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ABSTRACT 

 

In molded pulp packaging manufacturing, defect detection and 

classification processes are critical to ensuring the products meet quality criteria. Yet 

most manufacturers still rely on human-based manual visual defect classification which 

can be inconsistent and labor intensive. In this research, we introduce the conjunction 

of machine vision hardware and machine learning to build a conceptual framework for 

an automated molded pulp packaging defect detection system. The conceptual 

framework consists of two modules. First, the image acquisition module setups 

appropriate hardware and configuration such that high-quality images can be acquired. 

The second is a machine learning module that constructs a deep learning model with 

hyper-parameter tuning to automatically detect the defects on the surface of molded 

pulp products. Our proposed model is based on deep learning model - the Xception 

architecture, which is recently developed and expected to be more robust on defect 

detection. In comparison with Traditional machine learning algorithms - SVM and 

Naive bayes have been widely used in the field of industrial detection. The oriented 

FAST and rotated BRIEF (ORB) and Bag-of-Visual-Word (BoVW) are implemented 

for pre-feature extraction. Since molded pulp packaging has obstacles on surface 

fluctuation by color, grain pulp fiber and non-repeating defect pattern, the Negative 

Monochrome (NGMC) image preprocessing is proposed to enhance the visibility of 
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defects on the surface and reduce undesired features. The extracted features must be 

able to describe and distinguish images categories, which could be a limitation for 

traditional algorithms that required pre-feature extraction. The results demonstrate that 

the Xception model trained with NGMC images resolution 192x192 and learning rate 

0.001 achieved more than 92.98\% accuracy and best generalize across datasets from 

different production lots, which suggests that the robustness of our conceptual 

framework has the potential to be utilized in industrial applications. 

 

Keywords: Defect detection, Machine vision, Molded pulp packaging, Pulp and 

paper packaging industry, Machine learning, Deep learning 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

The molded pulp packaging market is rising due to the demand for 

biodegradable and eco-friendly packaging alternatives to plastic packaging [42]. It is 

made from sugarcane bagasse, a common agricultural by-product in agrarian countries. 

As it consists only of water and wood fibers, molded pulp is a renewable material and 

could be a biodegradable solution. In the manufacturing process, bagasse pulp is formed 

into desired shapes, e.g., bowl, tray, plate, and clamshell. Product quality control by 

visual inspection is then performed to detect products with possible defects, e.g., oil 

spots and particle contaminants, as shown in Figure 2.5. 

The defect detection process is crucial since major failure from this process 

could lead to customer complaints and business loss. Nowadays, the visual inspection 

is still performed manually by well-trained operators who inspect product piece by 

piece to ensure product quality. Unfortunately, the "human visual inspection" is not 

effective and unreliable due to multiple factors e.g., human error, varied operators’ 

angles of view, visual fatigue, defects that are not detectable by the human eye, high 

labor cost and worker shortage. Due to these factors, the visual inspection process for 

the manufacture of molded pulp packaging is at risk. The quality control is imperative 

in any industry. For traditional defects detection techniques, various image processing 

methods can be applied on an image of product. However, there are many drawbacks; 

e.g., some image processing methods for defect detection give better results but 

consume more time, which is not acceptable in a real-time environment. For each type 

of defect, different techniques are applicable to gain an efficient result. No such 

technique can classify all types of defects at once (Sanghadiya and Mistry, 2015) 

However, innovative defect-detection technique of machine vision and machine 

learning algorithms represented by deep learning, have rapidly developed and thrived 

in recent years for automated defect detection tasks due to their versatility, lower costs, 

and lack of reliance on human assistance, but they still depend on large amounts of 
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training data for updates and tuning to improve the inspection performance of the model 

algorithm (Yang, Li, Wang, Dong, Wang, & Tang, 2020).. Therefore, many researchers 

are still trying to build and tune model parameters that provide robust defect detection 

applications for specific industries. For example, in fabric industry where defect 

detection was done by human with limited rate up to 12 meters per minute, repetitive 

job and wasted human resources thus a new detection method YOLOv4 model 

algorithm is proposed (Liu, Wang, Li, Gao,  and Li, 2022) or in steel industry where 

Faster R-CNN model algorithm was proposed to solve current problems of steel surface 

defect detection which was slow and low precision (Zhao, Chen, Huang, Li, & Cheng, 

2021). An automatic visual inspection based on CNN was also proposed by Park et al. 

(Park, Kwon, Park, & Kang, 2016) for generic approach to dirt, scratches, burrs, and 

wears detection on steel part surfaces in production line. 

Unlike most cases, e.g., in the fabric and steel industries, where the detected 

surface is smooth, stable in color, and repeated in defect patterns, the challenge of 

molded pulp packaging is not only fluctuating grain surface and unstable product color 

due to variation of raw material lots but also non-repeated defect size and patterns as 

shown in Figure 2.5 and Figure 2.6. To solve major problem of defect detection in pulp 

packaging industry which process is mostly rely on human, we aim to perform an end-

to-end implementation of machine vision and machine learning algorithm to develop 

conceptual framework for automated molded pulp packaging defect detection system 

in a way that may potentially serve as an industry-specific practical case study.  

 

1.2 Objective and Scope 

 

In this research, our goal is to introduce an end-to-end implementation of 

machine vision hardware and machine learning algorithm to build a conceptual 

framework for automated molded pulp packaging defect detection system in the way 

that potentially serve as an industry-specific practical case study. 

 

 

 

 

Ref. code: 25656409035232WEJ



3 

 

1.2.1 Objective of the Research 

The objects of the research are as follows: 

1.2.1.1 To introduce the integration of machine learning and 

machine vision algorithm to build a conceptual framework for automated defective 

product classification in molded pulp packaging manufacturing industry. 

1.2.2.2 Design project’s hardware setup include machine vision 

selection criteria, camera configuration and LEDs light sources setup comparison to 

understand the effect of light on perceptibility and visibility of defect on product 

surface. 

1.2.2.3 Exploration and compare performance of deep learning - 

Xception model on image dataset which collected from different machine vision camera 

configuration; RGB and Negative Monochrome. 

1.2.2.4 Analysis the performance of deep Learning algorithm; 

Xception architecture with hyper-parameters tuning in comparison to Supervised 

Learning; SVM and Naive Bayes using ORB and Bag-of-Visual-Word (BoVW) 

approach on defective molded pulp packaging classification task. 

 

1.2.2 Scope of the Research 

The scopes of the research are as follows: 

1.2.2.1 This research is limited to only a particular model of Sugarcane 

Bagasse molded pulp packaging, named “32 oz burrito bowl” (Fig 6). 

1.2.2.2 The product dataset is randomly collected from a real 

production line for a period of three months or more. 

1.2.2.3 The research algorithm is based on Deep Learning; Xception 

with hyper-parameters tuning in comparison to Supervised Learning; SVM and Naive 

Bayes with ORB and Bag-of-Visual-Word (BoVW) approach. 

1.2.2.4 The research has its limitations in that it only uses an 

experimental hardware setup and does not aim to develop a field defect classification 

platform that can be readily used in a real production scenario. 
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1.3 Significance of Research 

 

The author sincerely hopes that this study will be beneficial and useful, that 

it can help both the molded pulp packaging manufacturer and researcher to have case 

study for benchmarks and gain a better understanding of how they can improve molded 

pulp packaging’s industry productivity, reduce the cost and save time by 

implementation of machine vision and machine learning algorithm. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Problem of the study 

 

In the molded pulp packaging industry, visual inspection for quality control 

is a critical step. It allows defects to be detected early in production, reducing the risk 

of costly product recalls. On the other hand, failure of this process could result in 

customer complaints and business losses. Currently, classifying products that have 

anomalies and flaws is done by human inspectors, as shown in Figure 2.1. Examples of 

defective products are shown in Figure 2.1 

 

Figure 2.1 

Conventional visual inspection process of molded pulp packaging industry 
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Figure 2.2 

Molded pulp packaging product output and its categories (a) Products output from 

manufacturing process (b) Non-defective product (c) Defective product e.g., oil spots 

and particle contaminant 

 

The industry faces a number of issues as a result of the outdated, labor-

intensive, and slow conventional process, including the possibility of human error, the 

inability for workers to be available 24/7, and the high cost of labor. Additionally, since 

agricultural raw materials are readily available in third-world countries, molded pulp 

packaging is often produced there and exported to first-world nations. Major defects in 

molded pulp packaging products have the potential to harm customer confidence, 

reduce customer satisfaction, decrease business bargaining power, and result in a 

financial loss due to product returns and sales decline. Hence, detecting defects is a core 

competency that a company should possess in order to improve the quality of its 

manufactured products. Research on an automatic defect-detection system has obvious 

benefits over conventional manual detection; it can reduce production costs, improve 

production efficiency, and improve product quality, as well as build a solid foundation 

for the intelligent transformation of the manufacturing industry. 

 

2.2 Molded Pulp Packaging Manufacturing Overview 

 

The source of raw materials for the production of molded pulp packaging 

is non-wood pulp which is on rapid growth due to global concerns about deforestation 

including agricultural waste and non-woody plant materials e.g., grass, straws, reeds 

and sugarcane bagasse. Sugarcane bagasse which is the fiber left over after the juice has 

(a) (c) (b) 
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been extracted from the sugarcane plant as shown in Figure 2.3, is a common 

agricultural by-product in Thailand and other agrarian countries. Sugarcane bagasse 

gains high preference as a raw material for molded pulp packaging because it is 

inexpensive and inexhaustible for the production of pulp due to lower silicon content 

therefore easier to make pulp and uses less chemicals when compared to other types of 

fiber materials.  

 

Figure 2.3 

The Life Cycle of Sugarcane Bagasse pulp and paper industry.  

 

Source: How To Make Paper From Sugarcane Bagasse. Data from Pulp. (2018). 

(http://www.paper pulping.com/news/How-to-make-pulp-with-bagasse.html) 

 

In the manufacturing process, which is depicted in Fig.4, raw materials are 

mixed, products are formed into desired shapes, and heated molds are used to press the 

pulp for a smoother finish and better dimensions. The finished product is going through 

a visual inspection for quality control before packing and delivery to the customer. 
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Figure 2.4 

Typical molded pulp packaging product manufacturing process 

 

 

2.2.1 Defective Products in Molded Pulp Packaging 

Surface defects on molded pulp packaging products result in rejects. 

