saeed, Al-Mkhlafi, and Albishari (2021) mentioned that the convolutional 

layer’s deduction in the backbone and replaced residual-block to CSP block layer to 

increase detection accuracy. Zhe Li et al. used time annotation to train a segmentation 

model to predict action labels for every frame in the Video.  Li, Abu Farha, and Gall 

(2021) also proposed frame-wise labels to solve the limitation of frame annotation. The 

multi-stage temporal convolutional network is a segmentation model that applies 

parallel stages for the first stage with 5 kernel-size and 3 kernel-size for other stages 

(Li, Abu Farha, & Gall, 2021). Yang, Xie, and Qu (2021) designed a model 

improvement of YOLOv4 called Aircraft-YOLOv4. The authors used a large-scale 

network and RPN (Region Proposal Network) with UCAS-AOD for Aircraft real-time 

object detection (Yang, Xie, & Qu, 2021). The authors attempted to change the residual 

structure in the backbone. Mathematic equations are applied with deep separatable 

convolution to improve the performance of real-time detection accuracy (Yang, Xie, & 

Qu, 2021). Jiang, Zhao, Li, and Jia (2020) used the ResBlock-D module in its network 

instead of CSPBlock modules for computation complexity deduction. Alsanabani, 

Saeed, Al-Mkhlafi, and Albishari (2021) illustrated that the CSPBlock module could 
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provide more detection accuracy; it may reduce detection speed due to the complex 

network. The author increases accuracy by adding “residual network blocks” into 

ResBlock-D.  Biradar, Gupta, Mandal, and Vipparthi (2019) applied a two-stage 

technique for timestamp anomaly detection. The author used this proposed system to 

detect a vehicle with a timestamp in a traffic light from a video clip (Biradar, Gupta, 

Mandal, & Vipparthi, 2019). 
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CHAPTER 3 

PROPOSE SOLUTIONS & ALGORITHMS 

 

3.1 Company’s Floor Plan Study 

 
Figure 3.1 Station Case-study Process Explanation 

 

During the data collection stage, we need to understand the correct part of the 

process workflow inside the company. The Figure above explains how the shoes are 

produced in that station; the machine’s behavior is passing the shoe on each tray 

through each process from the input to the output. The input point is lasting_in, and the 

output point is lasting_out. In the Lasting station, we decided to install two cameras at 

the position in and out, as shown as camera_in and camera_out. We can place a 

maximum of 4 pairs of shoes on each tray. Our purpose is to count the number of shoes 

that get in and get out with the timestamp. This counting method with timestamp can 

help us visualize the product flow of the cycle and flow time of each shoe pair.  

 

3.2 Problem Statement 

Inside the case study’s factory, workers typically count shoes by noticing down 

on paper from one process to another and submitting reports later to the plan manager. 

Sometimes, workers miss counting caused of the complexity of the task, and it requires 

at least two staff; one staff work on the shoe process, and the other one count and note 

down the shoe. Using a paper form, sometimes the report is easy to lose or damage. 
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The plant manager cannot visualize the production flow in real time because the 

information hasn’t been updated on time, and there is no timestamp record. It takes 

more time to calculate that report. In these cases, the production will be more delayed, 

making customers unsatisfied. 

 

3.3 System Architecture and Algorithms 

A system architecture can help us understand the whole process of the designed 

system. We can also identify the required flow of each use case by preventing the cost 

of complexity in the organization. A transparent system design needs a good 

architecture design. 

 

3.3.1 General Physical Architecture 

 

Figure 3.2 Shoe Detection Event Trigger 

 

▪ (1) is used to connect to the broker and notify (2) when shoes are count 

▪ (2) is a host broker; it publishes messages of counted shoes to the client 

▪ (3) is the application platform that shows data as a graph or table to the user 

*Time interval of the case study station starts from 8:00 AM until 5:00 PM 

The camera has been set to work and recording at 8:00 AM daily. After 

receiving the data, our proposed program will execute the startup service of our 

counting application, which will count every shoe that passes the counting line. Then it 

will publish a message to the broker, and next, the broker needs to host the broadcast 
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message separately by topic name. Whenever the client subscribes correctly to follow 

the topic published by the broker, the client will receive a kind of data as shown in (3). 

This process will repeatedly send and receive until the system is offline at 5:00 PM.  

 

3.3.2 System Model design 

1. Technology Usage definition:  

 At this point, we will get to know the technology part in the context of why we 

chose that type of that platform to apply in our proposed system. 

