
HIGH-VALUE FRUIT BIOMETRIC IDENTIFICATION VIA
TRIPLET-LOSS TECHNIQUE

BY

PLAIFAH LAIMEK

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING (ARTIFICIAL INTELLIGENCE AND INTERNET
OF THINGS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY

ACADEMIC YEAR 2022

Ref. code: 25656422040086FNZ

(1)

Thesis Title HIGH-VALUE FRUIT BIOMETRIC

IDENTIFICATION VIA TRIPLET-LOSS

TECHNIQUE

Author Plaifah Laimek

Degree Master of Engineering (Artificial Intelligence

and Internet of Things)

Faculty/University Sirindhorn International Institute of

Technology/Thammasat University

Thesis Advisor Associate Professor Waree Kongprawechnon,

Ph.D.

Academic Years 2022

ABSTRACT

This thesis proposes a novel method for biometric authentication of fruits based on

their distinctive rind patterns, similar to fingerprint identification. Luxury fruits, highly val-

ued in Japan, currently rely on serial numbers, QR codes, and RFID tags for authentication,

which can be forged or replicated. By implementing biometric authentication using rind pat-

terns, the trust and value of these fruits can be significantly enhanced, while also preventing

fraud and counterfeiting in the agricultural industry. The study introduces a melon identifi-

cation system that utilizes a convolutional neural network (CNN) with a triplet loss function,

enabling accurate identification even with variations in lighting, shadows, and angle. The

proposed method overcomes the limitations of previous approaches by capturing important

features through CNN’s automatic feature identification. This research contributes to the

field of agricultural product authentication, providing a secure and reliable method that can

be extended to other products, increasing customer trust and market value.

Keywords: Agriculture, Authentication, Fruits, Melon, Rind Pattern, Identification, Veri-

fication, Computer Vision, Machine learning

Ref. code: 25656422040086FNZ

(2)

ACKNOWLEDGEMENTS

This thesis was supported by the Thailand Advanced Institute of Science and Tech-

nology (TAIST), National Science and Technology Development Agency (NSTDA), Tokyo

Institute of Technology, Sirindhorn International Institute of Technology (SIIT), and Tham-

masat University (TU) under the TAIST Tokyo Tech scholarship program.

Plaifah Laimek

Ref. code: 25656422040086FNZ

(3)

TABLE OF CONTENTS

Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (2)

LIST OF FIGURES (5)

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 BACKGROUND KNOWLEDGE 3

2.1 Minutiae Feature 4

2.2 Triplet Loss 5

CHAPTER 3 METHODOLOGY 8

3.1 Image Acquisition 8

3.2 Semantic Segmentation 8

3.3 Image Preprocessing 10

3.3.1 Pose Normalization 10

3.3.2 Binarize 11

3.3.3 Region of Interest 11

3.3.4 Morphological transform 12

3.4 Triplet Loss 12

3.4.1 Model Configuration 13

3.4.2 Training 13

3.4.3 Identity Matching 15

CHAPTER 4 RESULT AND DISCUSSION 16

REFERENCES 26

Ref. code: 25656422040086FNZ

(4)

APPENDIX 28

APPENDIX A 29

Ref. code: 25656422040086FNZ

(5)

LIST OF FIGURES

Figures Page

2.1 Fingerprint minutiae-like pattern on melon rind. 4

2.2 Triplet-loss training process diagram. 6

3.1 Workflow diagram 9

3.2 Original image from image acquisition. 9

3.3 Semantic segmentation mask and cropped image. 9

3.4 Pose normalization visualization. 10

3.5 Comparison of thresholding methods. 11

3.6 ROI cropped binary image. 12

3.7 Triplet loss training visualization. 12

3.8 VGG-16 layers configuration. 13

3.9 Query image identification on embedding space. 14

4.1 First Fold 17

4.2 Second Fold 17

4.3 Third Fold 18

4.4 Forth Fold 18

4.5 Fifth Fold 19

4.6 Sixth Fold 19

4.7 Seventh Fold 20

4.8 Eighth Fold 20

4.9 Ninth Fold 21

4.10 Tenth Fold 21

4.11 System performance in 10-fold cross-validation. 22

4.12 Minutiae feature extraction method. 23

4.13 Example of inconsistent detected melon pattern of the same melon identity. 24

Ref. code: 25656422040086FNZ

1

CHAPTER 1
INTRODUCTION

With the increasing attention on artificial intelligence (AI) and its successful imple-

mentation in various domains, including culinary, transportation, e-commerce, and security,

Biswal (2022) the potential for implementing AI-based technologies in product authentica-

tion is immense. The use of machine learning to improve the reliability of digital image

authentication has sparked the development of biometric authentication methods, such as

fingerprint scanner for personal electronics devices security Stanley et al. (2009) and facial

recognition used for online banking Yogalakshmi et al. (2020).

In this thesis, our focus lies on the application of biometric authentication in the

agricultural industry, particularly in authenticating fruits based on their unique rind pat-

terns. While biometric identification methods have gained significant attention in various

sectors, their utilization in the authentication of luxury fruits remains largely unexplored. In

countries like Japan, luxury fruits such as melons, watermelons, grapes, apples, and white

strawberries hold immense cultural value and are commonly exchanged as prestigious gifts.

Among them, the Yūbari king melon is the most valuable and popular, retail and auctioned

prices ranging from $30 to $30,000 Kim (2022). The value of these luxury fruits largely

stems from the limited supply as they are specifically cultivated with specific process, en-

vironment and nutrients. Especially the Yūbari king melon has to be grown in Yūbari city,

Hokkaido province, the traceability of the product is highly essential for the consumer confi-

dence and its market value. Although currently, the authentication practices for these luxury

fruits heavily rely on a combination of serial numbers, QR codes, and RFID tags Kumar

et al. (2009). However, these conventional methods are prone to vulnerabilities, as they can

be easily forged or replicated, thus jeopardizing the security and integrity of these valuable

products.

To address these limitations and enhance customer trust, we propose a novel ap-

proach: biometric authentication of fruits using their rind patterns. The concept draws in-

spiration from the success of fingerprint identification in human biometrics. By utilizing

the uniqueness and intricacy of each fruit’s rind pattern, similar to a person’s fingerprint, we

aim to develop a secure and reliable authentication method that can significantly increase the

value and trustworthiness of luxury fruits while deterring fraudulent practices in the agricul-

tural industry.

Ref. code: 25656422040086FNZ

2

Previous research on melon identification by Ishiyama et al. (2012) has incorporated

minutiae feature extraction, a technique commonly used in fingerprint matching. While

these studies have achieved promising results in controlled image acquisition environments,

minutiae features are used to identify human fingerprint and may not account for the dis-

tinct characteristics of melon rind patterns Jain et al. (2006), which often contain features

beyond simple bifurcations. In our research, we aim to overcome this limitation by utiliz-

ing a convolutional neural network (CNN) architecture with a triplet loss function. This

approach enables the network to automatically identify relevant features in the training pro-

cess, capturing not only bifurcations but also trifurcations and other unidentified features

that contribute to accurate melon pattern matching.

Ref. code: 25656422040086FNZ

3

CHAPTER 2
BACKGROUND KNOWLEDGE

The research community has given limited attention of the topic of agricultural prod-

uct authentication. However, a notable study conducted by Ishiyama Rui in 2012 Ishiyama

et al. (2012) which not only proved the viability of minutiae features recognition on melon

rind pattern but this study also implemented the pose-normalization technique. As the image

data of each melon was acquired using a handheld camera, each melon stem may not be cen-

tered in the middle of the image. These variations of melon angles can reduce the matching

accuracy, though it can be negated using the pose-normalization technique.

Minutiae extraction techniques typically focus on specific features prominent in fin-

gerprints, such as terminations, ridges, and bifurcations Ali et al. (2016) and Jain et al.

(2006). Ishiyama’s study demonstrated the effectiveness of using minutiae extraction for

melon identification. However, the unique characteristics of melon rind patterns and fin-

gerprints indicate that relying solely on minutiae features might overlook crucial elements

required for accurate melon pattern matching. This observation was supported by the dataset

analyzed in this study which revealed the presence of not only bifurcations but also trifur-

cations in melon rind patterns as visually depicted in Fig. 2.1. To address this limitation,

this thesis proposes a novel method that utilizes a triplet loss function integrated with a con-

volutional neural network (CNN) architecture to identify similarities among inputted melon

images. CNNs have demonstrated their ability to automatically capture relevant features

during the training process Alzubaidi et al. (2021). By leveraging the power of CNNs, the

proposed method aims to capture trifurcations and other critical features that might have

been overlooked by relying solely on minutiae features.