Some rejects could be reworked, while others must be scrapped. In both cases, it will 

cost the company. Rejects from production lines mostly come from the following 

defects:  

2.2.1.1 Oil Spot — deposits of oil that have fallen onto the product 

from some processing step and are typically round or an irregular shape. 

2.2.1.2 Particle contaminant / Dirt impurities — most of the small 

dark brown impurities and black specks caused by foreign substances that have nothing 

to do with the raw material itself. (Figure 2.5 & 2.6) 
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Figure 2.5 

Example of defects size between 0.8 – 3 mm (a) Oil Spot defects. (b) Particle 

contaminant / Dirt impurities. 

 

 

Figure 2.6 

Example of Sugarcane Bagasse molded pulp packaging, named “32 oz burrito bowl” 

Estimate surface area 58,600 mm2 
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2.3 Machine Learning Based Visual Inspection 

 

An automated visual inspection system based on machine learning consists 

of two modules. The image acquisition module converts the target objects placed in the 

light field into images and transfers them to a computer, and the machine learning 

module applies machine learning algorithms to build a defect detection model. The 

image acquisition module consists of the two following components:  

2.3.1 Machine vision camera is the first key technologies for visual 

inspection and defect detection since obtaining high quality images is essential for 

detection system’s effectiveness in order to emphasize an important feature of the 

objects and diminish undesired ones. Machine vision camera detection technology can 

improve the detection efficiency, enhance real-time performance and accuracy of 

detection. 

2.3.2 Light-source selection is one of the key important to enhance the 

visibility of certain features and reduce undesired one especially imbalanced shade 

hence researcher must consider the interaction between light and objects. Currently, 

LED (Light Emitting Diode) light source have become available for most of machine 

vision application with various shapes and by far the most widely used lighting types in 

machine vision. LED technology has improved in stability, intensity, and cost-

effectiveness compare to others common light-source (Illumination, 2023). 

 

2.4 Choosing a Machine Vision Camera 

 

One of the key technologies for visual inspection and defect detection is the 

machine vision camera, which automatically collects images of real objects using 

optical devices and noncontact sensors. Machine vision cameras, particularly for large-

scale industrial applications, can improve detection efficiency, enhance real-time 

performance and accuracy of detection, and reduce labor requirements. Since obtaining 

high-quality images is essential to the automated visual inspection system’s 

effectiveness, it is important to emphasize important features of the objects and 

diminish undesirable ones. Choosing the right camera is the most crucial task. To 

choose the right camera, several factors must be taken into account, including pricing, 
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working environment (e.g., working distance & working area), and camera option  

(e.g., sensor, type, size) that suit working applications. 

 

2.4.1 Camera Working Environment 

To choose a suitable Machine Vision Camera, first the user must be 

able to define their working distance – distance between camera and object, and field 

of view (FOV) - the working area that the target object is placed on referring to the x 

and y-axis. Then the user can do the following calculation. 

2.4.1.1 Megapixel (MP) Calculation and Resolution Selection           

Since higher megapixel cameras can capture images that show 

fine changes in higher contrast and provide higher quality of image to be used for 

inspection and classification while the camera price is also increased with higher 

megapixel. Thus Megapixel (MP) must be calculated to find the suitable one.  

The pixel resolution means how many millimeters each pixel, 

expressed by the following equation [6]:  

 

Pixel resolution =
Size of field of view in the Y direction (mm)

Sensor pixel count in the Y direction 
  

 

For example: If FOV working area equal to horizontal (x) 

200mm & vertical (y) 300mm, the vertical working field of view (y) 300mm will be 

used for calculation. In case user have the image sensor type 2594 x 1944 (5 MP), the 

vertical sensor (y) = 1944 pixels will be used for calculation.  

 

Pixel resolution =
300 mm 

1944 pixels 
= 0.15 mm /pixel  

 

The minimum detectable size on a camera sensor (CCD or 

CMOS) is 1 pixel. For defect detection applications, it is recommended to have a 

detection capability of at least 2-4 pixels per defect (Keyence corporation, n.d.) in order 

for machine learning algorithms, especially those deep learning that take each image 

pixel as input, to be able to learn and distinguish whether a product is defective or not. 
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Detection capability=
0.15 mm 

1 pixels 
×4= 0.6 mm Area 

 

Based on the calculations, if the inspection requires detection 

of defect that are as small as 0.6 mm with a field of view (y) 300 mm a camera with a 

resolution of 5MP or more is needed. 

2.4.1.2 Focal Length Calculation and Lens Selection                      

The size of the field of view (FOV) is the area captured on an 

inspection target [6] which can be changed by the lens used. The lens must be selected 

to suite with working application, working distance and camera resolution. Once user 

calculated suitable camera resolution, the focal length must be calculated to choose the 

right lens.  

To calculate focal length user must provide input included: 

Working Distance (dw), Sensor size / Image size (Camera Specific) and Object Size 

(Vertical FOV and Horizontal FOV) in order to choose lens with suitable focal length 

(f) shown in Figure 2.7. 

 

Figure 2.7 

Relation between Field-of-view, working distance, focal length of lens and camera 

sensor size.  

 

Source: Ngo, Abdukhakimov, & Kim, (2019) 
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1) Working Distance (dw) or Object distance is measured from 

the lens's front principal plane to the object itself. 

2) Object Size is real-size of an object, given in mm which is 

define as Horizontal FOV and Vertical FOV.  

3) Typical Sensor size / Image size which is Camera Specific 

as shown in Figure 2.8. 

 

Figure 2.8 

Typical Sensor size / Image size of camera.  

 

Source: Chouinard (2023) 

 

The calculation must perform with following criteria 

1) Calculate only one axis horizontal or vertical which is 

related to angle of view 

2) Object distance and Image size is constant value 

An Angle of view result will be different depend on calculation 

axis; horizontal or vertical but Focal Length result will be the same. The Focal Length 

calculation formula as shown in Figure 2.9.  
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Figure 2.9 

Focal Length calculation formula.  

 

Source: Zaborowska (2023) 

 

The relation between field-of-view – horizontal, vertical and 

angle-of-view view – horizontal, vertical as shown in Fig.10. The calculation must be 

done on the same axis to get right result. Once user got the Focal Length, the suitable 

lens can be selected.  

 

Figure 2.10 

Relation between field-of-view, angle-of-view and focal length of Machine Vision 

Camera.  

 

Source: Shenzhen MINDVISION technology co., ltd (n.d.). 

https://www.mindvision.com.cn/jtxx/list_108.aspx?lcid=18&lcids=2414]   
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2.4.2 Machine vision camera option requirement 

Every machine vision camera application is different, so the user must 

consider the camera option that meets their requirements. It is important to understand 

a few key camera characteristics and features that can help the user recognize the factors 

needed to take into consideration. 

2.4.2.1 Selecting based on color or monochrome type image sensor 

Selecting a camera type is whether to use a color or 

monochrome type. If the differences at the sensing points are detected based on hue, the 

color cameras may have an advantage. Example in Fig.11. of using color processing to 

detect a yellow stain on a white base, which is not easily detectable by a monochrome 

camera. 

 

Figure 2.11 

Using color processing to detect a yellow stain on a white base. [6] 

 

Source:  Selecting the Correct Camera | Machine Vision Basics | KEYENCE America. 

(n.d.). https://www.keyence.com/ss/products/vision/visionbasics/tips/primer1/ 

 

2.4.2.2 Selecting Global Shutter vs. Rolling Shutter 

Rolling shutter exposes the pixel rows in a certain order while 

a global shutter exposes each pixel to incoming light at the exact same time. So biggest 

advantage of the global shutter over the rolling shutter, it does not suffer from the same 

distortion effects as shown in Figure 2.12, it’s easier to sync with peripheral devices, 

because there is a single point in time when exposure starts. Downside of a global 
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shutter is more costly and originally only available on the more expensive CCD sensors 

whereas CMOS sensors used rolling shutters. 

 

Figure 2.12 

Distortion effects between Rolling Shutter and Global Shutter.  

 

Source: Vandendorpe (2022) 

 

2.4.2.3 Selecting CCD Sensor vs. CMOS Sensor 

The two main types of electronic image sensors are the charge-

coupled device (CCD) and the active-pixel sensor (CMOS). Difference lies in the way 

each pixel value is read. For a CCD sensor, pixel values can only be read on a per-row 

basis. Each row of pixels is shifted, one by one, into a readout register. Conversely, for 

a CMOS sensor each pixel can be read out individually as shown in Figure 2.13. 

 

Figure 2.13 

Read process different between CCD and CMOS Sensor. 

 

Source: Shakeri, Ariannejad, Sedaghati, & Amin, (2012) 
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2.4.2.4 Selecting based on camera type & size 

Compact are reduced in size, but are equipped with the same 

specifications as larger-sized cameras. Compact types are primarily selected to 

efficiently use in limited installation space. In cases where machine vision is to be 

installed in the available space of an existing facility. It is beneficial to use compact 

cameras to fit in a limited area without changing the machinery. Area scan and Line 

scan camera as shown in Fig.14. Area scan cameras, a rectangular-shaped sensor 

captures an image in a single frame. The resulting image has a width and height that 

directly corresponds to the number of pixels on the sensor. Because of this, area-scan 

cameras are suited for machine vision applications, where the objects are small and have 

almost the same size in both dimensions. While line scan cameras contain a single row 

of pixels and build the final image pixel line by pixel line with specific advantages, 

inspecting round or cylindrical parts which may require multiple area scan cameras to 

cover the entire part surface. 

 

Figure 2.14 

Working procedure of Area scan and Line scan camera. 

 

Source: Vandendorpe (2022) 
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2.5 Machine Vision Light Source 

 

A visual inspection system is based on an image, and the key to success lies 

in getting high-quality images with high visibility of certain features. Thus, it is 

important to consider the interaction between light and objects. The quality of lighting 

is a critical factor in creating a quality, robust, and timely vision inspection. Currently, 

LED (light-emitting diode) light source devices have become available for most 

machine vision applications in various shapes and are by far the most widely used 

lighting types in machine vision, particularly for small to medium-scale inspection 

stations. LED technology has improved in stability, intensity, and cost-effectiveness 

compared to other common light sources (Illumination, 2023), such as xenon, 

fluorescent, and quartz halogen, as shown in Figure 2.15. 