Table 3.1 List of Model Technology Chosen 

Technology Icon Name Definition        Apply For 

 

RoboFlow 
It is a tool used for 

computer vision tasks 

Object labeling 

platform 

 

10-Folds 

Algorithms 

It is a cross-validation 

process of best data 

selection  

Data shuffling of 10 

different set 

 
Yolo You Only Look Once 

Object Training 

Technique 

 

Darknet 

Framework 

It is an open-source 

neural network 

framework  

Fast object training 

computation with 

GPU 

 

Python, 

OpenCV 

Is an interpreter, OOP 

programming 

language 

DNN network for 

object detection and 

counting program 

 

Tesseract 

OCR 

It is a character 

recognition engine 

under the Apache 

license 

Video clip’s 

timestamp extraction 

 

Jetson 

nano 

It is a single mini-

board computer 

Onside object 

counting computation 
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CUDA 

GPU 

Graphic Processing 

Unit 

Helping computation 

faster 

 

2. Detail Workflow:  

 

Figure 3.3 Model Design Workflow 

 

The architecture model workflow of a system played an essential role in giving 

a specific purpose of the research with a road map on the technical study and starting 

from collecting data from the company’s floor plan with the help of openAPI and rstp 

after we installed the camera directly onside. Then, we can access the streaming data. 

Initially, we need to record some vital video that summarizes all types of shoes. After 

that, we use the roboflow web platform to label our image with the specific class 

coordinate. Additionally, we use 10-fold algorithms to shuffle and divide 1 set of data 

into ten groups. Next, we applied each collection of the shuffle data to train by using a 

yolov4-tiny technique with darknet framework to train it on the GPU of collab-engine. 

At the end of the training, we will select one of the best training sets by comparing the 

loss graph function and the confusion matrix of its recall and precise result. With the 

help of OpenCV, we input this training neural to the proposed system, and we also 

applied coding to make the system able to detect shoes and generate the center point of 

each shoe detected. As a detailed block, the 2-point intersection equation was used for 

object counting with a time server from RSTP data. All the trigger events when the 

shoes are counted will store in a .csv file for daily reports and send to the client side 

who subscribes to the same topic using MQTT. The last process, the system counting 
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report, needs to compare with the manual report to evaluate the reliability of our 

proposed application at the end of regular working hours.  

Moreover, it will explain how our proposed methods are essential to help the 

shoe industry measure their products within a specific timestamp with low-computation 

resource consumption.  

 

3.4 Object Detection with YOLO 

Yolo is an image processing algorithm that uses a convolution neural network 

to detect real-time objects with high speed and accuracy. It is proposed to apply with 

the small-scale and low-computation device. There are three crucial components in the 

Yolo framework (1) residual blocks, (2) bounding box regression, and (3) intersection 

over the union known as IOU. Below parts is the definition of each component in detail: 

(1) Residual blocks: divided image into the grid (SxS) 

(2) Bounding box regression: box outline that specific object detection 

(3) Intersection over the Union (IOU): describe the overlapping object and 

make a perfect object detection boundary. 

 

Starting from loading an input image, the model will divide the whole picture 

into grid blocks and then run over pre-processing training data of the “shoe” object to 

generate a sample bounding box regression. Next, the model will find the highest 

bounding box overlap on each other with the best probability detection. Finally, the 

output image of the detection process will generate the latest bounding box of each 

object detected with confidential rate detection, as shown in Figure below. 

 

Figure 3.4 YOLO Object Detection Model 
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The accuracy of the counting system is the critical value of our proposed 

technique, so object detection with a high confidential rate must achieve. The training 

image will import into the training system, and then the system needs to train ten times 

with shuffle data of 10-folds. The system reads streaming Video from the industry’s 

floor plan, and then the system needs to perform specific computations on GPU. Next, 

training outputs with configuration files are imported to the OpenCV project along with 

DNN-network to detect objects. If a shoe object is detected with a confidential threshold 

more significant than 0.7, the system will draw the bounding box of each object seen in 

the frame. With the proposed technique of 10-folds algorithms, our system can detect 

unseen shoes.  

 

Figure 3.5 Real-Time Object Detection Flow Chart 

 

YoloV4 uses the backbone components CPSDarknet53 and other features of a 

YoloV3 extension update. YoloV4-tiny is a compressed version of YoloV4. It aims to 

simplify the network structure and cut down unusual parameters to make it flexible and 

suitable with the embedded device as a minicomputer (raspberry pi, jetson).  