The triplet loss function, a supervised learning technique, plays a pivotal role in the

proposed method. It minimizes the distance between positive pairs of melon images while

pushing negative pairs further apart, thus optimizing the margin in the embedding space.

This technique has shown exceptional efficacy in tasks like face recognition Schroff et al.

(2015b), which shares similarities with melon rind recognition, where the model needs to

identify individual melons accurately.

By combining the unique characteristics of melon rind patterns, the power of CNNs

in feature extraction, and the effectiveness of the triplet loss function, this thesis aims to

establish a robust and accurate authentication system for luxury fruits. The proposed method

Ref. code: 25656422040086FNZ

4

Figure 2.1 Fingerprint minutiae-like pattern on melon rind.

has the potential to revolutionize agricultural product authentication, enhance customer trust,

and mitigate fraud and counterfeiting in the industry.

2.1 Minutiae Feature

In the field of fingerprint recognition, minutiae features refer to the unique and dis-

tinctive local characteristics or patterns found within fingerprint images. These distinct fea-

tures are widely used in fingerprint matching and identification Hollingum (1992). Finger-

prints, much like the patterns on a melon rind, are highly individualistic and exhibit intricate

ridge structures. These ridge structures form unique patterns that are present on the sur-

face of the fingertip. Minutiae features are specific points where the ridge structures exhibit

changes or distinct properties, just as the irregularities, bumps, and patterns on a melon rind

form its distinct features. There are two primary types of minutiae features: Ridge Endings:

Ridge endings occur when a ridge segment terminates abruptly, forming a point or a small

loop. They represent the points where the end of the ridge, indicating the termination of a

particular ridge structure. Ridge Bifurcations: Ridge bifurcations occur when a ridge splits

into two separate branches, forming a Y-shaped structure. They represent the points where

the fingerprint ridges diverge in multiple directions. Other types of minutiae features may

include dots, short ridges, or ridge crossings, but ridge endings and ridge bifurcations are

the most commonly utilized and reliable minutiae features in fingerprint recognition sys-

Ref. code: 25656422040086FNZ

5

tems Hong et al. (1998). These types of patterns can also be found on the melon pattern

as shown in Fig. 2.1. The process of extracting minutiae features involves several steps.

First, a fingerprint image is acquired using a sensor such as an optical or capacitive scanner.

The image is then pre-processed to enhance its quality, remove noise, and improve contrast.

Next, the ridges in the fingerprint image are thinned to obtain a skeletonized representation,

where only the central ridge lines remain Jain et al. (1997). Thinning simplifies the image

and separates the ridge structures for further analysis. Once the ridge thinning is complete,

minutiae points are detected by examining the ridge structure. Various algorithms, such as

crossing number, ridge tracing, or ridge orientation-based methods, are employed to identify

and extract the minutiae features. The location, orientation, and other relevant attributes of

each minutia point are recorded, forming a set of minutiae descriptors Zaeri (2011). During

the matching process, the minutiae features extracted from a captured fingerprint are com-

pared with the minutiae features stored in a database of reference fingerprints. The matching

algorithms assess the spatial relationships, distances, and orientations between the minutiae

points to determine the similarity or dissimilarity between the two fingerprints. Multiple

matching algorithms can be used to match fingerprint image Jain et al. (1997) which is

chosen according to the type of feature used in that task. Though this study mainly uses

accidental coincidence probability (ACP) to match detected minutiae features, to compare

the proposed method with the method incorporated by Ishiyama et al. (2012). If a suffi-

cient number of matching minutiae features are found within defined thresholds, a positive

identification or verification is established.

2.2 Triplet Loss

Triplet-loss is widely known as a great loss function to train a Siamese network. A

Siamese network is a neural network with two or more identical subnetworks used to gen-

erate embedding vectors for each input and compare them. A predecessor Siamese network

uses a contrasive loss function to compare the embedding result of two input images. It oper-

ates on pairs of face images, categorizing them as either positive (same identity) or negative

(different identity). The goal is to learn an embedding space where the distance between

positive pairs is minimized while the distance between negative pairs is maximized Tanveer

et al. (2021). Although a famous study put forward by Schroff et al. (2015a) introduces the

use of triplet loss function on a three-input Siamese network, which ultimately avoids the

drawback of contrastive loss at the cost of increased computation resource Kertész (2021).

As opposed to contrastive loss, which considers the predefined margin only when dealing

with the negative pair, triplet loss keeps track of the margin between the anchor and positive

Ref. code: 25656422040086FNZ

6

Figure 2.2 Triplet-loss training process diagram.

and the anchor and negative. The triplet loss function operates on sets of triplets, each con-

sisting of an anchor face image, a positive face image (same identity as the anchor), and a

negative face image (different identity from the anchor). The objective is to learn an embed-

ding space where the distance between the anchor and the positive image is minimized while

the distance between the anchor and the negative image is maximized. The loss function can

be formulated as follows:

Loss = max(d(a, p)−d(a,n)+margin,0) (2.1)

where d(a, p) represents the distance metric between the anchor (a) and positive (p)

embeddings, and d(a, n) represents the distance between the anchor (a) and negative (n)

embeddings, the margin is a hyperparameter that determines the desired separation between

positive and negative pairs. The loss function encourages the positive pairs to have smaller

distances than the negative pairs by at least the margin value.

An illustration of the training process is shown in Fig. 2.2. The face recognition sys-

tem learns the optimal parameters by iteratively sampling triplets from the training dataset

and optimizing the triplet loss function. The network updates the feature embeddings such

Ref. code: 25656422040086FNZ

7

that the distance between the anchor and positive pairs decreases while increasing the dis-

tance between the anchor and negative pairs. Various techniques can be employed to enhance

the effectiveness of the triplet loss function, such as online triplet mining, which dynamically

selects informative triplets during training, and batch hard mining, which focuses on the most

challenging triplets within a mini-batch to optimize the loss function efficiently Shrivastava

et al. (2016).

Triplet loss-based methods have demonstrated significant success in face recognition

tasks, achieving high accuracy and robustness. They have been widely adopted in both com-

mercial and research face recognition systems. By learning discriminative face embeddings

through the triplet loss function, these systems can effectively handle challenging scenarios,

such as variations in pose, illumination, and facial expressions, and provide reliable identifi-

cation and verification capabilities in real-world applications Haider et al. (2023). The triplet

loss-base Siamese network can be adapted to the melon rind pattern recognition scenario in

a similar way as it is employed for face recognition. Just like human faces, melon also has a

unique rind pattern that is intricate enough to be used as identification means.

Ref. code: 25656422040086FNZ

8

CHAPTER 3
METHODOLOGY

The objective of this study is to improve upon the melon identification process de-

scribed in the work of Ishiyama et al. Ishiyama et al. (2012). Our approach builds upon their

study by automating the process and eliminating the need for manual intervention, making it

more convenient and potentially attractive for use in the agricultural industry. Our workflow

consists of four main steps: semantic segmentation, image preprocessing, training, and iden-

tity matching, as depicted in Fig. 3.1. Throughout the process, we will highlight similarities

and differences with the approach described in Ishiyama et al.

3.1 Image Acquisition

Four images with slightly different angles were acquired from 56 individual melons

using four smartphones. Each phone took a single photo of the melon with the stem ap-

proximately centered in the middle of the image. These images were taken free-handed,

without using any platform or background, and under varying lighting conditions. As shown

in Figure 3.2, the resulting images often contain shadows, non-uniform backgrounds, and

misaligned stem placements. The uniformity of the image acquired differs from the ap-

proach used in the previous study of Ishiyama et al. Ishiyama et al. (2012), in which melons

were placed on a flat table and photographed under controlled lighting conditions as shown

in (Ishiyama et al. (2012), Fig. 5). A total of 496 images of 124 melons from varying angles

and backgrounds were captured.

3.2 Semantic Segmentation

In the previous study by Ishiyama et al. Ishiyama et al. (2012), the background was

manually cropped out of the images to retain only the pixels containing the melon. Semantic

segmentation can eliminate this manual process. First, the ground truth mask image is cre-

ated by labeling regions of the acquired images with two classes: the melon and stem. The

semantic segmentation model is trained using the U-Net architecture with a VGG-16-based

encoder on labeled ground truth images. Further details about the semantic segmentation

model and configuration can be found in divamgupta (2021). The trained semantic segmen-

tation model is then used to generate a mask image of the detected melon and stems. The

background can be automatically cropped out using the mask image, resulting in images that

Ref. code: 25656422040086FNZ

9

Figure 3.1 Workflow diagram

Figure 3.2 Original image from image acquisition.