 

Figure 2.15 

Comparison and contrast of common vision lighting sources.  

 

Source: Illumination, A. (2023) A Practical Guide to Machine Vision Lighting - 

Advanced Illumination. https://www.advancedillumination.com/a-practical-guide-to-

machine-vision-lighting/ 

 

An LED light source can be customized to be suitable with project 

applications. The popular light source is a circular ring array of LEDs and linear array 

of LEDs (Ren, Fang, Yan, & Wu, 2021) as shown in Figure 2.16. 
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1) The circular ring array of LEDs - It provides high brightness, can be 

conveniently installed, and can effectively avoid shadow occurrence and enhance the 

features to be detected. It was used in the following application: For example, IC chip 

appearance detection and printed circuit board (PCB) substrate detection. 

2) The linear array of LEDs - It is commonly used, has good heat dissipation 

and flexibility of usage. It can be used for defect detection of some large structural parts. 

For example; copper strip and steel sheet. 

 

Figure 2.16 

Example of LEDs used in our research (a) Circular ring array of LEDs (b) Linear 

array of LEDs 

 

 

The contrast of the image and target features can be enhanced by effectively 

selecting the best one or combining light sources. A proper understanding of the 

application and its requirements is necessary to choose the light source. A correct 

selection may significantly affect the development time, cost, efficiency, and quality of 

images produced. 
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2.6 Defect Detection in Manufacturing Overview 

           

Industrial product defect detection is an important part of manufacturing. 

Due to unavoidable casualty factors in the manufacturing process or other human 

factors, lead to the industrial defects such as surface defects, scratches, and spots 

influence the reliability of the industrial or use, causing serious and harm to life. 

Therefore, it is particularly important to carry out industrial product defect detection. 

 

2.6.1 Typical Defect Detection Techniques 

Typical defect detection technologies often used in traditional 

manufacturing industry include direct defect detection and pattern recognition-based 

defect detection (Gong, Bai, Liu, & Mu, 2020).  

1) Direct defect detection technology mainly includes X-ray 

detection, ultrasonic detection and magnetic particle detection. It is a technology that 

can directly detect and determine whether a product has defects 

2) Defect detection technique based on pattern recognition is mainly 

automatic optical inspection method, by choosing appropriate light source and 

industrial camera collection and the surface of the product image, through some image 

recognition and processing algorithms to extract the work piece defect feature 

information, compared with zero defect work pieces. 

The most common typical defect detection used in industrial include: 

1) Automatic Optical Detection 

Automatic optical inspection technology is based on the human 

eye vision imaging and discriminant principle of the human brain intelligence by optical 

illumination of measured object and image sensor technology to obtain information, 

through digital image processing to enhance the target features, and then adopt the 

method of pattern recognition, by using some image processing algorithms extract 

characteristic information from the background image, and are classified and 

characterized, and then feedback to perform control mechanism, to realize the 

classification of the product, group or separation, the quality control in the process of 

production, etc. Automatic optical surface defect inspection technology has been widely 
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applied in industrial, agricultural, biological, medical and other industries, especially in 

precision manufacturing and assembly industry, such as LCD, silicon wafers and, PCB. 

2) X-ray detection 

X-ray detection is a nondestructive detection method that use the 

different attenuation characteristics of the matrix material and the defects of the work 

piece to find the defects. After more than 100 years of development, X-ray detection 

technology has formed a relatively complete X-ray detection technology system 

consisting of X-ray photography, X-ray real-time imaging, digital plate X-ray imaging, 

and X-ray computer tomography, etc. from the original film radiography technology. 

X-ray detection has no strict requirements on the surface finish of the work piece, and 

the material grain size has little influence on the detection results. It can be applied to 

the detection of internal defects of various materials, so it has been widely used in the 

welding quality inspection of pressure vessels.  

Although the typical defect detection method can accurately detect 

some of the known defects. But they have drawbacks on poor generality and limit to 

specific defect categories. It cannot be directly applicable to different kinds of defect. 

When come to some new defects or problems, it needs to manually design new test 

program. 

 

2.6.2 Machine Learning Based Defect Detection 

In contrast to the drawbacks of typical defect detection methods, 

machine learning, especially deep learning, can be more easily adapted to different 

kinds of defects and on a larger industrial product dataset to improve testing efficiency, 

reduce labor costs, and promote the integration of information. The algorithms that 

could be used for image classification and defect detection tasks in an industrial include: 

2.6.2.1 Supervised Machine Learning algorithm 

(1) Support Vector Machines (SVM) 

Support Vector Machines (Luckert, 2016) belong to the area of 

supervised learning methods and therefore need labeled, known data to classify new 

unseen data. The basic approach to classify the data, starts by trying to create a function 

that splits the data points into the corresponding labels with (a) the least possible number 

of errors or (b) with the largest possible margin. This is due to the fact that larger empty 
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areas next to the splitting function result in fewer errors, because the labels are better 

distinguished from one another. The datasets may very well be separable by multiple 

functions without any errors. Therefore, the margin around a separating function  

is being used as an additional parameter to evaluate the quality of the separation. In 

Figure 2.17, separation function A is the better one, since it distinguishes the two classes 

in a more precise manner. Formally, Support Vector Machines create one or multiple 

hyperplanes in an n-dimensional space. The first attempt in the process of splitting the 

data is always, to try to linearly separate the data into the corresponding labels.  If the 

data is completely separable in linear fashion, the resulting function can be used to 

classify future events. 

 

Figure 2.17  

Visualization of a Support Vector Machine splitting a data set into two classes, by 

using two different linear separations.  

 

Source: Wikiwand - Support Vector Machine. (n.d.). 

https://www.wikiwand.com/de/Support_Vector_Machine 

 

(2) Bayesian Networks (Naive Bayes) 

Bayesian networks (Luckert, 2016) are probabilistic directed 

acyclic graphical models. The models consist of nodes and directed connections 

between these nodes that symbolize dependencies between them. Each node represents 

an attribute of interest for the given task. Normal Bayesian networks use known data to 

estimate the dependencies between attributes and the class label and use this 

information to calculate probabilities of possible different outcomes of future events. It 

automatically applies the Bayes’ theorem as shown in Figure 2.18 to complex problems 

and is therefore able to gain knowledge about the state of attributes and their 

dependencies. 
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Figure 2.18  

Bayes Theorem probability formulation  

 

Source: Bayes Theorem - Formula, Statement, Proof | Bayes Rule. (n.d.). Cuemath. 

https://www.cuemath.com/data/bayes-theorem/ 

 

2.6.2.2 Bag-of-Visual-Word (BoVW)  

Feature extraction from images is required for supervised 

learning algorithm based for image classification. The principle of feature extraction is 

to obtain the most relevant features from the image data to obtain a sufficient and robust 

descriptor. Feature extraction is a crucial technique in the field of computer vision and 

image processing tasks like image classification. Feature extraction is a challenging 

subject as the features vary significantly due to several factors like noise, variations and 

scale (Kabbai, Abdellaoui, & Douik, 2018). The bag of visual words (BoVW) model 

has proven to be efficient for image classification since it can effectively represent 

distinctive image features in vector space (Sultani, & Dhannoon, 2021). The image has 

keypoints or local features identified as prominent image regions that have rich local 

information (such as color or texture), and these features can be detected using different 

detection and description method. In our research, BoVW using Oriented Fast and 

Rotated BRIEF (ORB) descriptors are adapted for image classification. ORB, an 

efficient alternative to SIFT or SURF, is a fusion of the FAST keypoint detector and the 

BRIEF descriptor with many modifications to enhance its performance. The approach 

has three main steps: 

1) Extracting keypoints from original images by using the 

OpenCV ORB (Oriented Fast and Rotated Brief) feature detection and description 

algorithm to create a descriptor for each extracted keypoints. Then making clusters from 
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keypoint descriptors of training images by using the unsupervised k-means clustering 

algorithm. The center of each cluster is considered as the visual vocabularies dictionary. 

2) Generating visual words frequency histogram from the 

vocabularies and their frequencies in the image to represent each labeled image in the 

training set as shown in Figure 2.19. 

3) Then the frequency histograms are used to train our SVM & 

Naive Bayes models. Finally, the models are used to classify images from the test set 

by comparing the extracted frequency histogram of unlabeled images with labeled 

frequency histogram from the training stage. 

 

Figure 2.19  

Molded pulp packaging features extraction process based on BoVW 

 

 

2.6.2.3 Deep Learning algorithm 

(1) Convolutional Neural Network (CNN) 

Basic CNN architecture, model consists of an input layer, 

convolutional layers, RELU layers, pooling layers and fully-connected layers which 

connected in simple sequence. The following are definitions of each layer in 

architecture shown in Fig.20  

1. INPUT Layer: this layer is responsible for the input of raw 

pixel values (image width, height, with three color channels R, G, B or one greyscale 

channel) of the image. 
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2. CONV layer: the input image is placed into a set of 

convolution filters, each of which activates certain features in the image. 

3. RELU layer achieves faster, more efficient training by 

mapping negative values to zero and maintaining positive values. Sometimes this is 

called activation because only activated features can be transferred to the next layer. 

4. POOL layer: down-sampling on spatial dimensions (width 

and height) to reduce memory usage. 

5. Fully-Connected layer: the fully connected layer is to flatten 

the previous results and then receive the most basic neural network 

Compared to supervised learning algorithm such as SVM and 

Naïve bayes, the CNN obtains much better results and can work properly with different 

types of defects which made deep convolutional neural network is widely used in defect 

detection and has excellent effect on the identification of defective parts in industrial 

products. 

 

Figure 2.20  

The diagram of a Basic CNN architecture  

 

Source: Albelwi & Mahmood (2017) 

 

(2) Xception deep convolutional neural network 

The Xception model was proposed by Google (Chollet, 2017), 

Inc. and was implemented to solve defect classification problem in this paper. It has a 

depth of 126, including 36 convolutional layers to extract features. A global average 

pooling layer is used to replace the fully-connected layer to reduce the number of 
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parameters, and the softmax function is used to output the prediction. The 36 

convolutional layers are structured into 14 modules, all of which have linear skip 

connections around them, except for the first and last modules. The 36 convolutional 

layers are divided into 3 components: entry flow; middle flow and exit flow. The data 

first goes through the entry flow, then through the middle flow which is repeated eight 

times, and finally through the exit flow. The entry flow consists of 8 convolutional 

layers, the middle flow consists of 8*3= 24 convolutional layers and the exit flow 

consists of 4 convolutional layers as shown in Figure 2.21. 