Ref. code: 25656322040095KJN



13 

 

 

 

 

 

Figure 3.6 YOLOv4-Tiny.Conv29 Darknet Framework 

 

- Backbone: CSPDarknet53 contains 29 convolutional layers 3 × 3 

- Neck: SPP, PAN 

- Head: Yolov3 (Dese Prediction, Sparse Prediction) 

Bochkovskiy, Wang, and Liao (2020) Model parameter:  

- Image processing [N x C x H x] 

 

3.4.1 10-Fold Best Training Data Selection 

K-folds is a cross-validation method used in many fields of machine learning 

techniques. 10-Folds is recognized as one of the best sequences of data shuffling 

technique by comparing the bias of each model of the predictive modeling. There are 

three different types of data (1) training, (2) validation, and (3) testing.  

 

Figure 3.7 10-fold Data Cross-Validation Processing 

 

In the process of the 10-fold model, data between training, testing, and 

validation will shuffle without duplication, and it estimates the model on each bundle 

set. This proposed technique can help design a training model with unseen data. Each 
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bundle of 10 sets of the output will simply apply to the same training system as shown 

in 3.5.2 Object Training Algorithms.  

 

3.4.2 The 2-points Intersection for Counting Algorithms 

After the shoes are detected, the system must count every shoe that passes the 

counting line. There are two critical components for this proposed counting system,                                                                                                                    

generate the center of shoes detected and draw two counting lines at the suitable area, 

as illustrated in Figure 3.8.  

 

 

 

 

 

 

 

Figure 3.8 Object Counting Technique for 2-Point Intersection Solution 

 

*System behavior: Shoe Object move left to counting line 

Definition:  

    :  Center point of object shoe detected 

    :  Counting line intersected point 

I (x, y): object shoe CenterPoint 

y = ax + b (linear equation) (3.1) 

Ix = 
𝑥𝑎+𝑥𝑏

2
, Iy = 

𝑦𝑎+𝑦𝑏

2
 => I (x, y) (object center point) (3.2) 

Ax + By = C (3.3) 

  

The below pseudo code parts are detailed technical explanations of each process 

step by step. The answer is based on the code concept structure of an application with 

a python programming project. We also implemented some technical work with the 

OpenCV framework. 

 

A(x, y) 

B(x, y) 

C(x, y) 

D(x, y) 

Detection object 

dfsfs 
Counting line 

 

I(x, y) 

Move right to 
left 
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PYTHON PSEUDO CODE: Object Counting algorithm1 

- We assume that we have AB, CD and A(1, 1), B(4, 5), C(1,7), D(3, 5) 

- Draw CD as in frame frame[150:300, 690:700, 1:] 

- Create Blank Array 1 dimension from video frame using NumPy.zero(frame. 

shape, dtype=numpy.uint8)  

- Create a Center of AB for each object detection by cv2.circle(Blank Array, (Ix, 

Iy), thickness, color, -1) 

- While Video is reading:  

o Sum the Total blank of the detection line position in the video frame as 

NumPy.sum (blank[line_coordinate]) 

o If Total blank > 0 => object touches the line  

o Then count one object at that time 

o Else => object does not touch the line 

o Then re-test another object until the object is detected and counted or 

the program ends. 

 
 

3.4.3 Timestamp Extraction Technique from Previous Task 

 

Figure 3.9 Time Extraction in Video Frame 

 

The timestamp for each shoe object detection was extracted from the Video clip. 

The system will provide counting data when the shoe object passes through the line at 

the exact timestamp from each testing video clip in the specific frame. For detail, it will 

present in Figure 3.10. A broker time server replaced this timestamp extraction from 

the Video. The below flow chart will introduce the concept flow of how the system 

extracts the timestamp from the recorded input video.  
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Figure 3.10 Video Time Extraction Flowchart  

 

In the beginning, the system will read the input video. When the object ‘shoe’ 

moves across the counting line, the system will capture that frame and call the extract 

image function. In that function, first, we set the position of the timestamp in the 

structure at the up-left corner to minimize the computation cost. We applied the 

TessaractOCR engine to separate text and numbers. When we get the digit number, we 

need to split every two digits as the time format, and finally, the system will return that 

extracted time text to the request calling function. The below part is a detailed 

explanation using pseudo code step by step. 

 

PYTHON PSEUDO CODE: Time extraction algorithm2 

- We assume that the Video is loaded and gets its frame 

- Link tesseract cmd by using by tesseract package 

- While the center of the shoe object is intersected line: 

o Resize the frame for specific time location  

img2 = imutils.resize(img) 

o Read image to data for img2 with only digits configuration cmd,  

 pytes.image_to_data(img2, config) 

o segmentation and split text to data 

- return extraction text result 
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In the case of Real-Time application:  when we applied the system to be real-

time by using the MQTT framework, a timestamp was provided by the time server 

whenever the shoes had passed the detection line. It may also delay sometime due to 

the connection latency is not stable. 