Figure 3.3 Semantic segmentation mask and cropped image.

Ref. code: 25656422040086FNZ

10

Figure 3.4 Pose normalization visualization.

contain only the melon, as shown in Fig. 3.3. This process eliminated the need for manual

cropping, making the identification process more efficient.

3.3 Image Preprocessing

After obtaining a background-less image from the semantic segmentation process,

the image is passed through four main preprocessing steps. Preprocessing is done to remove

redundant information keeping only the relevant melon rind pattern to be trained in the triplet

loss model.

3.3.1 Pose Normalization

Having the stem even slightly off-centered can result in lower matching accuracy. As

the images used in this study were taken free-handed with no platform, the images contain a

significant deviation from the center in most images. The pose normalization technique can

be applied to center the images by translating the pixels in the image so that a desired point

(e.g., the stem) is brought to the center while minimizing distortion. In the previous study by

Ishiyama et al. Ishiyama et al. (2012), the stem was manually located in the image and used to

guide the pose normalization process. In contrast, the semantic segmentation process already

detected both the melon and stem in the image, allowing us to retrieve the stem location from

the detected mask and perform pose normalization without needing manual selection. An

example of the pose normalization process and its result is shown in Fig. 3.4. The result of

pose normalization helps to improve the accuracy of image matching by reducing variations

in the placement of the stem.

Ref. code: 25656422040086FNZ

11

Figure 3.5 Comparison of thresholding methods.

3.3.2 Binarize

After pose normalization, we processed the images using a thresholding function to

reduce the dimensionality of the data and transform the RGB images into binary images. As

shown in Fig. 3.5 compared to the other thresholding methods, adaptive Gaussian thresh-

olding can accurately transform and emphasize the relevant rind pattern. Adaptive Gaussian

thresholding is used to binarize the images to simplify the training image and remove redun-

dant information, significantly reducing the model’s training resource to identify and match

the melons.

3.3.3 Region of Interest

The drawback of using semantic segmentation to crop the images is that the outer

perimeter of each melon image may not be uniform, which could negatively impact the

accuracy of our matching model. The binary image is cropped, retaining only each image’s

central 60% circular area. Removal of the irregular perimeter helped to ensure that the

images were more consistent in terms of their size and shape, improving the performance of

our model.

Ref. code: 25656422040086FNZ

12

Figure 3.6 ROI cropped binary image.

Figure 3.7 Triplet loss training visualization.

3.3.4 Morphological transform

One issue that can arise during the thresholding process is the introduction of salt and

pepper noise, which can negatively impact the model’s performance. The morphological

opening followed by closing can be used to eliminate these noises. These operations are

known to smooth out sharp edges on the contours of the shapes, fill in any gaps or holes, and

remove stray pixels, resulting in a clearer and sharper image.

3.4 Triplet Loss

Triplet loss was first put forward by Schroff, Florian in 2015 Schroff et al. (2015b) as

a method for face recognition. As opposed to regular classification models, triplet loss excels

in recognizing a large number of classes. Triplet loss does not directly classify each input

image as each designated class. It determines the similarity of each image by the distance

between each image after encoding them into the embedding space.

Ref. code: 25656422040086FNZ

13

Figure 3.8 VGG-16 layers configuration.

3.4.1 Model Configuration

The triplet-loss model is based on the VGG-16 model, a well-known model pre-

trained on the ImageNet dataset, by removing the classification layer and using the feature

learning layer to recognize melon rind patterns. This approach, known as transfer learning,

allowed the model to achieve better performance in a shorter training time. The modified

VGG-16 model is shown in Fig. 3.8.

3.4.2 Training

The Triplet loss model is trained by simultaneously using three inputs: anchor, posi-

tive and negative image. In the training process, the loss of the model is calculated using the

equation:

L = max(d(a, p)−d(a,n)+m,0) (3.1)

where:

Ref. code: 25656422040086FNZ

14

Figure 3.9 Query image identification on embedding space.

a = anchor, focal sample.

p = positive, sample in the same class as the anchor.

n = negative, sample in different class of the anchor.

d = euclidean distance function to measure the distance between the samples in

embedding space.

m =margin, the distance between the negative and positive sample.

During training, the model is fed with multiple batches of triplets consisting of an

anchor, a positive, and a negative sample. After transforming the input images into embed-

ding vectors, the loss for each triplet is calculated. The model’s weights are then adjusted to

increase the distance between the negative and anchor samples while decreasing the distance

between the anchor and positive samples. In each epoch, we use two types of triplet batches:

a random batch, which consists of triplets selected randomly, and a hard batch, which con-

sists of triplets with high loss values. While training, the model will modify its weights until

the negative sample is farther away from the anchor and the positive sample closer. The dis-

tance between the negative and positive samples is also optimized to minimize the model’s

cost and prevent overfitting.

Ref. code: 25656422040086FNZ

15

3.4.3 Identity Matching

After training, the model is able to transform binary melon images into matrices of

embedding values. These values can be used to identify the melon in each image, as the

dataset includes four images for each unique melon. One image of each melon is trans-

formed into an embedding matrix and kept as a database of known melons, while the re-

maining images are used as query images. To identify a query image, it is first converted

into an embedding matrix, and the Euclidean distance between it and the other images in the

database is calculated. The image with the minimum distance is identified as the matching

image and, therefore, the identity of the query image. This identity matching process is il-

lustrated in Fig. 3.9. In the example shown, the image in the database with the minimum

distance is identified as melon number 15.

Ref. code: 25656422040086FNZ

16

CHAPTER 4
RESULT AND DISCUSSION

The model and training configurations were verified using a 10-fold cross-validation

method. The melon image dataset was divided into ten parts, with nine parts used for train-

ing and the remaining part used as test images for each fold of validation. Out of the total

124 melon identities, 12 melons were selected as test images, rotating them until all parts of

the dataset were used as test images. The matching process involved the following steps: (1)

One image per melon from the test set served as the identity database, while the remaining

three images per melon were treated as query images. (2) Each query image was compared

with all identities in the database using a distance metric. (3) The identity with the embed-

ding vector having the least Euclidean distance to the query image’s embedding vector was

identified as the matched identity. The matching process resulted in a total of 432 instances

checked per validation fold. As the embedding vector of both the query and database image

has large dimensions, dimensionality reduction technique is used to visualize relationship

between each embedding matrix and visualize the model’s ability to characterize and group

the images of the same melon identity. Principal component analysis (PCA) a well-known

dimensionality reduction technique was first applied, although the model’s matching perfor-

mance is high the visualized embedding space shows overlapping of multiple melon identity

in the same space. As PCA is a linear technique that captures the maximum variance of

the data, PCA is not effective in preserving relationships between individual data points.

The visualized cluster does not correctly visualize the embedding space of triplet loss model

which pushes the negative samples away while the positive samples should be positioned

close together. Instead by using t-Distributed Stochastic Neighbor Embedding (TSNE) to

visualize the embedding space, TSNE is a non-linear method that prioritizes preserving the

local structure of the data which results in much better visualization for this study. The

TSNE representation of the embedding space for each fold is depicted in Figure [4.1-4.10].

In each fold, the model successfully clustered the embeddings of the same melon identity,

although some query images were positioned far from their corresponding identity cluster.

Errors in identity matching arose when images were captured with the melon stem signifi-

cantly off-centered, and even with pose normalization, some nuances in the rind texture were

not accurately captured in the image. The model’s performance is presented in Figure 4.11.

To evaluate the matching performance, metrics such as false acceptance rate (FAR), false

Ref. code: 25656422040086FNZ

17

Figure 4.1 First Fold

Figure 4.2 Second Fold

Ref. code: 25656422040086FNZ

18

Figure 4.3 Third Fold

Figure 4.4 Forth Fold

Ref. code: 25656422040086FNZ

19

Figure 4.5 Fifth Fold

Figure 4.6 Sixth Fold

Ref. code: 25656422040086FNZ

20

Figure 4.7 Seventh Fold

Figure 4.8 Eighth Fold

Ref. code: 25656422040086FNZ

21

Figure 4.9 Ninth Fold

Figure 4.10 Tenth Fold

Ref. code: 25656422040086FNZ

22

Figure 4.11 System performance in 10-fold cross-validation.

rejection rate (FRR), and Top Rank ID Error were utilized, which are commonly employed

for evaluating the performance of biometric systems Natarajan and Shanthi (2018).