The Xception model applied depthwise separable convolution 

and shortcuts between Convolution blocks as in ResNet, which can significantly reduce 

the convolution operation cost and has overperformed VGG-16, ResNet and Inception 

V3 in most classical classification challenges. 

 

Figure 2.21  

The architecture of Xception network.  

 

Source: Ioffe & Szegedy (2015) 
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2.6.2.4 Evaluation of Machine Learning 

Once models building is finished. One of the important parts in 

machine learning, is the problem of how to indicate which of model results were 

appropriate for its application. The following will show different types of evaluation 

value available. The calculation formula of each evaluation value and structure of 

confusion matrix are shown in Figure 2.22. 

(1) Accuracy and misclassification rate  

Describes the relative amount of truly and falsely classified 

data in a dataset. 

(2) Precision values 

Also called positive prediction value, is defined as the relative 

amount of correctly as true classified instances among all as true classified instances. 

(3) Recall values 

Also called sensitivity is defined as the relative amount of as 

true classified instances among all true instances. 

(4) F-Measure (F1-score) 

Aims to combine the statements of recall and precision by 

using the harmonic mean between the two. 

(5) Confusion matrix 

The best approaches to illustrate the performance of machine 

learning programs is the confusion matrix, also called contingency table, which 

distinguishes between true positive, false positive, true negative and false negative 

predictions.  
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Figure 2.22  

(a) Structure of confusion matrix (b) calculation formula of evaluation value: 

Accuracy, Precision, Recall and F-Measure.  

 

 

Source:  CIS520 Machine Learning | Lectures / Precision Recall. (n.d.). 

https://alliance.seas.upenn.edu/~cis520/dynamic/2017/wiki/index.php?n=Lectures.Pre

cisionRecall 

 

2.6.2.5 Hyper-parameters tuning in deep learning 

(1) Image Resolution Tuning 

The CNN models take images as input, learns visual 

information of the images, and creates feature maps which are the input for the 

following layers. Image quality factors e.g., resolution, noise, contrast, blur, and 

compression, affect the visual information contained in the images. The details 

preserved in the visual information (e.g., fine defect, the structure of fiber on surface) 

can vary drastically with the reduction of image resolution (Thambawita, Strümke, 

Hicks, Halvorsen, Parasa, & Riegler, 2021b). While additional memory requirements 

make processing of high-resolution images difficult, the scale of features and level of 

model accuracy also changes as a function of image resolution. To achieve better model 

performance with lower input image resolutions might initially seem paradoxical, but, 

in various machine learning paradigms, a reduced number of inputs or features is 

desirable as a means of lowering the number of parameters that must be optimized, 
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which in turn diminishes the risk of model overfitting (Sabottke, & Spieler, 2020). Thus, 

finding optimal resolution that suited the model’s application is essential to reduce 

processing time and resource requirements. In general, the resolutions for training 

CNNs usually range between 32×32 and 512×512. 

(2) Learning Rate (LR) Tuning 

Learning rate is one of the most important hyper-parameters 

that controls how much to change the model in response to the estimated error each time 

the model weights are updated by optimizers algorithms. A weight updated too small 

may result in a long training process that could lead to the model not learning, whereas 

a weight updated too large may result in the model converge too quickly to a suboptimal 

solution or an unstable training process. Therefore, we must find the optimal learning 

rate. 

(3) Batch Size Tuning 

Batch Size is an essential hyper-parameter in deep learning. 

This parameter represents a number of training samples that will be used during the 

training in order to make one update to the network parameters. Different chosen batch 

sizes affect both the training-testing accuracies and different runtimes. Choosing an 

optimal batch size is crucial when training a neural network (Lin, 2022). Using Full 

Batch Learning in a database with a small sample size is feasible and effective. 

Nevertheless, once it is an extensive database, feeding all the data into the network at 

once will cause an explosion of memory. In most cases, it may depend on the features 

of the data that we will train the model on. Too low or high batch size would be the 

prime suspect in fluctuations and generalization of the model, because the accuracy 

would depend on what examples the model learns at each batch. Example in research 

Masters, & Luschi, (2018) on the CIFAR-10, CIFAR-100, and ImageNet datasets show 

that increasing the batch size will gradually decrease the range of learning rates, 

providing steady convergence and acceptable test performance. On the contrary, a 

smaller batch size provides more gradient computation, yielding more stable and 

reliable training results. To find an optimal batch size is important for CNN model 

training process. 
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(4) Optimizers for convolutional neural networks 

The goal of deep learning is to reduce the difference between 

the predicted value and the actual value which is known as loss function. The optimizers 

are algorithms used to change the attributes of neural network such as weights and 

learning rate in order to reduce the losses. To minimize the loss function, we must find 

the optimized value for weights. There is various deep learning optimizer algorithm 

e.g., SGD, RMSprop Adam, Adadelta, Adamax and Nadam. In our research we adopt 

Nadam (Nesterov-accelerated Adaptive Moment Estimation) to acquire advantages 

from a fusion of Adam optimizer and Nesterov Momentum algorithms which can 

improves the speed of convergence and requires least exhaustive parameter tuning 

which favors our focus on optimizer learning-rate (LR) tuning. 

1. Nadam optimizer (Brownlee, 2021) is an extension to the 

Adaptive Movement Estimation (Adam) optimization algorithm to add Nesterov’s 

Accelerated Gradient (NAG) or Nesterov momentum, which is an improved type of 

momentum and more broadly, the Nadam algorithm is an extension to the Gradient 

Descent optimization algorithm. The update formula of Nadam optimizer is shown in 

Figure 2.23. The learning rate (η) is an important hyper-parameter as it is inverse to 

how much model update the weights to minimize the loss function. 

 

Figure 2.23  

The Nadam optimizer’s update rule  

 

Source: Optimization Algorithms - A Brief Overview:- · GSoC’18 @ CERN. (2018, 

May 16). https://www.sravikiran.com/GSOC18//2018/05/16/optimizers/ 

 

(5) Image Augmentation Methods 

Image augmentation is the process to increase the size of the 

training data using images that already exist in the training set to prevent CNN training 

problem include (1) lack of a good amount of data is that the deep learning model might 

not learn the patterns or the functions from the data and hence it might not perform well 
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or (2) the scenario that at some point, the training error will keep decreasing, while the 

error on the test/hold-out data increases ,which is called overfitting, because the model 

keeps learning some patterns from the training data that do not generalize on the test 

data. The basic geometric augmentations that usually used for machine learning model 

listed below (Shorten & Khoshgoftaar, 2019) and as shown in Figure 2.24. 

1. Flipping: horizontal axis flipping is much more common 

than flipping the vertical axis. This augmentation is one of the easiest to implement and 

has proven useful on datasets. 

2. Rotation: rotation augmentations are done by rotating the 

image right or left on an axis between 1° and 359°. The safety of rotation augmentations 

is heavily determined by the rotation degree parameter. Slight rotations such as between 

1 and 20 or −1 to −20 could be useful on recognition. 

3. Translation: shifting images left, right, up, or down can be a 

very useful transformation to avoid positional bias in the data. As the original image is 

translated in a direction, the remaining space can be filled with either a constant value 

such as 0 s or 255 s, or it can be filled with random or Gaussian noise. This padding 

preserves the spatial dimensions of the image post-augmentation. 

4. Cropping:  cropping images can be used as a practical 

processing step for image data with mixed height and width dimensions by cropping a 

central patch of each image. The contrast between random cropping and translations is 

that cropping will reduce the size of the input such as (256,256) → (224, 224), whereas 

translations preserve the spatial dimensions of the image. Depending on the reduction 

size chosen for cropping, it might not be a label-preserving transformation. 
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Figure 2.24  

Basic Image Augmentations.  

 

Source: Chernytska (2023) 

2.6.2.6 Stratified KFold Cross Validation 

The k-fold cross validation creates the process where every 

sample in the data will be included in the train-test set at some steps (Figure 2.25). We 

do not want to use a specific dataset to fit the models due to the particular dataset fitting 

better on one model design. Instead, we want to use multiple datasets to fit, resulting in 

multiple weighted models of the same design. The weighted model with best 

generalization at satisfied accuracy will be used in real-world scenario. 

 

Figure 2.25  

Example on splitting the training dataset into k subsets in 5-fold validation  

 

Source:  Data adapted from Pandian, S. (2022). K-Fold Cross Validation Technique 

and its Essentials. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2022/02 

/k-fold-cross- validation-technique-and-its-essentials 
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The stratified k-fold is improved from standard k-fold 

validation. The stratified intended to solve the problem of imbalanced target classes. 

The algorithm attempts to balance the number of instances of each class in each fold. 

During the training stage, the performance is printed for each model. Then model and 

weight are stored. The best weighted model’s parameter will be retrained for final 

evaluation (Figure 2.26). 

 

Figure 2.26  

Machine learning pipeline for stratified k-fold cross-validation  

 

Source: Data adapted from Cross-validation: evaluating estimator performance. (n.d.). 

Scikit-learn. https://scikit-learn.org/stable/modules/cross_validation.html 

 

However, cross validation is often not used for evaluating deep 

learning models because of the greater computational expense. For example, k-fold 

cross validation is often used with 5 or 10 folds. As such, 5 or 10 models must be 

constructed and evaluated, significantly adding to the evaluation time of a model. Hence 

in our research we will implement stratified k-fold during the final stage of training after 

hyper-parameter tuning completed. 
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2.7 Autonomous Defect Detection Algorithm 

           

In recent years, the improvement of computing power and the advent of big 

data, machine learning has been successfully integrated with machine vision on image 

classification tasks to solve manufacturing industries problem included productivity 

optimization, fault diagnosis and especially in our case of defective product detection 

and quality control. Nowadays, a growing number of researchers are focusing on 

machine learning approaches on defect detection related problems (Cadavid, Lamouri, 

Grabot, Pellerin, & Fortin, (2020). In early years, classical machine vision approaches 

using supervised machine learning such as SVM, KNN and Naive Bayes are commonly 

used classifiers for industrial purpose. Currently and further development, deep learning 

represented by convolutional neural networks (CNN) models such as ImageNet, 

VGGNet, GoogLeNet and ResNet have played an important role in defect detection. 