 

3.5 Workflow and Propose Technique 

The problem statement clearly shows that the shoe industry needs a production 

tracking system to help them keep tracking their production line in real-time and reduce 

counting problems generally made by workers. This research is proposed to solve the 

problem with the detection line to count the object “shoes” with a timestamp. The 

following part will explain in more detail.  

 

3.5.1 Label Technique 

After selecting all shoes in each photo, we need to export that dataset as a 

darknet framework for training purposes. The output file from this export contains the 

coordination of each shoe object with its coordinates, as shown in Figure 3.11 Roboflow 

is encouraged to label the coordination of the shoe object in each photo. Import data 

and class with the below properties:  

- Image size 416x416 

- No rotation slips 

- None auto-orientation 

 

Figure 3.11 Shoes Object Label Technique 
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3.5.2 Object Training algorithms 

There are eighty labels and images, sixteen validations, and ten testing images, 

which need to be imported to the Jupiter Notebook program to practice ten folds 

algorithms by shuffling all input data into 10 sets. We train our system with the 

YOLOv4-tiny darknet framework using a python programming language with the 

OpenCV2 library. Then, the system used a detector train from the YOLOv4-darknet-

23 framework to prepare each 10 sets of training data with YOLOv4-tiny convolution 

network model 29, and we need to set up some values in the configuration file as shown 

in 3.12 Then we need to compare the precision and recall of each output and choose 

only the best weight with the best result. 

  

Figure 3.12 The System Training Model for the Shoe Object 

 

3.5.2.1 Model object Training iteration 

Bochkovskiy, Wang, and Liao (2020) proposed two-stage detector was used to 

find the optimal balance of network resolution, convolution layer, and other parameters. 

Then proposed system will select an additional block to improve the receptive field by 

using a different backbone for different detector levels. The authors used YOLOv4 with 

SPP, PAN, and SAM to enhance performance with a high frame detection rate. Figure 

3.4 shows how the object generates each bounding box.  
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Figure 3.13 Recall and Precision of Object Training Graph 

 

A high Recall and precision can verify that the proposed model can be realistic 

and best practice in real-life applications because the system will rarely produce a high 

detection bias. As the Figure above, the probability of our training result almost reaches 

the total score. The recall helps us identify the system’s correctness based on True-

Positive.  

 

3.6 Object Detection and Counting Performance measurement 

3.6.1 Counting performance with timestamp extraction 

From the previous tasks of Ren, Wang, Fang, Song, and Djahel (2020), we 

tested 8 video clips of 5 min. We drew the counting line at the exact position where 

workers usually start to count the shoe manually. We compared the actual system 

counting amount with the manual count from each recorded Video with a timestamp on 

the video frame. We separate the quality of the evaluation into three types:  

- 1st P status means the counting amount of manual count and system count is 

the same, and the manual timestamp matches the extraction timestamp.  

- 2nd T status means the counting amount of both systems is matched, but the 

timestamp can be slightly different 
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- 3rd F status means 100% of counting match, but the timestamp is greater 

than +-3 sec 

 

3.6.2 Real-time Counting Performance 

The system daily connects to the camera based on the time interval from 8:00 

AM to 12:00 PM. Our proposed system will count the shoes with a timestamp and then 

save it to a .csv file. At the same time, we also use that streaming video to do manual 

count with a camera time frame and note it on paper. We compare the total pair of shoes 

from the system and report file. So, we will know how many shoes our proposed system 

cannot detect. 

 

3.7 Real-time Shoes Counting with Timestamp  

PYTHON PSUESDO CODE: Object detection algorithm3 

- Import numpy, datetime, cv2, pytesseract, imutils 

- Using cv2 to load Video 

- net = load configuration, weight file to dnn-network 

- create a dnn-detection model with a net parameter 

- While True: 

o Extract classid, score, and box from model detection 

o Then draw a rectangular bounding box with a circle center containing blank 

frame line detection. 

o If Video = END 

o Then END the program 

o Else: counting each object with 

o Then: If the Object touches the line by algorithms1 

o Then: count 1, extract the timestamp from that frame 

o Return: 1 object count with specific detected time. 
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Figure 3.14 Real-time Object Counting Process with Server Time Return  

 