FAR =
FalseAcceptance

TotalCheck
(4.1)

FRR =
FalseRe jection

TotalCheck
(4.2)

TopIDErr =
NegativePair
TotalCheck

(4.3)

Each melon image is queried in the evaluation process, and its embedding is used to calcu-

late the Euclidean distance with all identities in the database. Suppose the minimum distance

exceeds the specified threshold. In that case, the queried melon is considered a counterfeit

melon. It is counted towards false rejections, contributing to the false rejection rate (FRR)

calculation since all melons used are present in the database. On the other hand, false ac-

ceptances, which contribute to the false acceptance rate (FAR), occur when the minimum

distance falls below the threshold, but the matched identity is incorrect. The top-rank ID

error (TopIDErr) is determined by instances where the minimum distance pair has a mis-

Ref. code: 25656422040086FNZ

23

(a) Cropped and pose-normalized (b) Binarization and ROI cropping.

(c) Ridge thinning to obtain skeletonized
structure of melon rind pattern.

(d) Detected Minutiae feature on the texture
of melon.

Figure 4.12 Minutiae feature extraction method.

Ref. code: 25656422040086FNZ

24

(a) Melon #9 taken with phone A. (b) Detected minutiae feature of melon #9A.

(c) Melon #9 taken with phone B. (d) Detected minutiae feature of melon #9B.

Figure 4.13 Example of inconsistent detected melon pattern of the same melon identity.

Ref. code: 25656422040086FNZ

25

matched identity, regardless of whether the distance value surpasses the threshold.

The performance of the proposed method is satisfactory. However, it falls short when

compared to the results of the study by Ishiyama et al. Ishiyama et al. (2012), which achieved

a top-rank ID error of only 0.06%. It is important to note that the previous study utilized

a larger dataset of 1,776 melons, resulting in 3,154,200 matching instances. As shown in

Equations (4.1) - (4), a larger sample population can lead to a reduction in both FAR and

FRR. The significant difference in the number of total checking instances highlights the need

for a much larger dataset to compare performance with the previous study comprehensively.

In contrast to the method used in the Ishiyama study, the identical technique was

applied to the same dataset in this study. The process is illustrated in Figure 4.12, starting

with background removal and pose normalization to center the melon stem. The image is

then binarized and ridge thinning to obtain the ridge skeleton. Finally, minutiae-like features

of the melon rind pattern are extracted to identify each melon identity.

However, attempting to apply the same procedure to the dataset used in this study re-

sulted in inconsistent results. The dataset exhibited significant dissimilarity among the four

images of the same melon, primarily due to significant camera angle variations and incon-

sistent lighting conditions for each sample. Although minutiae features were successfully

detected using the accidental coincidence probability (ACP) approach on the same image,

achieving a 100% match as expected, the results were disappointing when matching differ-

ent images of the same melon identity, with a match rate of less than 1%. The match rate

remained unacceptably low even when considering the pair of images with the least angle

variation and lighting conditions. An example of the inconsistency in detected minutiae fea-

tures is shown in Figure 4.13. Therefore, employing minutiae feature extraction and ACP on

this dataset is not viable.

On the other hand, the triplet loss method proves to be much more reliable, even

when faced with high variations in image quality. In practical use cases where queries are

made from the customer’s side, it is inevitable that some query images will have poor lighting

and variations in angle with respect to the center of the melon.

Furthermore, additional studies could be conducted to compare the proposed method

with other minutiae-based techniques, including directional minutiae combined with match-

ing algorithms other than ACP. These experiments allow for a comparison of the trade-offs

between accuracy and efficiency. It is worth noting that the proposed triplet loss method re-

quires significantly higher computational resources compared to other traditional techniques

used for fingerprint recognition tasks.

Ref. code: 25656422040086FNZ

26

REFERENCES

Ali, M. M., Mahale, V. H., Yannawar, P., & Gaikwad, A. T. (2016). Overview of fingerprint

recognition system. 2016 International Conference on Electrical, Electronics, and

Optimization Techniques (ICEEOT), 1334–1338. https://doi.org/10.1109/ICEEOT.

2016.7754900

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santa-

marı́a, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learn-

ing: Concepts, cnn architectures, challenges, applications, future directions. Journal

of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8

Biswal, A. (2022). Artificial intelligence (ai) applications in 2023: Simplilearn. https : / /

www.simplilearn.com/tutorials/artificial-intelligence-tutorial/artificial-intelligence-

applications

Divamgupta. (2021). Image-segmentation-keras: Implementation of segnet, fcn, unet , pspnet

and other models in keras.

Haider, I., Yang, H.-J., Lee, G.-S., & Kim, S.-H. (2023). Robust human face emotion clas-

sification using triplet-loss-based deep cnn features and svm. Sensors, 23(10).

https: //doi.org/10.3390/s23104770

Hollingum, J. (1992). Automated fingerprint analysis offers fast verification. Sensor Review,

12(3), 12–15. https://doi.org/10.1108/eb007878

Hong, L., Wan, Y., & Jain, A. (1998). Fingerprint image enhancement: Algorithm and perfor-

mance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(8), 777–789. https://doi.org/10.1109/34.709565

Ishiyama, R., Nakamura, Y., Monden, A., Huang, L., & Yoshimoto, S. (2012). Melon au-

thentication by agri-biometrics: Identifying individual fruits using a single image of

rind pattern. 1.

Jain, A., Hong, L., Pankanti, S., & Bolle, R. (1997). An identity-authentication system using

fingerprints. Proceedings of the IEEE, 85(9), 1365–1388. https://doi.org/10.1109/5.

628674

Jain, A., Ross, A., & Pankanti, S. (2006). Biometrics: A tool for information security. ieee

tran inform forensics secur. Information Forensics and Security, IEEE Transactions

on, 1, 125–143. https://doi.org/10.1109/TIFS.2006.873653

Ref. code: 25656422040086FNZ

27

Kertész, G. (2021). Different triplet sampling techniques for lossless triplet loss on met-

ric similarity learning. 2021 IEEE 19th World Symposium on Applied Machine In-

telligence and Informatics (SAMI), 000449–000454. https : / / doi . org / 10 . 1109 /

SAMI50585.2021.9378628

Kim, G. (2022). Most expensive fruits in japan. https://www.bokksu.com/blogs/news/7-

most-expensive-fruits-in-japan

Kumar, A., Hanmandlu, M., Madasu, V. K., & Lovell, B. C. (2009). Biometric authentica-

tion based on infrared thermal hand vein patterns. 2009 Digital Image Computing:

Techniques and Applications, 331–338. https://doi.org/10.1109/DICTA.2009.63

Natarajan, A., & Shanthi, N. (2018). A survey on multimodal biometrics authentication

and template protection. 2018 International Conference on Intelligent Computing

and Communication for Smart World (I2C2SW), 64–71. https: / /doi.org /10.1109 /

I2C2SW45816.2018.8997125

Schroff, F., Kalenichenko, D., & Philbin, J. (2015a). Facenet: A unified embedding for face

recognition and clustering. 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 815–823. https://doi.org/10.1109/CVPR.2015.7298682

Schroff, F., Kalenichenko, D., & Philbin, J. (2015b). FaceNet: A Unified Embedding for Face

Recognition and Clustering. arXiv e-prints, Article arXiv:1503.03832, arXiv:1503.03832.