The CNN was originally designed for image analysis is now most popular architecture 

hence a good fit for automated defective product image classification in industrial (Ren, 

Fang, Yan, & Wu, 2021). Many methods to classify defective product in manufacturing 

industries have been proposed such the author of Burresi, Lorusso, Graziani, 

Comacchio, Trotta, & Rizzo, (2021) was aims to solve problem in embedded devices 

production. A transfer learning approach was adopted to detect missing screws on 

devices using the CNN YOLOv3 and TINY-YOLO models. The training image went 

through an augmentation process to simulate variations in lighting conditions, affine 

transformations (translation, rotation, scaling, shear mapping), hue/saturation changes 

and occlusions. The results show that YOLOv3 and TINY-YOLO models achieved the 

same 97.0% accuracy. And another study was based on CNN ResNet50 (Dang, Wang, 

Lee, & Wang, 2021) for defect detection on ski goggle lens surfaces. Five cameras with 

Spherical light were used to capture all regions on the surface. The high-resolution 

captured image of size 4094 x 3000 pixels has been cropped as the region of interest 

(ROI) for labeling data before going through the CNN Machine Learning Module. 

Result shown that the higher the image resolution, the better the performance and data 

augmentation also helps improve performance. The result 94.34% accuracy rate was 

highest which came from CNN’s ResNet50 model trained on dataset of 256 x 256 

pixels.  
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Over the years, there has been a trend where the deeper the model is, the 

better performance the model can get. In 2014, at the ImageNet competition, the 

VGG16 model with a depth of 23 resulted in a top-1 classification error of 28.5%. In 

2015, the Residual Network (ResNet) model with depth 168 resulted in a top-1 

classification error of 24.1%. In 2016, the Inception V3 model with depth 159 resulted 

in a top-1 classification error of 21.8%. And finally, in 2017, the Xception model with 

126 layers resulted in a top-1 classification error of 21.0% (Team, n.d.). As author of 

Lo, Yang, & Wang (2019) mentioned that the Xception model is a recently developed 

special CNN architecture that is more powerful with less overfitting problems than the 

current popular CNN models. However only a few use cases of the Xception model can 

be found in literature. In 2021, the methodology was proposed to train neural networks 

Xception and Unet for defect detection and classification of steel workpieces (Boikov, 

Payor, Savelev, & Kolesnikov, 2021). The artificial datasets of steel slab defects were 

generated to train the models. Then the models were tested on real data and showed 

good results with 0.81 accuracy. In some research deep learning model is also being 

compared with traditional machine learning model like in research Arshad, Obaid, Gull, 

& Shahzad, (2022). which proposed improved machine learning methodologies for 

Steel Defect Classification using Machine Learning (SDCML) to devise improved 

methods that classify whether the image belongs to a defect category or not. The 

supervised machine learning algorithm KNN was compared with deep learning 

algorithm CNN VGG-16 feedforward classifier. The results show that among all the 

algorithms, the accuracy obtained via VGG-16 that achieved 97.54% accuracy which is 

better than KNN that obtained 41.11% accuracy.  

There are still limited studies in defect detection on objects where the 

surfaces have fluctuating grains and do not repeat in patterns. The research 

(Prasitmeeboon & Yau, 2019), was conducted on defect detection of particle boards 

whose surfaces shown grain and texture of wood in order to improve human visual 

inspection which was not effective. The particle sample boards were imaged inside a 

light-box to ensure uniform diffuse lighting and cropped to 3200 x 4000 pixels. The 

classifier must avoid false negatives, avoiding misclassifying defective as a defect free 

one. Result shown SVM tends to misclassify only one class but the KNN classifier 

misclassified both at same rate.  
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From the previous research of machine learning and machine vision on 

defective product detection, the problem in molded pulp packaging is unique and has 

never been implemented since. Thus, our research's main contributions are to introduce 

an end-to-end implementation of machine vision hardware and machine learning 

algorithms to build a conceptual framework for an automated defect detection system 

in the quality control process of the molded packaging manufacturing industry, which 

is currently a human-manual process. First, we setup the hardware platform, including 

machine vision camera selection, camera configuration, and LED light source setup. 

The negative monochrome (NGMC) camera configuration is applied to prevent color 

problems in products that change across raw material lots and to generalize the model 

learning pattern. Then we build and analyze a deep learning model using the Xception 

architecture with hyper-parameter tuning, including image resolution, learning rate, and 

batch size tuning, to find the optimal classification model performance. The effects of 

each hyper-parameter on the Xception model’s performance are reported and discussed. 

In comparison to deep learning, we build defect classification models using supervised 

learning algorithms, SVM, and Naive Bayes. The ORB (Oriented FAST and Rotated 

BRIEF) and Bag-of-Visual-Word (BoVW) techniques are implemented for feature 

extraction. Finally, we analyze the model’s performance and provide our suggestions 

on its implementation in a real manufacturing scenario. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Research Workflow 

 

In our research to build a conceptual framework for automated molded pulp 

packaging defect detection systems, we focused on classifying images of defective and 

non-defective molded pulp packaging product named "32oz burrito bowl" as shown in 

Fig.6. by introducing the conjunction of machine vision hardware and machine learning. 

The conceptual framework consists of two modules. First "Image Acquisition Module" 

in Section 3.2, we set the criteria for selecting machine vision and finding the proper 

hardware platform configurations in order to acquire suitable image datasets. Both 

camera and light-source configurations must be analyzed to understand their impacts 

on defect characteristics on the surface of molded pulp material so that the signatures 

of multiple defects can be learned by the classification model. Then we collect image 

datasets from two different camera configurations: RGB and Negative Monochrome 

(NGMC) for classification model performance comparison. Second "Machine Learning 

Module" in Section 3.4, we will train machine learning algorithms on acquired datasets 

to build defect detection models. Our research algorithm is based on a deep learning 

model - the Xception architecture with hyper-parameter tuning. In comparison with 

supervised learning algorithms - SVM and Naive bayes. The oriented FAST and rotated 

BRIEF (ORB), and Bag-of-Visual-Word (BoVW) are implemented for pre-feature 

extraction for supervised learning models. For Xception models, the following hyper-

parameter tuning techniques are applied: image resolution adjustment, learning rate 

tuning, batch-size tuning, image augmentation, and optimizer alternation. After that, the 

accuracy and precision of each model are evaluated and compared against each other. 

Finally, we provide the conclusions of this research, our perspective on how to utilize 

the model in real industry practice, and suggestions for further research. 
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3.2 Image Acquisition Module 

 

3.2.1 Machine Vision Hardware Platform 

To choose the suitable project’s machine vision, several factors must 

be taken into account, including pricing, working environment, e.g., working distance 

& working area, and camera option, e.g., sensor, type, size that suit the working 

applications. Our proposed machine vision hardware selection process to prepare a 

suitable camera is described in detail as the flowchart in Figure 3.1. The detail of each 

step was explained in Chapter 2 Section 2.4 “Choosing a Machine Vision Camera”. 

 

Figure 3.1  

Research proposed machine vision hardware selection process 
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In our research, machine vision was selected following research’s 

proposed selection process. Our machine vision camera was selected to be suitable for 

the project's smallest inspection at 0.8 mm following our research’s proposed selection 

process shown in Figure 3.2 and Figure 3.3. And our experimental hardware setup, as 

shown in Figure 3.4. 

 

Figure 3.2  

Project Selected Machine Vision Camera based on proposed selection process 
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Figure 3.3  

Hardware detail of project selected machine vision camera 

 

 

Figure 3.4  

Project Experimental Hardware Setup 

 

 

The images of defective products captured by the project machine 

vision camera, as shown in Fig.31 could verify the performance of the camera, which 

met the selection criteria that there must be at least 4 pixels on the defect target to 
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differentiate defective and non-defective pixels. We also found that the surface of the 

product is curving, which causes shade on the sides, different in color, and varies in 

surface texture. Especially for products from different production lots, we can obviously 

find surface fluctuations by shade, pulp fiber distribution, and non-repeating defect 

patterns, as shown in Figure 3.5. 

 

Figure 3.5  

Image result of defective molded pulp packaging product under project selected 

machine vision camera 

 

 

3.2.2 Light Source Configuration & Surface Analysis 

The main objective of the LEDs light-source platform is to make the 

defect features of the target objects visible and reduce undesirable features, especially 

imbalanced shade on objects, which could cause issues on the training model. The angle 

between the light beam and the object surface causes the illumination effect and 

shadow. We compare different LEDs types - circle-center and line-side on our platform, 

as shown in Figure 3.6. We will analyze its effect on our object as a means to choose 

appropriate LEDs types.  
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Figure 3.6  

Effect of different LEDs source on target object 

 

 

For an image analysis technique, we implement the image processing 

tool OpenCV, which is one of the most widely used tools for computer vision and image 

processing tasks. By implementing Image Thresholding and Contour techniques to 

analyze light & shade distribution on the object surface, as shown in Figure 3.7.  

 

Figure 3.7  

Implement of OpenCV on molded pulp packaging for image and light-source analysis 

task (A) Linear array of LEDs setup  (B) Circular ring array of LEDs 

 
(A) (B) 
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We performed image feature analysis on the visibility of defect 

features and the distribution of light & shade on the object surface. Along with light-

source adjustment between different light-source setups. The circular ring array of 

LEDs is selected for our hardware platform because it can effectively avoid the shadow 

phenomenon and provide balanced light & shade distribution, which highlight the 

features to be detected.  

 

3.2.3 Machine Vision Camera Configuration 

In comparison with RGB, we applied Negative Monochrome 

(NGMC) camera configurations as shown in Figure 3.8 to prevent color problems in 

products that change across raw material lots, to emphasize defects, and to generalize 

the model learning pattern. The configurations have a great advantage for machine 

learning based molded pulp packaging defect detection, including:  

3.2.3.1 Build image datasets that more generalize across different 

production lots by representing images using one single color instead of different hues 

to reduce the effect of product color shifting due to raw material color variation. 

3.2.3.2 Reduce the learning features of the machine learning model 

from RGB (3 channels) to Monochrome (1 channel), which reduces the number of 

inputs that must be optimized by the model for the classification task. (Figure 3.9) 

 

Figure 3.8  

Color Histogram comparison between Negative Monochrome (NGMC) and RGB 

dataset 
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3.2.3.3 Storage saving, cut down image transfer time over the 

network, efficiently use computing resources and reduce model training time. Since at 

the same image resolution, the NGMC file is only 40% of RGB size. 