The system connected with real-time streaming Video, and the counting line 

was drawn in the proper position in the frame, shown in Figure 3.14. We proposed that 

position because the machine moved forward and temporarily stopped before the 

counting line. Next, the system accepts only the object “shoes,” which has a more 

significant threshold than 0.7. When the object is detected, our system will draw the 

center point of that object. We aimed to find the union point of the detected object and 

the counting line using the Figure 3.16 algorithm. If the detected object moves to touch 

the 1st line, the 2nd line of the counting line will appear, and then the system will count 

that object whenever it continues to pass 2nd with a timestamp. The counting data will 

suddenly be published to the Dx-server, the MQTT broker. 
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Figure 3.15 Actual Case Applied for Object Counting with Proposed Algorithms 

 

We got a 420x420 image frame of HD resolution from camera streaming. In the 

actual case study in the manufacturing floor plan, the counting lines are separated into 

two parts, UP (Yellow) and DOWN(Red), as shown in Figure 3.15. The objects in the 

upper area will count when it moves to touch the yellow line, the same process with the 

red line. Whenever the shoe is counted, the system publishes data with a timestamp to 

the broker, and then it will repeat this action until losing the camera’s connection. 

Finally, the planner can collect these data with a CSV file or use our proposed system 

design, as shown in appendix A, to see the real-time update. 2-line for object counting 

is proposed to solve some problems caused by workers placing the shoe incorrectly or 

unstandardized on the conveyor.  

 

The concept method above has been changed for real-time application due to 

resource consumption and the constraint broken. So, we need to identify and optimize 

the root cause of the resource overflow or any interrupt errors during production time. 

All these errors can lead to the counting problem. The root cause of over-resource 

consumption caused by the input frame and unwanted object detection process and shoe 

object detection accuracy rate drop-down was troubled due to the working behavior of 

workers. The Figure below will explain how our challenge can be our opportunity to 

solve the problem simply. 
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Figure 3.16 Optimization of Resource Consumption and Broken Constraint 

 

- (1) shoe counting await area, which divides into the yellow and red area 

- (2) verify counting line, which passed the Boolean to (3) line to appear 

- (3) confirm the counting line, which the shoe is finally count 

 

For real-time objects, the counting technique is quite a challenging task to 

achieve. The system also makes the time latency due to network connection problems, 

computation resources, and other issues generally caused by workers’ working 

behavior. We try to minimize the dimension from HD input to the new frame, in which 

the counting line position is set to the middle of the image frame, and its width is from 

the length of 3 detection objects. Then, the system will need to restart every 4 hours to 

load a new resource after the counting data are saved to a .csv file and sent back to 

clients as an MQTT service. The system will publish a message from the message queue 

protocol with time server time whenever the shoe passes the second counting line (3). 

The distance between both lines (2) & (3) was designed to prevent some detection errors 

during counting. It can play a role in regenerating the object center point verification. 

Sometimes, one object can generate two center points due to the constraint being 

broken, as shown in 3.8 below. 
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3.8 Constraints May Affect the Counting System 

 

Figure 3.17 Worker’s Behavior Errors that can Affect the Counting System 

 

The constraint is a rule that can make the system work with less error. Working in 

an actual factory, different workers have different work habits, so to make our counting 

system can count shoes smoothly, we need to study and define some constraints for the 

worker to obey, as shown in Figure 3.8.  

Constraints explanation:  

- (1) object shoe placed not as a pair 

- (2) each pair of shoes is placed too near to the other 

- (3) Workers took shoes before they passed the counting line, and in some 

cases, our system detects the worker’s head as shoes 
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CHAPTER 4 

SYSTEM EVALUATION & PLANNING 

 

4.1 Dataset 

 

Figure 4.1 Training Dataset & its Preprocessing Properties 

 

We recorded excellent videos through the online Rapid Spanning Tree Protocol 

for our system evaluation. We trained our system with 106 images of 40 types of shoes 

which were selected from many recorded videos. We separated data into 80 training, 

16 validations, and 10 image tests. We also recorded 2 minutes of video clips to test 

untrained shoe objects. 