Shrivastava, A., Gupta, A., & Girshick, R. (2016). Training region-based object detectors

with online hard example mining. 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 761–769. https://doi.org/10.1109/CVPR.2016.89

Stanley, P., Jeberson, W., & Klinsega, V. (2009). Biometric authentication: A trustworthy

technology for improved authentication. 2009 International Conference on Future

Networks, 171–175. https://doi.org/10.1109/ICFN.2009.49

Tanveer, M., Tan, H.-K., Ng, H.-F., Leung, M. K., & Chuah, J. H. (2021). Regularization of

deep neural network with batch contrastive loss. IEEE Access, 9, 124409–124418.

https://doi.org/10.1109/ACCESS.2021.3110286

Yogalakshmi, S., Megalan, L. L., & Jerrin Simla, A. (2020). Review on digital image pro-

cessing techniques for face recognition. 2020 International Conference on Commu-

nication and Signal Processing (ICCSP), 1633–1637. https : / / doi . org / 10 . 1109 /

ICCSP48568.2020.9182091

Zaeri, N. (2011). Minutiae-based fingerprint extraction and recognition. In J. Yang (Ed.),

Biometrics. IntechOpen. https://doi.org/10.5772/17527

Ref. code: 25656422040086FNZ

28

APPENDIX

Ref. code: 25656422040086FNZ

29

APPENDIX A

PYTHON CODES

1 from wfmread import wfmread

2 from IPython.display import clear_output

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from IPython.display import clear_output

6 import os

7 from scipy.optimize import curve_fit

8 from scipy.stats import gaussian_kde

9 import matplotlib.pyplot as plt

10 from matplotlib import cm

11 from matplotlib.colors import ListedColormap, LinearSegmentedColormap

12 from PIL import Image

13 import PIL.ImageOps

14 import random

15 import math

16 ch1_dict = {

17 ’1’:’wfm/InternalNew3_N5_300mV_200M_1us_200_Ch1.wfm’,

18 ’2’:’wfm/Surface_N5_500mV_200M_1us_200_Ch1.wfm’,

19 ’3’:’wfm/Positive2_N5_10mV_5G_2us_10000sa_Ch1.wfm’,

20 ’4’:’wfm/FreeMoving1_N5_50mV_200M_1us_200_Ch1.wfm’,

21 ’5’:’wfm/FloatingParticle_N5_2V_1G_1us_1000_Ch1.wfm’,

22 ’6’:’wfm/1-Internal_45mm33_Ch1.wfm’,

23 ’7’:’wfm/6kV_internal_oil_89pF_surface_69pF_N6_L43_HV_plates_Ch1.wfm’

24 }

25 ch2_dict = {

26 ’1’:’wfm/InternalNew3_N5_300mV_200M_1us_200_Ch2.wfm’,

27 ’2’:’wfm/Surface_N5_500mV_200M_1us_200_Ch2.wfm’,

28 ’3’:’wfm/Positive2_N5_10mV_5G_2us_10000sa_Ch2.wfm’,

29 ’4’:’wfm/FreeMoving1_N5_50mV_200M_1us_200_Ch2.wfm’,

30 ’5’:’wfm/FloatingParticle_N5_2V_1G_1us_1000_Ch2.wfm’,

31 ’6’:’wfm/1-Internal_45mm33_Ch2.wfm’,

32 ’7’:’wfm/6kV_internal_oil_89pF_surface_69pF_N6_L43_HV_plates_Ch2.wfm’

Ref. code: 25656422040086FNZ

30

33 }

34

35 # print("Creating dataset with classes: 1.Internal 2.Surface 3.Corona 4.

Freemoving 5.Floating")

36

37 import numpy as np

38 import matplotlib.pyplot as plt

39 from matplotlib import cm

40 from matplotlib.colors import Normalize

41 from scipy.interpolate import interpn

42

43 def density_scatter(x , y, ax = None, sort = True, bins = 20, **kwargs) :

44 """

45 Scatter plot colored by 2d histogram

46 """

47 if ax is None :

48 fig , ax = plt.subplots()

49 fig.set_figheight(6)

50 fig.set_figwidth(6)

51 data , x_e, y_e = np.histogram2d(x, y, bins = bins, density = True)

52 z = interpn((0.5*(x_e[1:] + x_e[:-1]) , 0.5*(y_e[1:]+y_e[:-1])) , data

, np.vstack([x,y]).T , method = "splinef2d", bounds_error = False)

53

54 #To be sure to plot all data

55 z[np.where(np.isnan(z))] = 0.0

56

57 # Sort the points by density, so that the densest points are plotted last

58 if sort :

59 idx = z.argsort()

60 x, y, z = x[idx], y[idx], z[idx]

61

62 ax.scatter(x, y, c=z, **kwargs)

63

64 internal = {}

65 internal2 = {}

66 surface = {}

67 corona = {}

Ref. code: 25656422040086FNZ

31

68 insur = {}

69 insur2 = {}

70

71 internal[’ch1’] = wfmread(ch1_dict[’1’]).wflist

72 internal[’ch2’] = wfmread(ch2_dict[’1’]).wflist

73 internal2[’ch1’] = wfmread(ch1_dict[’6’]).wflist

74 internal2[’ch2’] = wfmread(ch2_dict[’6’]).wflist

75 surface[’ch1’] = wfmread(ch1_dict[’2’]).wflist

76 surface[’ch2’] = wfmread(ch2_dict[’2’]).wflist

77 corona[’ch1’] = wfmread(ch1_dict[’3’]).wflist

78 corona[’ch2’] = wfmread(ch2_dict[’3’]).wflist

79 insur[’ch1’] = np.concatenate((internal[’ch1’],surface[’ch1’]),axis = 0)

80 insur[’ch2’] = np.concatenate((internal[’ch2’],surface[’ch2’]),axis = 0)

81 insur2[’ch1’] = wfmread(ch1_dict[’7’]).wflist

82 insur2[’ch2’] = wfmread(ch2_dict[’7’]).wflist

83 for i in range(len(insur2[’ch2’])):

84 insur2[’ch2’][i] = insur2[’ch2’][i]*(-1)

85 data_list = [internal,internal2,surface,corona,insur,insur2]

86 dat_name = [’Internal’,’Internal’,’Surface’,’Corona’,’InternalSurface’,’

InternalSurface’]

87 for i in range(len(data_list)):

88 ch1 = data_list[i][’ch1’]

89 ch2 = data_list[i][’ch2’]

90 Nframes = len(ch1)

91 data_name = dat_name[i]

92

93 print(’Generating ’+data_name+’ | ’+ str(Nframes)+’ pulses’)

94

95 rand_idx = np.random.choice(int(Nframesrames),int(Nframes), replace=False

).tolist()

96

97

98 # p_per_img = int(math.floor(Nframes/max_img_amnt))

99

100 p_per_img = [20,100,500]

101 n_level = [’mild’,’moderate’,’severe’]

102 for p_in in p_per_img:

Ref. code: 25656422040086FNZ

32

103

104 level = n_level[p_per_img.index(p_in)]

105 data_name = dat_name[i]+"_"+level

106 print(f’Generating {level}’)

107 rand_idx = np.random.choice(int(Nframes),int(Nframes), replace=False)

.tolist()

108 # max_img_amnt = int(math.floor(Nframes/p))

109 # print(str(max_img_amnt)+ ’ images |’ +str(p)+’ points’)

110 n = 0;

111 while len(rand_idx) > p_in*1.3:

112 # print(str(n+1),end = ’, ’)

113 phase_lst = []

114 peak_lst = []

115 dif = random.uniform(0.7, 1.4)

116 p = math.floor(p_in*dif)

117 for _ in range(p):

118 s = rand_idx.pop()

119 curr_ch1 = ch1[s]

120 curr_ch2 = ch2[s]

121 peak_Idx = np.argmax(abs(curr_ch2))

122 peak_V = curr_ch2[peak_Idx]

123 peak_Phase = curr_ch1[peak_Idx]

124 peak_lst.append(peak_V)

125 phase_lst.append((360/4.54)*peak_Phase)

126 x = np.array(phase_lst)

127 y = np.array(peak_lst)

128 if len(x) <5:

129 break

130

131

132 fig = plt.figure(frameon=False)

133 fig.set_size_inches(2.56,2.56)

134 ax = plt.Axes(fig, [0., 0., 1., 1.])