 

Figure 3.9  

Machine Vision configuration change between Color (RGB) and Negative 

Monochrome (NGMC) 

 

 

3.3 Machine Learning Module 

 

Our objective is to develop a conceptual framework for automated molded 

pulp defect detection system on the molded pulp packaging in the way that potentially 

serve as an industry-specific practical case study. The model must be able to classify 

whether the product images belong to a defect category or not. We adopt deep learning 

algorithm; Xception architecture with hyper-parameter tuning as our main goal. In 

comparison with supervised learning algorithms; SVM & Naive Bayes 

 

3.3.1 Xception architecture 

To choose the suitable value of hyper-parameters, it is important to 

build a robust deep learning model. For Xception model, the following technique is 

integrated to enhance performance of our classification models. 
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3.3.1.1 Image Resolution Tuning 

To find optimal resolution that suited our model’s application 

in order to reduce processing time and resource requirements, while maintain high 

training-testing accuracies. Our training resolution is varied in the range between 64×64 

and 256×256 which is generally used to train CNNs as shown in Figure 3.10 &  

Figure 3.11. 

 

Figure 3.10  

Example of defect image on different resolution (a) 128 x 128 (b) 64 x 64 

 

 

Figure 3.11  

Example of image resolution varied in our research between 256x256 and 64x64 

 

 

3.3.1.2 Learning Rate (LR) Tuning 

Learning Rate (LR) Tuning: It is important to find the optimal 

learning rate for the model. In our research the Learning Rate was varied to include 

(a) (b) 
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0.004, 0.001(default), 0.0001 and 0.0004 to study how our defect detection model 

performance was affected by different Learning Rate. For Nadam optimizer used to 

train our Xception model, if we set learning rate too large, training process will very 

slowly as the model and making very tiny updates to the weights and lead to model not 

learning. However, once we set learning rate is too small, weight updated will be too 

large which led to undesirable divergent behavior in loss function and result in oscillate 

over training epochs. Therefore, we must not use too large or too small but find optimal 

learning rate. 

3.3.1.3 Batch Size (BS) Tuning 

Batch size impacts the CNN training both in terms of the time 

to converge and the amount of overfitting. The purpose of our research is to find an 

appropriate range of batch size that yield best accuracy and generalization for our 

Xception model. The study is conducted by tuning the hyper-parameter batch size and 

observing its influences on training-testing accuracies. In our research the batch size 

was varied includes 1, 4, 8, 12, 16, 24, 32, 48 and 64. 

In our research, we treat image augmentation and the optimizer 

algorithm as constant parameters. For augmentation of images, only flip and rotation 

techniques are implemented, as shown in Figure 3.12. 

 

Figure 3.12  

Implementation of Flipping and Rotation Augmentation on our research dataset 
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and only the Nesterov-accelerated Adaptive Moment 

Estimation (Nadam) optimizer is implemented to acquire advantages from a fusion of 

the Adam optimizer and Nesterov Momentum algorithms, which can improve the speed 

of convergence and require the least exhaustive parameter tuning, which favors our 

focus on learning-rate (LR), image resolution, and batch size tuning. 

Our Xception model uses the following settings: use the 

binary_crossentropy loss function, callbacks monitor max val_accuracy. To study the 

learning curve of the model across parameters tuning, we must set epochs at a number 

of hundred but not too high to prevent over-fitting, waste computing power and time. 

Hence, our models have decided to train for 350 epochs. After hyper-parameter tuning 

was completed, stratified 5-fold & 10-fold techniques were implemented in the final 

stage to train the best weight model. The performance of the model was measured for 

accuracy and precision. To avoid misclassifying a defective product as a non-defective 

one, we are focusing on the precision values of defective prediction. Our experiment 

results will be reported and discussed in chapters 4 and 5. 

 

3.3.2 Supervised Learning 

In comparison to the deep learning model - Xception architecture, we 

build supervised learning models - SVM and Naive Bayes. Our research implemented 

the Bag-of-Visual-Word (BoVW) approach to extract features from images for 

supervised learning, extract from original image pixel resolution of 1056 x 1520. Our 

training model setting was based on ORB_create() at default value and BoVW cluster 

size 500; the clustering size was decided to make visual words be able to represent all 

image patches but not too large to cause quantization artifacts or over-fitting. 

All of the experiments are done on a standard Windows laptop 

computer using Google Colab Pro TPU - Google Compute Engine Python 3. Our 

experimental processes are shown in Chapter 4. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Design and Architecture of Research Experiment 

 

Our experiment is described in detail as the flowchart in Figure 4.1. 

 

Figure 4.1  

The diagram presents the pipe-line of research experiment 

 

 

Our experimental process consists of the following steps: The first step is 

to acquire training datasets via the image acquisition module using RGB and NGMC 

camera configurations. The next step is to explore suitable camera configurations by 

training the Xception model on RGB and NGMC datasets and comparing the model’s 

performance, including accuracy, precision, and generalizability. Then we build the 

Xception model with hyper-parameter tuning, image resolution, learning-rate and batch 

size, respectively. Once the best model’s hyper-parameter is found, the 

final model's performance is reported using Stratified k-fold cross-validation. Then, we 
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build supervised learning models - SVM and Naive Bayes using ORB and BoVW 

feature extraction. Finally, all models’ performances are reported and discussed. 

 

4.2 Datasets Acquired by Image Acquisition Module 

 

Samples of a molded pulp packaging product named "32oz burrito bowl" 

were imaged inside a light-box platform with circle-center LEDs to ensure uniform 

diffuse lighting. In comparison with RGB, the advantages of Negative Monochrome 

(NGMC) camera configurations are implemented to preprocess image datasets. The 

samples were collected from 4 different production lots using NGMC configuration, as 

listed in Table 4.1, from the molded pulp factory in Thailand, with an original image 

pixel resolution of 1056 x 1520. Since it is normal for product color to shift across the 

lots due to raw material color variation, as shown in Figure 4.2. Our classification 

models are generated using training & validation sets and then tested with test sets no.1 

& no.2 to measure the model's generalizability across different lots. 

 

Table 4.1  

Acquired Datasets for Model Building 

Datasets Name Sample 

Training set 100 images with 50 defective and 50 non-defective 

Validation set 40 images with 20 defective and 20 non-defective 

Test set No. 1 57 images with 28 defective and 29 non-defective 

Test set No. 2 60 images with 27 defective and 33 non-defective 
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Figure 4.2  

Color comparison of different raw material lots between Color (RGB) and Negative 

Monochrome (NGMC) 

 

 

4.3 Classifier Performance 

    

Our research aims to classify whether the product images belong to a defect 

category or not. We adopt the deep learning algorithm; Xception as the base model. In 

comparison with supervised learning algorithms; SVM & Naive Bayes. 

 

4.3.1 Deep learning - Xception architecture 

4.3.1.1 Exploration on RGB Datasets 

During the exploration stage of the Xception model, training, 

validation, and test set no.1 were implemented in the building and testing processes. 

Our initial model building is based on batch size 32, RGB image resolutions of 128x128 

and 64x64 to minimize the computation resource. Overview of model training as shown 

in Figure 4.3. 

 

(RGB) (NGMC) (RGB) (NGMC) 
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Figure 4.3  

Overview of Xception model training process (a) Import training-validation dataset 

and Batch size & Image resolution setting (b) Augmentation block (c) Xception model 

architecture building block (d) Model training block - setting and compile 

 

The result of Xception model training and testing with RGB 

image resolution of 128x128 and 64x64 in comparison with NGMC are shown on Table 

4.2 

 

Table 4.2  

Validation & testing results of Xception Model on RGB images resolution 128x128 

and 64x64 in comparison with NGMC 

  

 

 

Accuracy Precision Accuracy Precision

128x128 RGB 0.001 (default) 88.00% 75.00% 52.00% 96.00%

128x128 NGMC 0.001 (default) 95.00% 90.00% 84.00% 82.00%

64x64 RGB 0.001 (default) 82.00% 75.00% 50.00% 100.00%

Xception

Resolution Learning-rate
Validation set Test set No.1

Dataset

Image type

Method
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We have the following observations from the experimental 

results 

1. Reducing image size could lower model fitting run-time. 

2. When compare between RGB 128x128 and 64x64, the 

higher image resolution provider the better model accuracy. 

3. Since the model is weighted based on training and validation 

sets. When testing the RGB models on a new testing set no.1 from a different 

production lot, the model fails to predict the new dataset with only 50% accuracy. On 

the contrary, the NGMC model has higher generalizability, with 84% accuracy on test 

set no.1. The following hypotheses have been made: 

3.1 The RGB model is over-fitted to the datasets or weighted 

against non-defect feature, hence low generalizability. 

3.2 When comparing the RGB image - training and 

validation set with test set no.1, the products have surface fluctuations, especially by 

shade and color of raw material (Figure 4.4). The color of the raw material has an 

impact on the color of the product and defect. It contains excessive features and color 

channels that the model needs to learn to classify. 

 

Figure 4.4  

Example of images from training set, validation set and test set no.1 

 

 

 

 

 

Training & Validation set Test set no.1 
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4.3.1.2 Model Performance on NGMC Datasets 

Based on constraints discovered during the exploration stage 

of RGB datasets, the Negative Monochrome (NGMC) camera configurations will be 

applied in further stages to solve the color problem of products that change across raw 

material lots and to generalize the model learning pattern. The learning feature is 

reduced from 3 (RGB) to 1 color channel (NGMC), which decreases image file size 

and reduces computation resources. The following sub-sections describe the hyper-

parameter tuning process used to build the Xception model. 

(1) Image Resolution Tuning 

To reduce processing time and resource requirements, the 

images are down-sampled to a fraction of the original resolution. However, extensive 

reduction of the image resolution eventually leads to the elimination and loss of 

important information in the image that is used for classification. Thus, first of all, we 

will find an optimal image with generalizability and classification performance. 