Table 4.1 Untrain Tested Data for 2 Minutes Video Clip 

N Video Duration Frame Rate 
Shoe Amount 

Count 

Unseen Shoe 

Count 

1 L_V 1 2 min 13.75 10 3 

2 L_V 2 2 min 13.75 12 2 

3 L_V 3 2 min 13.73 11 2 

4 L_V 4 2 min 13.70 13 0 

5 L_V 5 2 min 13.70 15 3 

6 L_V 6 2 min 13.73 11 5 

7 L_V 7 2 min 13.73 15 5 

 

After testing the counting system with the input of 15 video clips from the 

previous proposal tasks, we tried to apply the Real-time video image streaming from 

station lasting_in and lasting_out, which was installed at the object’s visible position 
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and can be accessible by rapid spanning tree protocol as an IP camera through the 

network. Our streaming video input dimension is 320 pixels, and a .csv file with the 

exact shoes detection amount and timestamp will provide every 4h, twice a day, as 

shown in the graph below, except OT. 

- 1h: is usually the afternoon resting time 

- 3h: is normally working overtime 

 
 

Figure 4.2 Working Time Interval 

 

4.2 Experimental Result 

This part illustrates the performance test of our application’s implementation 

for object counting with the timestamp and the comparison between manual and camera 

counts. We used 15 video clips to evaluate our proposed approach’s performance, as 

shown in Table 4.4. At the end of this part, our system will define the critical attribute 

for report comparison of Manual and System counting for real-time application. 

 

4.2.1 Shoe object training 

Our approach got 90% true-positive and 10% false-positive, so the system rarely 

confused to detect another object as a shoe. We also got a confidentiality rate of 0.995 

for each shoe that appears in the detection frame. The percentage of precision and recall 

is almost perfect. Figure 4.3 will display a curve of loss function for each iteration 

training. When the training process reached the 2400th iteration, the YOLOv4-tiny 

convolution network 29 model’s convolution network performed well, making the line 

go to zero point. The critical point of the customize training attribute of the YOLOv4 

configuration file with one-shoe class detection must be to set the batch size to 64 to 

increase the computation power with GPU and the subdivisions to 24 for memory 

capacity running. The system will use more resources if subdivisions become smaller. 

Then, we load the input image with 416 x 416 dimensions. We chose 6000 iterations to 

train our proposed object detection with Darknet-23. We set the running steps to 80% 

maximum batch size to 4800 and 5400. At the end of the configuration file editing, we 

added the filter to 32 for several layer outputs. The outcome of our proposed 

8:00 12:00 

13:00 17:00 

1h 

20:00 

3h 

Ref. code: 25656322040095KJN



27 

 

 

 

 

configuration value will make detection accuracies up to 99% for trained objects and 

85% for untrained shoe models. We have also considered choosing the number of 

thresholds > 0.7. So, the system rarely detects objects such as the worker’s head and 

conveyor’s hanger as shoes. 

 

 

Figure 4.3 Loss Graph During Training 

 

 

Figure 4.4 Input Configuration File Detail 
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Figure 4.5 Confusion Matrix Result True/False Negative/Positive Graph 

 

The confusion matrix helps us verify our prediction’s correctness and compare 

the result with the actual value. In the case of the Figure above, we saw that our 

proposed training model could achieve 90% True Positive, which means that the system 

rarely detects another object as a shoe. Other 10% of the False Positive verification is 

usually caused by the distance and the color of some image area, which made the system 

false to separate which object is a shoe. For example, the hanger is sometimes detected 

as a shoe. Anyway, even if the False Positive occurred, some of the confidential rates 

of that object are still lower than 0.7 

 

 

Figure 4.6 Shoe’s Recall and Precision Result Graph 
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4.2.2 Unseen shoes in object detection 

An untrained object means that the object shoe model is not in the group of 40 

models of 106 training images. Our system is also supposed to train that model to 

reduce shoe detection issues when the shoe company starts to produce a new model. 

 

Figure 4.7 Train & Untrain Shoe Identify 

 

Table 4.2 Object Detection Model Untrain Evaluation 

*MC: Manual Count, * SC: System Count 

 

There are about 5 shoe models detected with a low confidential threshold. These 

5 models were verified as the untrained shoe in our video recording clip 6 (L_V6). 

Sometimes, untrained object shoes can also affect our proposed counting system, but 

most likely, as shown in Table 4.2.2 above, our system still achieves almost 85% for 

untrained object detection. There were also cases where miscounting was caused by 

broking constraints, as shown in Figure 3.8. 

 

4.2.3 Object Counting with Timestamp Result 

In this part, we will see how our proposed system evaluates the time that a shoe 

object is counted by comparing Manual Count with System Count, as below table. 