135 ax.set_axis_off()

136 abs_peak = list(map(abs, peak_lst))

137 yrange = (round(max(abs_peak)*100)/100)

138 fig.add_axes(ax)

Ref. code: 25656422040086FNZ

33

139 x = np.array(phase_lst)

140 y = np.array(peak_lst)

141 try:

142 posP = max(y[x<180])

143 posP = np.format_float_scientific(posP, precision = 2,

exp_digits=1)

144 except:

145 posP = ’0’

146 try:

147 negP = max(y[x>=180])

148 negP = np.format_float_scientific(negP, precision = 2,

exp_digits=1)

149 except:

150 negP = ’0’

151 ax.hist2d(x, y, (60,100), cmap=plt.cm.binary)

152 ax.set_xlim([0,360])

153 ax.set_ylim([-yrange*1.5,yrange*1.5])

154 # fname = data_name+"("+str(per*100)+")[p"+posP+"][n"+negP+"]_"+

str(int(np.random.rand(1)*10**8))+’.png’;

155 uID = str(int(np.random.rand(1)*10**8))

156 # fname = str(p)+_+data_name+"[p"+posP+"][n"+negP+"]_"+ str(int(np

.random.rand(1)*10**8))+’.png’;

157 fname = (f"{str(p)}_{data_name}[p{posP}][n{negP}]_{uID}.png")

158

159

160

161

162

163 # if n >= datasetAmount[data_name]:

164 # path = ’2ddata/.unused/’

165 # if not os.path.exists(path+data_name):

166 # os.makedirs(path+data_name)

167 # else:

168 # path = ’2ddata/.dataset/’

169 # if not os.path.exists(path+data_name):

170 # os.makedirs(path+data_name)

171 path = ’2ddata/.dataset/’

Ref. code: 25656422040086FNZ

34

172 # if not os.path.exists(path+data_name):

173 # os.makedirs(path+data_name)

174 if not os.path.exists(f’{path}{data_name}’):

175 os.makedirs(f’{path}{data_name}’)

176 fig.savefig(’%s%s/%s’ %(path,data_name,fname), bbox_inches=’tight’

, pad_inches = 0)

177 image = Image.open(’%s%s/%s’ %(path,data_name,fname))

178 image = PIL.ImageOps.grayscale(image)

179 image = PIL.ImageOps.invert(image)

180

181 image.save(’%s%s/%s’ %(path,data_name,fname))

182 #

183

184 plt.close(’all’)

185 plt.clf()

186 plt.cla()

187 n+=1

188 print(f’{n} images generated’)

189 print(’file generation completed’)

190 from tensorflow.python.client import device_lib

191 print(device_lib.list_local_devices())

192 import os

193 import numpy as np

194 np.random.seed(0)

195 import matplotlib.pyplot as plt

196 %matplotlib inline

197 from pylab import *

198 from keras.models import Sequential

199 from tensorflow.keras.optimizers import Adam

200 from keras.layers import Conv2D, ZeroPadding2D, Activation, Input,

concatenate

201 from keras.layers import GlobalAveragePooling2D,Dropout

202 from keras.models import Model

203 from keras.datasets import mnist

204

205 from tensorflow.keras.layers import BatchNormalization

206 from keras.layers.pooling import MaxPooling2D

Ref. code: 25656422040086FNZ

35

207 from tensorflow.keras.layers import concatenate

208 from keras.layers.core import Lambda, Flatten, Dense

209 from keras.initializers import glorot_uniform,he_uniform

210

211 from tensorflow.keras.layers import Layer

212 from keras.regularizers import l2

213 from keras import backend as K

214 from tensorflow.keras.utils import normalize

215 from keras.utils.vis_utils import plot_model

216 import keras

217

218 from sklearn.metrics import roc_curve,roc_auc_score

219

220 from keras.applications.vgg16 import VGG16

221 os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"

222 os.environ["CUDA_VISIBLE_DEVICES"] = "0"

223

224 """ unitity functions """

225 import cv2 as cv

226 import matplotlib.pyplot as plt

227 import numpy as np

228 import os

229

230 def read_image(path):

231 """ function to read single image at the given path

232 note: the loaded image is in B G R format

233 """

234 return cv.imread(path)

235

236

237 def BGR2RGB(image):

238 """ function to transform image from BGR into RBG format """

239 return cv.cvtColor(image, cv.COLOR_BGR2RGB)

240

241

242 def BGR2Gray(image):

243 """ function to transofrm image from BGR into Gray format """

Ref. code: 25656422040086FNZ

36

244 return cv.cvtColor(image, cv.COLOR_BGR2GRAY)

245

246

247 def show_image(image, img_format=’RGB’, figsize=(8, 6)):

248 """ function to show image """

249 if img_format == ’RGB’ or img_format == ’Gray’:

250 pass

251 elif img_format == ’BGR’:

252 image = BGR2RGB(image)

253 else:

254 raise ValueError(’format should be "RGB", "BGR" or "Gray"’)

255

256 fig, ax = plt.subplots(figsize=figsize)

257 if format == ’Gray’:

258 ax.imshow(image, format=’gray’)

259 else:

260 ax.imshow(image)

261 return fig

262

263

264 def detect_finger(image, face):

265 """ function to denote location of finger on image """

266 img = image.copy()

267 for (x, y, w, h) in face:

268 cv.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

269

270 return img

271

272

273 def crop_finger(image, face, scale_factor=1.0, target_size=(128, 128)):

274 """ crop finger at the given positons and resize to target size """

275 rows, columns, channels = image.shape

276 x, y, w, h = face[0]

277 mid_x = x + w // 2

278 mid_y = y + h // 2

279

280 # calculate the new vertices

Ref. code: 25656422040086FNZ

37

281 x_new = mid_x - int(w // 2 * scale_factor)

282 y_new = mid_y - int(h // 2 * scale_factor)

283 w_new = int(w * scale_factor)

284 h_new = int(h * scale_factor)

285

286 # validate the new vertices

287 left_x = max(0, x_new)

288 left_y = max(0, y_new)

289 right_x = min(columns, x_new + w_new)

290 right_y = min(rows, y_new + h_new)

291

292 # crop and resize the facial area

293 cropped = image[left_y:right_y, left_x:right_x, :]

294 resized = cv.resize(cropped, dsize=target_size, interpolation=cv.

INTER_LINEAR)

295

296 return resized

297

298 def load_images_from_folder(folder):

299 images = []

300 for filename in os.listdir(folder):

301 img = cv.imread(os.path.join(folder,filename))

302 if img is not None:

303 images.append(img)

304 images = np.array(images)

305 return images

306

307 def img_to_encoding(image_path, model):

308 img1 = cv.imread(image_path, 1)

309 img1 = cv.resize(img1, (600,600))

310 img = img1[...,::-1]

311 img = np.around(img/255.0, decimals=12)

312 #img = np.around(img/255.0)

313 x_train = np.array([img])

314 embedding = model.predict_on_batch(x_train)

315 return embedding

316

Ref. code: 25656422040086FNZ

38

317 def get_data(path):

318 data = {}

319 for files in os.listdir(path):

320 keys,_ = files.split(’_’)

321 if keys in data:

322 data[keys].append(files)

323 else:

324 data[keys] = [files]

325 return data

326

327 def train_test_split(data, ratio = 0.2):

328 train = {}

329 test = {}

330 for key in data.keys():

331 vals = data[key]

332 split = int(len(vals)*ratio)

333 train[key] = vals[split:]

334 test[key] = vals[:split]

335 return train,test

336

337 def get_data_label(path,ratio = 0.2):

338 """

339 Given path returns tran and test images and label associated with it

340 """

341 _data = get_data(path)

342 _train,_test = train_test_split(_data, ratio = ratio)

343

344 train_image = []

345 train_labels = []

346 test_image = []

347 test_labels = []

348 for keys, vals in _train.items():

349 train_image += [np.asarray([cv.imread(os.path.join(path,files))/255.

\

350 for files in vals])]

351 train_labels += [keys]

352

Ref. code: 25656422040086FNZ

39

353 for keys, vals in _test.items():

354 test_image += [np.asarray([cv.imread(os.path.join(path,files))/255. \

355 for files in vals])]

356 test_labels += [keys]

357 return np.asarray(train_image), np.asarray(train_labels), \

358 np.asarray(test_image), np.asarray(np.asarray(test_labels)),_test

359

360 def DrawPics(tensor,nb=0,template=’{}’,classnumber=None):

361 if (nb==0):

362 N = tensor.shape[0]

363 else:

364 N = min(nb,tensor.shape[0])

365 fig=plt.figure(figsize=(16,2))

366 nbligne = floor(N/20)+1

367 for m in range(N):

368 subplot = fig.add_subplot(nbligne,min(N,20),m+1)

369 axis("off")

370 plt.imshow(tensor[m,:,:,0],vmin=0, vmax=1,cmap=’Greys’)

371 if (classnumber!=None):

372 subplot.title.set_text((template.format(classnumber)))

373

374 excluded_list = fold[10]

375 # excluded_list = []

376 import itertools

377 imgNames = []

378 imgList = {}

379 nb_classes = 124

380 for p in ["a", "b", "c", "d"]:

381 for i in range(1,nb_classes+1):

382 if i in excluded_list:

383 continue

384 name = f"{i}_{p}"

385 imgNames.append(name)

386 imgList[name] = cv.imread(f"img_digitize/{name}.png",cv.IMREAD_GRAYSCALE)

387

388 c = 0

389

Ref. code: 25656422040086FNZ

40

390 img_width=600

391

392 for phone in ["a", "b", "c", "d"]:

393 for i in range(1, nb_classes+1):

394

395 if i in excluded_list: continue

396 name = f"{i}_{p}"