 

Table 4.3  

Validation & testing results of Xception Model on NGMC images with image 

resolution variation between 256x256 and 64x64 

 

 

The results in Table 4.3 suggest that image quality affects the 

model’s performance, where higher image resolutions result in higher accuracy and 

more generalization for deep learning models since the models take an image as input 

to learn visual information from the images. In contrast, the reduction of image 

resolution could eliminate the visual information (e.g., fine defects and contamination), 

which leads to the loss of important information in the image that is used for the 

classification and thus relatively poor performance at low resolutions. The 256x256 and 

192x192 achieved highest accuracy when compare to others. However, when compared 

Accuracy Precision Accuracy Precision Accuracy Precision

256x256 0.001 (default) 97.50% 95.00% 96.49% 96.43% 88.33% 85.18%

192x192 0.001 (default) 97.50% 100.00% 92.98% 96.43% 93.33% 92.59%

128x128 0.001 (default) 95.00% 90.00% 84.21% 82.14% 78.33% 55.56%

64x64 0.001 (default) 87.50% 85.00% 71.93% 60.71% 46.67% 7.41%

Method Dataset

Xception

Resolution Learning-rate
Validation set Test set No.1 Test set No.2
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between 256x256 and 192x192 pixels, the lower input resolutions achieve better 

generalizability performance of the model across validation & test set. Based on theory 

(Thambawita, Strümke, Hicks, Halvorsen, Parasa, & Riegler, 2021), lower image 

resolution, which provides a smaller number of input variables or features, is often 

desirable in applications of deep architectures because there are fewer parameters that 

need to be learned and optimized, which could reduce the risk of model overfitting, in 

the case of 256x256 is more overfitted and least generalized compare to 192x192. 

(2) Learning-Rate (LR) Tuning 

After we achieve the optimal and best generalized model at an 

image resolution of 192 x 192, we will find the way to improve model performance via 

learning-rate tuning. 

 

Table 4.4  

Validation & testing results of Xception Model on NGMC images resolution 192x192 

with learning-rate (LR) variation 

 

 

 

 

 

 

 

 

 

 

 

Accuracy Precision Accuracy Precision Accuracy Precision

192x192 0.004 67.50% 45.00% 57.89% 25.00% 55.00% 11.11%

192x192 0.001 (default) 97.50% 100.00% 92.98% 96.43% 93.33% 92.59%

192x192 0.0004 100.00% 100.00% 87.72% 96.43% 96.67% 92.59%

192x192 0.0001 97.50% 95.00% 80.70% 78.57% 63.33% 22.22%

Method Dataset

Xception

Resolution Learning-rate
Validation set Test set No.1 Test set No.2
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Figure 4.5  

Result comparison of Learning rate tuning for Xception model; Nadam optimizer on 

training and validation dataset NGMC image resolution 192x192 

 

 

As can be seen from Figure 4.5 and Table 4.4, the 

generalization accuracy is quite poor for large learning rates LR-0004, and improves as 

the learning rate is reduced to a level of LR-0.001 to LR-0.0004. The learning rates 

from LR-0.0001 and smaller shows no improvement and have low generalization 

accuracy across test set no.1 & no.2. As observed from the result, if the learning rate is 

too large, accuracy will be poor due to Nadam optimizer making very tiny updates to 

the weights and lead to model not learning. In contrast when learning rate is too small, 

Nadam optimizer weight updated will be too large which could result in oscillate over 

training epochs. When compare between LR-0.001 and LR-0.0004, the LR-0.001 

achieved better generalization accuracy with more than 92.98% across validation and 

set no.1 & no.2. 
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(3) Batch Size (BS) Tuning 

Our batch size will be tuned based on the Xception model with 

optimal image resolution of 192x192 and best generalization accuracy of LR-0.001. To 

find an optimal batch size that yields reliable training results, the batch sizes are varied, 

as shown in Figure 4.6.  

 

Figure 4.6  

Training-validation performance curve comparison for batch size 8 and 12 of 

Xception model; Nadam optimizer LR-0.001 on training and validation dataset 

NGMC image resolution 192x192 

 

 

Referring to the training-validation performance curve in 

Figure 4.7 and Figure 4.8, we observe that batch sizes between 8 and 48 yield high 

accuracies with a stable learning curve; when out of this range, the performance drops 

drastically. The batch sizes 8 and 12 achieved the highest accuracy, yielding the most 

stable and decent training curve.  
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Figure 4.7  

Result comparison of batch size variation between 1 to 64 for Xception model; 

Nadam optimizer LR-0.001 on training and validation dataset NGMC image 

resolution 192x192 

 

 

Table 4.5  

Validation & testing results of Xception Model (LR-0.001) on NGMC images 

resolution 192x192 with batch size variation  

 

 

Accuracy Precision Accuracy Precision Accuracy Precision

192x192 0.001 (default) 32 97.50% 100.00% 92.98% 96.43% 93.33% 92.59%

192x192 0.001 (default) 12 100.00% 100.00% 96.61% 96.67% 86.66% 70.37%

192x192 0.001 (default) 8 100.00% 100.00% 94.92% 100.00% 93.33% 88.89%

Test set No.2
Batch Size

Method

Xception

Resolution Learning-rate
Validation set Test set No.1

Dataset
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From Table 4.5, demonstrate that the batch size is vital to how 

the model learns the features and has an impact on the model's generalization 

performance on test sets no.1 & no.2. For high-complexity data of molded pulp 

packaging, the smaller batch size provides more gradient computation, yielding more 

stable and reliable training results. Thus, batch sizes of 8 provide high, stable accuracy 

across validation and test sets. 

(4) Final Model Performance with Stratified k-fold 

After the exploration and hyper-parameter tuning stages, the 

stratified k-fold (5-fold and 10-fold) will be applied to our most generalized model 

parameter, which is the Xception model; Nadam Optimizer (LR-0.001); NGMC image 

resolution 192x192 (batch size 8). As results are shown in Table 4.6, the Xception 

model trained with stratified k-fold has slightly better accuracy and generalizability 

when compared with normal training.  

 

Table 4.6  

Validation & Testing results comparison between Stratified k-fold and normal 

training on Xception Model (LR-0.001) NGMC images resolution 192x192 with batch 

size 8 

 

 

4.3.2 Supervised learning - SVM & Naive Bayes 

In comparison with the Xception architecture, we build and train 

supervised learning SVM & Naive Bayes on NGMC image datasets of 1056 x 1520 

pixel by implementing Bag-of-Visual-Word (BoVW) and ORB (Oriented Fast and 

Rotated Brief) for feature extraction.  Overview of the supervised learning model 

building process as shown in Figure 4.8. The validation & testing results are shown in 

Table 5.7.  

 

Accuracy Precision Accuracy Precision Accuracy Precision

192x192 0.001 (default) 8 (Stratified 10-fold) 100.00% 100.00% 98.31% 96.67% 93.33% 85.19%

192x192 0.001 (default) 8 (Stratified 5-fold) 97.50% 100.00% 93.22% 93.33% 95.00% 88.89%

192x192 0.001 (default) 8 100.00% 100.00% 94.92% 100.00% 93.33% 88.89%

192x192 0.001 (default) 12 100.00% 100.00% 96.61% 96.67% 86.66% 70.37%

192x192 0.001 (default) 32 97.50% 100.00% 92.98% 96.43% 93.33% 92.59%

Test set No.2
Batch Size

Method

Xception

Resolution Learning-rate
Validation set Test set No.1

Dataset
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Figure 4.8  

Overview of supervised learning - SVM & Naive Bayes training process 

 

 

Table 4.7  

Validation & testing results of Supervised Learning - SVM & Naive Bayes using 

BoVW and ORB for feature extraction on NGMC images dataset with Cluster size 

500 

 

 

In our experiment, there are two main stages, as shown in Fig.46, the 

first is the training stage, and the second is the testing stage. In general, the first stage 

creates a BoVW visual vocabulary from training images. The information that was 

extracted in the first stage was used to train SVM and Naive Bayes supervised learning 

algorithm, which were then used to classify a new unlabeled image based on a bag of 

features created using the BoVW approach. Considering accuracy and precision 

between SVM and Naïve Bayes classifiers, the results obtained via SVM are the highest 

Accuracy Precision Accuracy Precision Accuracy Precision

80.00% 83.33% 78.95% 75.00% 68.33% 61.11%

80.00% 75.00% 71.93% 66.67% 61.67% 54.35%

Test set No.2

SVM

Naive Bayes 

Method Validation set Test set No.1

Dataset
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across datasets from different production lots. The model’s performances are shown in 

Table 4.7. The following is our observation and hypothesis: 

1. The keypoints and descriptors that the classification model learns 

during the training process can represent the defect features in validation and test set 

no.1, which makes the SVM predict with close to 80.00% accuracy in these two 

datasets. But when it comes to test set no.2, the accuracy and precision drop to 68.33% 

and 61.11%, respectively, which suggests the learned keypoints and descriptors are not 

generalized enough to classify defects in the new test set no.2. The potentials of the 

accuracy and precision drop are due to fluctuations in grain pulp fiber and non-

repeating defect patterns, which were never learned by the classification model. 

2. A supervised learning algorithm, including SVM and Naïve Bayes, 

requires pre-feature extraction from raw data via a human engineering algorithm. In 

our case, the ORB and BoVW techniques are used, which could be a drawback for 

supervised learning to learn the deep details of features. Unlike deep learning, the 

learning features are learned automatically through CNN from raw data, thus making 

it far superior to traditional machine learning in terms of feature learning and 

classification. 

3. Comparing with deep learning, the supervised learning model has 

lower performance on both accuracy and precision and has the least generalizability 

across datasets from different production lots. 

 

4.3.3 Model Performance Comparison 

The models must be able to classify images accurately and must 

avoid misclassifying a defective product as a non-defective one; hence, we are focusing 

on the precision value of the defective category since the lower the precision value, the 

more overlooked cases cause more defective products to escape quality control to 

consumers, which could lead to consumer complaints and company losses. In Table 5.8 

we report the results of all models based on NGMC image datasets. 
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Table 4.8  

Result Comparison of Xception with hyper-parameter tuning and Supervised 

Learning - SVM & Naive Bayes on NGMC images Dataset 

 

 

For industrial applications, the deep learning algorithm - Xception 

using the Nadam optimizer (learning-rate 0.001) trained with Negative Monochrome 

(NGMC) preprocessed images at resolution 192x192 and batch size 8 achieved the 

most generalized results across validation and testing datasets, which suggest the 

model's capability to apply on products from different lots without problems caused by 

surface color fluctuation due to uncertain raw material shade and hue. Based on the 

processing time, the model built on an image resolution of 192 x 192 can make 60 

predictions within 1s 900 ms, which has the potential to be utilized in an industrial 

application. 