 

Testing 

VDO 

Duration 

(min) 

Trained Shoes Average 

Threshold of 

train shoes 

Untrained 

Shoes 
Average 

Threshold of 

Untrain shoes 

Total count 

Manual/ 

System *MC *SC *MC *SC 

 L_v1 2 7 7 0.99 3 3 0.70 10/10 
L_v2 2 10 10 0.99 2 2 0.75 12/12 
L_v3 2 9 9 0.99 2 2 0.74 11/11 
L_v4 2 13 13 0.99 0 0 0.73 13/13 
L_v5 2 12 12 0.99 3 3 0.70 15/15 
L_v6 2 6 6 0.99 5 4 0.65 11/10 

L_v7 2 10 10 0.99 5 5 0.75 15/15 
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Table 4.3 Manuel and System Object Counting with Timestamp Evaluation  

 Manuel System System Count 
Count  

(c) 

Timestamp 

(t) 

N Type Count Timestamp Count Timestamp P/T/F P/T/F 

1 Shoe 1 10:01:10 1 10:01:10 Pc Pt 

2 Shoe 1 10:01:57 1 10:01:57 Pc Pt 

3 Shoe 1 10:02:00 1 10:02:05 Pc Tt 

4 Shoe 1 10:02:50 1 10:02:50 Pc Pt 

Total 4 4 Pc Pt 

 

We divide our system evaluation status into 3 fundamental values, such as P: 

Perfect match, which means that the manual count matches the System count. T status 

represents matching counting, but the result has 1-minute different conditions. (F 

status) refers to the mismatch condition. As a result, our proposed system performs well 

with a timestamp. This technique was also applied in section 4.2.5. 

 

4.2.4 System Evaluation Test 

The manual and camera result comparison illustrates that our proposed system 

performed very well with shoe counting with constraint time ±3 seconds. However, 

sometimes our application also met F status for timestamp evaluation. The detail of the 

15 videos evaluation test is shown in the below table. 

Table 4.4 Result of 15 Videos Evaluation, Du: Duration, Co: Count, EP: Evaluation 

N 
Video 

Name 
System Performance Parameter  EP 

P (%) T (%) F% > ±3 Co % Ram % Cpu 

1 L_v1 56.2 43.7 0 28/28 2 65 

2 L_v2 70 30 0 14/14 2 61 

3 L_v3 13.3 86.6 0  22/22 3 64 

4 L_v4 13.3 80 6.6 19/19 1 65 

5 L_v5 12.5 68.7 18.5 23/23 2 66 

6 L_v6 50 50 0 19/19 2 65 

7 L_v7 100 0 0 7/7 2 62 

 8 L_v8 29 71  0 26/26 2 60 

9 L_v9 80 20 0 22/22 2 61 

10 L_v10 50 50 0 10/10 3 60 

11 L_v11 25.7 64.3 10 16/16 2 61 

12 L_v12 31.25 62.5 6.25 22/22 2 60 

13 L_v13 60 40 0 25/25 1 63 

14 L_v14 100 0 0 22/22 2 60 

15 L_v15 40 60 0 27/27 1 61 
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The system achieved 99% object counting accuracy, then 70.0% for perfect 

match (P status) timestamp and 20.0 % for (T status), and 10% for (F status). Our 

proposed approach still has some limitations. It produced an F status because the 

recorded video clips have low resolution, usually messed up because of an internet 

connection problem during video streaming. Our device’s computation uses GTX960M 

VGA, 4GB of Ram, direct X = 12 with CPU Intel Core i.7 

 

4.2.5 Real-time Evaluation Test 

We applied our proposed approach with jetson-nano, installed onside with a 

Camera station. We tested our real-time performance by counting shoes every 4h from 

8 AM until noon with Jetson-nano computation with 4GB of Ram, Maxwell GUP: 

921MHz + ARM Cortex-A57: 1.43GHz, 16GB storage 

Table 4.5 The 4 hours of Real-time Shoe Object Counting Evaluation Report 

Date Station 
Manual 

Count (pair) 

System 

Count (pair) 
Missing 

04 July 2022 

Lasting_Out 

540  540  0 

05 July 2022 500  500 0 

06 July 2022 490  485  -5 

07 July 2022 480  480 0 

 

=> The Missing shoes: The identification of miss counting reason is divided into 2 

cases (Human and System).  

- Human case: worker broke the constraint as shown in section 3.4, and the 

Camera position has been moved, or the worker put things to block camera vision, etc. 

- System case: untrained shoe model with less than 0.7 thresholds, detect 

another object as shoe, and in the rare case, resource overheats caused by long-term 

processing. 
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4.3 Cycle Time and Flow Time Calculation 

 

Figure 4.8 Quality Control Graph 

 

Flow Time and Cycle time graphs are essential to our design system outcome. 