397 im = imgList[name]

398 # try:

399 im = cv.resize(im, (img_width,img_width), interpolation = cv.INTER_AREA)

400 cv.imwrite(f"DB1_A/{i}_{phone}.png", im)

401 c += 1

402 # except: excluded_list.append(i)

403 nb_classes -= len(excluded_list)

404 imgList = {}

405 print("total img data: ", c)

406

407 datapath = ’./DB1_A/’

408 x_train,y_train,x_test,y_test,testfiles = get_data_label(datapath,ratio =

0.0)

409 x_train = np.asarray(x_train)

410 type(x_train[0])

411

412 class TripletLossLayer(Layer):

413 def __init__(self, alpha, **kwargs):

414 self.alpha = alpha

415 super(TripletLossLayer, self).__init__(**kwargs)

416

417 def triplet_loss(self, inputs):

418 anchor, positive, negative = inputs

419 p_dist = K.sum(K.square(anchor-positive), axis=-1)

420 n_dist = K.sum(K.square(anchor-negative), axis=-1)

421 return K.sum(K.maximum(p_dist - n_dist + self.alpha, 0), axis=0)

422

423 def call(self, inputs):

424 loss = self.triplet_loss(inputs)

425 self.add_loss(loss)

Ref. code: 25656422040086FNZ

41

426 return loss

427

428 def build_model(input_shape, network, margin=0.2):

429 ’’’

430 Define the Keras Model for training

431 Input :

432 input_shape : shape of input images

433 network : Neural network to train outputing embeddings

434 margin : minimal distance between Anchor-Positive and Anchor-

Negative for the lossfunction (alpha)

435

436 ’’’

437 # Define the tensors for the three input images

438 anchor_input = Input(input_shape, name="anchor_input")

439 positive_input = Input(input_shape, name="positive_input")

440 negative_input = Input(input_shape, name="negative_input")

441

442 # Generate the encodings (feature vectors) for the three images

443 encoded_a = network(anchor_input)

444 encoded_p = network(positive_input)

445 encoded_n = network(negative_input)

446

447 #TripletLoss Layer

448 loss_layer = TripletLossLayer(alpha=margin,name=’triplet_loss_layer’)([

encoded_a,encoded_p,encoded_n])

449

450 # Connect the inputs with the outputs

451 network_train = Model(inputs=[anchor_input,positive_input,negative_input

],outputs=loss_layer)

452

453 # return the model

454 return network_train

455

456

457 def fingerRecoModel(input_shape,embeddingsize):

458 X_input = Input(input_shape)

459 # base = keras.applications.inception_resnet_v2.InceptionResNetV2(weights

Ref. code: 25656422040086FNZ

42

=’imagenet’, input_tensor = X_input,input_shape = input_shape,

include_top=False)

460 # base=keras.applications.mobilenet_v2.MobileNetV2(weights=’imagenet’,

input_tensor = X_input,input_shape = input_shape,include_top=False)

461 base=VGG16(weights=’imagenet’, input_tensor = X_input,input_shape =

input_shape,include_top=False)

462 #imports the VGG16 model and discards the last 1000 neuron layer.

463 X=base.output

464 X=GlobalAveragePooling2D()(X)

465 # X=Dense(1024,activation=’relu’)(X) #we add dense layers so that the

model can learn more complex functions and classify for better

results.

466 X=Dense(512,activation=’relu’)(X) #dense layer 2

467 X=Dense(256,activation=’relu’)(X) #dense layer 3

468 X=Dense(embeddingsize, name = ’dense_layer’)(X)

469

470 # L2 normalization

471 X = Lambda(lambda x: K.l2_normalize(x,axis=1))(X)

472

473 # Create model instance

474 model = Model(inputs = X_input, outputs = X, name=’FingerRecoModel’)

475

476 return model

477

478 input_shape=(img_width, img_width, 3)

479 FRmodel = fingerRecoModel(input_shape=(img_width, img_width, 3),

embeddingsize =128)

480 network_train = build_model(input_shape,FRmodel)

481 # optimizer = Adam(lr = 0.00006, beta_1=0.9, beta_2=0.999, epsilon=1e-08,

decay=0.0)

482 optimizer = Adam(learning_rate = 0.00006, beta_1=0.9, beta_2=0.999, epsilon

=1e-08)

483 network_train.compile(loss=None,optimizer=optimizer)

484 network_train.summary()

485 plot_model(network_train,show_shapes=True, show_layer_names=True, to_file=’

02 model.png’)

486 print(network_train.metrics_names)

Ref. code: 25656422040086FNZ

43

487 n_iteration=0

488

489 def get_batch_random(batch_size,s="train"):

490 """

491 Create batch of APN triplets with a complete random strategy

492

493 Arguments:

494 batch_size -- integer

495

496 Returns:

497 triplets -- list containing 3 tensors A,P,N of shape (batch_size,w,h,c)

498 """

499 if s == ’train’:

500 X = x_train

501 else:

502 X = x_test

503

504 m, w, h,c = X[0].shape

505

506

507 # initialize result

508 triplets=[np.zeros((batch_size,h, w,c)) for i in range(3)]

509

510 for i in range(batch_size):

511 #Pick one random class for anchor

512 anchor_class = np.random.randint(0, nb_classes)

513 nb_sample_available_for_class_AP = X[anchor_class].shape[0]

514

515 #Pick two different random pics for this class => A and P

516 [idx_A,idx_P] = np.random.choice(nb_sample_available_for_class_AP,

size=2,replace=False)

517

518 #Pick another class for N, different from anchor_class

519 negative_class = (anchor_class + np.random.randint(1,nb_classes)) %

nb_classes

520 nb_sample_available_for_class_N = X[negative_class].shape[0]

521

Ref. code: 25656422040086FNZ

44

522 #Pick a random pic for this negative class => N

523 idx_N = np.random.randint(0, nb_sample_available_for_class_N)

524

525 triplets[0][i,:,:,:] = X[anchor_class][idx_A,:,:,:]

526 triplets[1][i,:,:,:] = X[anchor_class][idx_P,:,:,:]

527 triplets[2][i,:,:,:] = X[negative_class][idx_N,:,:,:]

528

529 return triplets

530

531 def drawTriplets(tripletbatch, nbmax=None):

532 """display the three images for each triplets in the batch

533 """

534 labels = ["Anchor", "Positive", "Negative"]

535

536 if (nbmax==None):

537 nbrows = tripletbatch[0].shape[0]

538 else:

539 nbrows = min(nbmax,tripletbatch[0].shape[0])

540

541 for row in range(nbrows):

542 fig=plt.figure(figsize=(16,2))

543

544 for i in range(3):

545 subplot = fig.add_subplot(1,3,i+1)

546 axis("off")

547 plt.imshow(tripletbatch[i][row,:,:,0],vmin=0, vmax=1,cmap=’Greys’)

548 subplot.title.set_text(labels[i])

549 def compute_dist(a,b):

550 return np.sum(np.square(a-b))

551

552 def get_batch_hard(draw_batch_size,hard_batchs_size,norm_batchs_size,network

,s="train"):

553 """

554 Create batch of APN "hard" triplets

555

556 Arguments:

557 draw_batch_size -- integer : number of initial randomly taken samples

Ref. code: 25656422040086FNZ

45

558 hard_batchs_size -- interger : select the number of hardest samples to

keep

559 norm_batchs_size -- interger : number of random samples to add

560

561 Returns:

562 triplets -- list containing 3 tensors A,P,N of shape (hard_batchs_size+

norm_batchs_size,w,h,c)

563 """

564 if s == ’train’:

565 X = x_train

566 else:

567 X = x_test

568

569 m, w, h,c = X[0].shape

570

571

572 #Step 1 : pick a random batch to study

573 studybatch = get_batch_random(draw_batch_size,s)

574

575 #Step 2 : compute the loss with current network : d(A,P)-d(A,N). The

alpha parameter here is omited here since we want only to order them

576 studybatchloss = np.zeros((draw_batch_size))

577

578 #Compute embeddings for anchors, positive and negatives

579 A = network.predict(studybatch[0])

580 P = network.predict(studybatch[1])

581 N = network.predict(studybatch[2])

582

583 #Compute d(A,P)-d(A,N)

584 studybatchloss = np.sum(np.square(A-P),axis=1) - np.sum(np.square(A-N),

axis=1)

585

586 #Sort by distance (high distance first) and take the

587 selection = np.argsort(studybatchloss)[::-1][:hard_batchs_size]