Accuracy Precision Accuracy Precision Accuracy Precision

256x256 0.001 (default) 32 97.50% 95.00% 96.49% 96.43% 88.33% 85.18%

192x192 0.004 32 67.50% 45.00% 57.89% 25.00% 55.00% 11.11%

192x192 0.001 (default) 32 97.50% 100.00% 92.98% 96.43% 93.33% 92.59%

192x192 0.001 (default) 12 100.00% 100.00% 96.61% 96.67% 86.66% 70.37%

192x192 0.001 (default) 8 100.00% 100.00% 94.92% 100.00% 93.33% 88.89%

192x192 0.001 (default) 8 (Stratified 10-fold) 100.00% 100.00% 98.31% 96.67% 93.33% 85.19%

192x192 0.001 (default) 8 (Stratified 5-fold) 97.50% 100.00% 93.22% 93.33% 95.00% 88.89%

192x192 0.0004 32 100.00% 100.00% 87.72% 96.43% 96.67% 92.59%

192x192 0.0001 32 97.50% 95.00% 80.70% 78.57% 63.33% 22.22%

128x128 0.001 (default) 32 95.00% 90.00% 84.21% 82.14% 78.33% 55.56%

64x64 0.001 (default) 32 87.50% 85.00% 71.93% 60.71% 46.67% 7.41%

80.00% 83.33% 78.95% 75.00% 68.33% 61.11%

80.00% 75.00% 71.93% 66.67% 61.67% 54.35%

NGMC Dataset

Learning-rateResolution
Validation set Test set No.1 Test set No.2

Method

Batch Size

Xception

SVM

Naive Bayes 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusion 

           

Product quality control is an important factor in the long-term business 

growth of companies. Defect detection is also one of the most challenging parts of the 

manufacturing process, especially for molded pulp packaging, where the challenge is 

not only fluctuating grain surfaces and unstable product colors due to variation in raw 

material lots but also non-repeated defect sizes and patterns. While typical defect 

detection technologies, including X-ray detection, ultrasonic detection, and magnetic 

particle detection, are not suitable for this industry, the traditional molded pulp 

packaging manufacturing industry usually relies on the experience of quality inspectors 

to ensure the quality of products. Due to the uneven experience of inspectors and the 

limitations of human capabilities, this method has low efficiency, low accuracy, and 

poor real-time performance. With the further upgrading of the manufacturing industry 

in recent years, this method can no longer meet the requirements of high speed and high 

accuracy in modern industry. 

This paper presents the end-to-end conceptual framework development for 

an automated molded pulp packaging defect detection using the conjunction of machine 

vision hardware and machine learning. The process includes machine vision camera 

selection, image acquisition platform setup in consideration of camera and lighting 

configuration, and machine learning model building based on the deep learning - 

Xception algorithm with hyper-parameter tuning in comparison with supervised 

learning - SVM & Naive Bayes implementing BoVW and ORB for feature extraction. 

We introduce the advantage of Negative Monochrome (NGMC) camera configurations 

to prevent color problems in products that change across raw material lots in order to 

generalize the model classification performance, which is limited when training the 

model on RGB datasets. This research shows the importance of using appropriate 

hyper-parameter optimization strategies in the deep learning model based Xception 

algorithm to obtain the best possible result, including image resolution tuning, learning 
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rate tuning, and batch size tuning, respectively. The stratified k-fold was then 

implemented to train the model with optimized parameters in order to achieve the best 

final model performance.  The experimental results show that the deep learning 

algorithm - Xception using the Nadam optimizer (LR-0.001) with Negative 

Monochrome (NGMC) resolution of 192x192 and batch size 8 provided optimized and 

best generalized performance across datasets from different production lots and have 

higher accuracy when compare to traditional supervised learning, which suggests that 

the robustness of our Xception model conceptual framework can make more than 60 

predictions within 1s 900 ms and has the potential to be utilized in industrial.  

 

5.2 Recommendation 

           

There were still a limited number of features available to learn, and the 

dataset is still generally small, so the enhancement and expansion of the data set in the 

future will be particularly important to make the model improvements on a larger, 

structured dataset. At present, the application of machine learning in molded pulp 

packaging defect detection is still in the laboratory exploration stage, which requires 

more practical application in the actual detection environment of real-world 

manufacturing. Another limitation of our present work was that, owing to graphics 

processing unit memory constraints, as hardware advances make graphics processing 

units with larger amounts of random-access memory increasingly available, there is an 

opportunity for obtaining better performance from high image resolution models with 

larger batch sizes. For the introduction of Negative Monochrome (NGMC) 

configuration to improve the model generalizability is still in the initial stage, so there 

is still space for improvement and implementation in other applications. Since our 

conceptual framework is limited to an experimental hardware setup, there is still 

opportunity to integrate our defect detection conceptual framework with an on-field 

molded pulp packaging production. Our recommendations and challenges are as 

follows: 

5.2.1 Real-time processing speed requirements 

To build a model that is practical and real-time, we must aim for both 

classification accuracy and the cost of inference time. The main goal of on-field 
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framework is to capture defect information globally with the highest accuracy and as 

fast as possible to satisfy real-time requirements of the production systems. As a result 

of our research’s conceptual framework, the Xception model with suitable hyper-

parameter configuration can achieve 1 s 900 ms inference time per 60 images in binary 

classification with more than 93.33% accuracy. When compared to current human 

manual inspection by well-trained operators who inspect products piece by piece, 

which requires 1 s per piece, the model outperforms humans by 97% in terms of speed. 

The model’s performance shows the potential for replacing visual inspection jobs that 

were done by human workers with machine vision and machine learning in the near 

future. 

 

5.2.2 The integration of machine vision and machine learning with 

molded pulp packaging production machine 

First, to capture an image during production, the products come out 

of the machine in a cross-section area of 40 pieces per cycle, as shown in Fig. 49; hence, 

the machine vision installation location must be able to capture all over this area and 

transfer images to processing computer. As our research proposed on the machine 

vision hardware selection process, choosing the camera option and configuration that 

suit working applications and environments must be considered. The second is how the 

existing production machine control system responds to the classification result. Since 

the production machine is working on electric control, including a servo motor, 

solenoid valve and PLC, which is used to control pneumatic system, including a 

vacuum suction and air blow.  The future work must perform on Python-based real-

time control system to control the servo motors and pneumatic system of the production 

machine via read and write PLC process data using a python script in order classify 

product as in Fig. 50. 
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Figure 5.1  

Machine’s mould of “32 oz burrito bowl” cross-section area of 40 cavities 

 

 

Figure 5.2  

Two control loop of industrial Iot between Python-PLC and PLC-field device  

 

Source: Neubert, J. (2023) and PLC Programming Tutorials Tips and Tricks. (2021)

mm 

PLC Python 

Solenoid 

Pneumatic 
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APPENDIX A 

Defect detection using image processing technique 

 

To find defects, various image processing techniques can be applied on an 

image of target object such as tile, steel slab and fabric. While inspecting an object, we 

may see certain defects in the surface of an object. In case of tile, we could find blob, 

pinhole, variation in color of a tile, crack, and chip offs in a tile, pattern mismatch, 

scratches etc. as shown in Fig.51., which can apply some image processing steps to find 

these defects but each defect, different technique is applicable to gain efficient result 

(Sanghadiya, & Mistry, 2015). 

 

Figure A.1  

Experimental results of detection of various types of defects using different type of 

image processing and its drawback  
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Figure A.2  

Implementation of OpenCV BlobDetector on molded pulp packaging 

 

 

For our molded pulp packaging, we implemented OpenCV BlobDetector 

to find its potential in defect detection tasks on our target object. The experimental and 

result are shown in Fig.52. The process includes (1) converting the source image to 

binary images (2) extract connected components. (3) group centers by their coordinates; 

close centers form one group that corresponds to one blob. (4) estimate the final centers 

of blobs and their radiuses, then return the locations and sizes of keypoints. We 

following constraints of image process for defect detection task are observed: 

1. Since molded pulp packaging has obstacles such as surface fluctuation 

by shade, grain of pulp fiber and non-repeating defect patterns, it is difficult to find a 

particular parameter value on BlobDetector so that the algorithm can detect the 

geometric pattern of defects. 

2. Some image processing methods for detection of object give better 

results but consume more time which is not acceptable in real-time environment. 

3. No such algorithm can find all the defects at a time. 
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According to the mentioned drawbacks of image processing for defect 

detection, it suggests the inapplicability of building an automated molded pulp 

packaging defect detection conceptual framework based on image processing 

techniques. 
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APPENDIX B 

Xception model performance on the MNIST dataset 

 

In comparison to the high complexity of the molded pulp packaging 

dataset, we tested our Xception model with batch size variation on the MNIST dataset. 

The MNIST database (Modified National Institute of Standards and Technology 

database (LeCun, Cortes and Burges, n.d.).) is a large database of handwritten digits 

that is widely used for training and testing in the field of machine learning. Due to its 

low complexity, the MNIST dataset is easier to fit one batch worth of training data in 

memory when using a GPU or TPU and requires low computation power when 

compared to the defect classification model of molded pulp packaging. In this research, 

our MNIST dataset contains 400 files, which belong to two classes: 280 files for 

training and 120 files for validation. Our classification model is based on deep learning 

using the Xception architecture with a learning rate of 0.001 (default), the Ndam 

optimizer, and batch sizes of 64, 32, and 8. The model's learning curve performance is 

shown in Fig 53. 

 

Figure B.1  

Training-validation performance curve comparison for batch sizes of 64, 32, and 8 of 

Xception model; Nadam optimizer LR-0.001 on MNIST dataset 

 

 

The batch size represents the number of training samples that will be used 

during the training in order to make one update to the network parameters. The 

performance curves show that it is feasible and effective to use a large batch size for 
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complexity and a small sample size. The large batch size of 64 has lower fluctuations 

and is more generalized when compared to batch sizes 32 and 8. Unlike the performance 

curves of molded pulp packaging from our research (Fig. 47), the lower batch sizes of 

8 and 12 are preferred for larger and more complex datasets. The molded pulp 

packaging dataset is an extensive database; feeding all the data into the network at once 

could lead to an explosion of memory, so finding an optimal batch size is important for 

the deep learning model training process. 
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