This graph can let the planner track the production flow and the problem during 

production. There is a sample formula for flow time and cycle time, as shown below:  

(1) Cycle time input = input time of current unit – input time of the previous 

unit 

(2) Cycle time output = output time of current unit – output time of the previous 

unit 
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We can also calculate the mean and standard deviation (SD) of each data 

receiving graph above:  

 

 Mean: =
∑ 𝑥𝑖

𝑁
𝑖=1

n
 

 Standard deviation (SD):  𝑠𝑞𝑟𝑡 (
𝑠𝑢𝑚((−𝑀𝑒𝑎𝑛)2)

𝑛−1
) 

Where: 

 𝑥𝑖 ∶ 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑎𝑡 𝑎𝑡  𝑖𝑡ℎ 𝑖𝑡𝑒𝑚 

𝑛 ∶ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 

 

(1) 3 SD line: upper line = avg + 3*sd, lower line = avg - 3*sd 

(2) 2 SD line: upper line = avg + 2 *sd, lower line = avg – 2*sd 

(3) 1 SD line: upper line = avg + 1*sd, lower line = avg-1*sd 

 

Figure 4.9 Standard Deviation Graph

July August 

 

September October Time 

Now 
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FLOW CHART OF ONE MACHINE FORMULA: 

(1) Flow time = output time – input time 

 

 

 

Sample Explanation: 

 

 

 FLOW CHART OF TWO MACHINE FORMULA  

(2) Flowtime = output time – input time 
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CHAPTER 5 

PLANIFICATION 

 

5.1 Project Development Planning 

 
 Figure 5.1 System Planification 

 

This planification helps us achieve the application development separate a 

straightforward task and deadline. It was divided into five different phases. We start 

with the design system and the system requirement and then choose the best technology 

suitable for our development. Next, we need to design our machine-learning model with 

applied counting algorithms. Ultimately, we will break down all tasks and develop an 

application with specific time feature release expectations to let the client test. If any 

changes or errors happen, we will have more time to fix them. 
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CHAPTER 6 

CONCLUSION 

 

6.1 Application Summarize 

This research applied YOLOv4-tiny with DNN in the OpenCV framework to 

make shoe detection more accurate while using a 2-point intersection algorithm to count 

the object and the Mqtt message protocol and time server for a real-time counting 

system. The object detection threshold is a crucial point of object counting accuracy, 

so we applied our selected 106 images with 10-folds algorithms, which shuffle data into 

10 packages. Yolo-Darknet-23 with Convolution neural model 29th to train 10 times 

with different training data of that 10 packages output. The system illustrated that our 

proposed training model could detect an untrained object, as shown in section 4.2.2. 

 We evaluated our system with 4h real-time evaluation. Our system got 99% 

accuracy of object counting, while 90% of timestamps and the design system able to 

detect 90% of unseen training shoes during the production process. Anyways, the 

system needs more resources for computation for the whole day. So, our proposed 

method of frame detection area reduction and streaming dimension input should be 

deducted to make our suggested solution use resources more efficiently. Table 4.2.4 

illustrates that this proposed technique is suitable for a low-computation device such as 

Raspberry Pi4 or Jetson Nano for a real-time counting system. 

However, counting with timestamps sometimes does not match the actual case 

due to the network latency for long-hour detection and counting. In the following tasks, 

we will try to optimize the computation resource, which makes our system can work 

more robustness. We will also train the worker to interact with our proposed system. 
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APPENDIX A 

REAL-TIME OBJECT TRACKING ON LASTING STATION (IN-

OUT) 

 

Dashboard 1: IoT Dashboard 

1. Users can compare planning with actual production graphs for each product 

SKU. 

2. Users can see overall production planning compared with actual  

3. Users can see the production planning graph compared with real projects 

monthly 

4. And users can also see the machine’s temperature, IoT data, their customer’s 

overall production order, etc. 
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Dashboard 2: Machine view dashboard 

 

1. Users can select each station they want to visual 

2. User can see the number of production planning + Actual amount + defective 

product 

3. User can see the machine report with cycle time + flow time graph 

4. User can see the machine’s OEE 

5. User can use a visual camera on that station the counting product IN and OUT 

along with the defective product in real-time. 
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APPENDIX B 

CYCLE TIME AND FLOW TIME WITH PARETO CHART ON 

QUALITY CONTROL SYSTEM 

 

 

Dashboard 3: Machine view (Quality Control Check) 

 

1. Users can check the problem with the Pareto chart for each station with a video 

clip recorded during the trial, and then they can report that problem to the plan manager. 
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