588

589 #Draw other random samples from the batch

590 selection2 = np.random.choice(np.delete(np.arange(draw_batch_size),

Ref. code: 25656422040086FNZ

46

selection),norm_batchs_size,replace=False)

591

592 selection = np.append(selection,selection2)

593

594 triplets = [studybatch[0][selection,:,:,:], studybatch[1][selection

,:,:,:], studybatch[2][selection,:,:,:]]

595

596 return triplets

597

598 def compute_probs(network,X,Y):

599 ’’’

600 Input

601 network : current NN to compute embeddings

602 X : tensor of shape (m,w,h,3) containing pics to evaluate

603 Y : tensor of shape (m,) containing true class

604

605 Returns

606 probs : array of shape (m,m) containing distances

607

608 ’’’

609 m = X.shape[0]

610 nbevaluation = int(m*(m-1)/2)

611 probs = np.zeros((nbevaluation))

612 y = np.zeros((nbevaluation))

613

614 #Compute all embeddings for all pics with current network

615 embeddings = network.predict(X)

616

617 size_embedding = embeddings.shape[1]

618

619 #For each pics of our dataset

620 k = 0

621 for i in range(m):

622 #Against all other images

623 for j in range(i+1,m):

624 #compute the probability of being the right decision : it

should be 1 for right class, 0 for all other classes

Ref. code: 25656422040086FNZ

47

625 probs[k] = -compute_dist(embeddings[i,:],embeddings[j,:])

626 if (Y[i]==Y[j]):

627 y[k] = 1

628 #print("{3}:{0} vs {1} : {2}\tSAME".format(i,j,probs[k],k))

629 else:

630 y[k] = 0

631 #print("{3}:{0} vs {1} : \t\t\t{2}\tDIFF".format(i,j,probs[

k],k))

632 k += 1

633 return probs,y

634 #probs,yprobs = compute_probs(network,x_test_origin[:10,:,:,:],y_test_origin

[:10])

635

636 def compute_metrics(probs,yprobs):

637 ’’’

638 Returns

639 fpr : Increasing false positive rates such that element i is the

false positive rate of predictions with score >= thresholds[i]

640 tpr : Increasing true positive rates such that element i is the true

positive rate of predictions with score >= thresholds[i].

641 thresholds : Decreasing thresholds on the decision function used to

compute fpr and tpr. thresholds[0] represents no instances being

predicted and is arbitrarily set to max(y_score) + 1

642 auc : Area Under the ROC Curve metric

643 ’’’

644 # calculate AUC

645 auc = roc_auc_score(yprobs, probs)

646 # calculate roc curve

647 fpr, tpr, thresholds = roc_curve(yprobs, probs)

648

649 return fpr, tpr, thresholds,auc

650

651 def compute_interdist(network):

652 ’’’

653 Computes sum of distances between all classes embeddings on our reference

test image:

654 d(0,1) + d(0,2) + ... + d(0,9) + d(1,2) + d(1,3) + ... d(8,9)

Ref. code: 25656422040086FNZ

48

655 A good model should have a large distance between all theses

embeddings

656

657 Returns:

658 array of shape (nb_classes,nb_classes)

659 ’’’

660 res = np.zeros((nb_classes,nb_classes))

661

662 ref_images = np.zeros((nb_classes,img_rows,img_cols,1))

663

664 #generates embeddings for reference images

665 for i in range(nb_classes):

666 ref_images[i,:,:,:] = dataset_test[i][0,:,:,:]

667 ref_embeddings = network.predict(ref_images)

668

669 for i in range(nb_classes):

670 for j in range(nb_classes):

671 res[i,j] = dist(ref_embeddings[i],ref_embeddings[j])

672 return res

673

674 def draw_interdist(network,n_iteration):

675 interdist = compute_interdist(network)

676

677 data = []

678 for i in range(nb_classes):

679 data.append(np.delete(interdist[i,:],[i]))

680

681 fig, ax = plt.subplots()

682 ax.set_title(’Evaluating embeddings distance from each other after {0}

iterations’.format(n_iteration))

683 ax.set_ylim([0,3])

684 plt.xlabel(’Classes’)

685 plt.ylabel(’Distance’)

686 ax.boxplot(data,showfliers=False,showbox=True)

687 locs, labels = plt.xticks()

688 plt.xticks(locs,np.arange(nb_classes))

689

Ref. code: 25656422040086FNZ

49

690 plt.show()

691

692 def find_nearest(array,value):

693 idx = np.searchsorted(array, value, side="left")

694 if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) <

math.fabs(value - array[idx])):

695 return array[idx-1],idx-1

696 else:

697 return array[idx],idx

698

699 def draw_roc(fpr, tpr,thresholds):

700 #find threshold

701 targetfpr=1e-3

702 _, idx = find_nearest(fpr,targetfpr)

703 threshold = thresholds[idx]

704 recall = tpr[idx]

705

706

707 # plot no skill

708 plt.plot([0, 1], [0, 1], linestyle=’--’)

709 # plot the roc curve for the model

710 plt.plot(fpr, tpr, marker=’.’)

711 plt.title(’AUC: {0:.3f}\nSensitivity : {2:.1%} @FPR={1:.0e}\nThreshold

={3})’.format(auc,targetfpr,recall,abs(threshold)))

712 # show the plot

713 plt.show()

714

715 def DrawTestImage(network, images, refidx=0):

716 ’’’

717 Evaluate some pictures vs some samples in the test set

718 image must be of shape(1,w,h,c)

719

720 Returns

721 scores: resultat des scores de similarites avec les images de base => N

722

723 ’’’

724 N=4

Ref. code: 25656422040086FNZ

50

725 _, w,h,c = x_test[0].shape

726 nbimages=images.shape[0]

727

728 #generates embedings for given images

729 image_embedings = network.predict(images)

730

731 #generates embedings for reference images

732 ref_images = np.zeros((nb_classes,w,h,c))

733 for i in range(nb_classes):

734 ref_images[i,:,:,:] = x_test[i][refidx,:,:,:]

735 ref_embedings = network.predict(ref_images)

736

737 for i in range(nbimages):

738 #Prepare the figure

739 fig=plt.figure(figsize=(16,2))

740 subplot = fig.add_subplot(1,nb_classes+1,1)

741 axis("off")

742 plotidx = 2

743

744 #Draw this image

745 plt.imshow(images[i,:,:,0],vmin=0, vmax=1,cmap=’Greys’)

746 subplot.title.set_text("Test image")

747

748 for ref in range(nb_classes):

749 #Compute distance between this images and references

750 dist = compute_dist(image_embedings[i,:],ref_embedings[ref,:])

751 #Draw

752 subplot = fig.add_subplot(1,nb_classes+1,plotidx)

753 axis("off")

754 plt.imshow(ref_images[ref,:,:,0],vmin=0, vmax=1,cmap=’Greys’)

755 subplot.title.set_text(("Class {0}\n{1:.3e}".format(y_test[ref],

dist)))

756 plotidx += 1

757

758 # Hyper parameters

759 evaluate_every = 10 # interval for evaluating on one-shot tasks

760 batch_size = 24

Ref. code: 25656422040086FNZ

51

761 hard_batch_size=10

762 rand_batch_size=2

763 n_iter = 800 # No. of training iterations prevous 300

764 #n_val = 250 # how many one-shot tasks to validate on

765

766 print("Starting training process!")

767 print("-------------------------------------")

768 t_start = time.time()

769 for i in range(1, n_iter+1):

770 triplets = get_batch_hard(batch_size,hard_batch_size,rand_batch_size,

FRmodel)

771 loss = network_train.train_on_batch(triplets, None)

772 n_iteration += 1

773 if i % evaluate_every == 0:

774 print("\n ------------- \n")

775 print("[{3}] Time for {0} iterations: {1:.1f} mins, Train Loss: {2}".

format(i, (time.time()-t_start)/60.0,loss,n_iteration))

776

777 network_train.save_weights("/content/drive/MyDrive/MINE_MELON/src/3Triplet/

fold10_10.h5")

778

779 trained_weights =[]

780 import os

781 path = list(os.walk("/content/drive/MyDrive/MINE_MELON/src/3Triplet/"))[0]

782 for file in path[2]:

783 if ".h5" in file:

784 trained_weights.append(os.path.join(path[0],file))

785 trained_weights

786

787 from sklearn.preprocessing import StandardScaler

788

789 import random

790 from sklearn.decomposition import PCA

791 import matplotlib.cm as cm

792 import io

793

794 db = []

Ref. code: 25656422040086FNZ

52

795 s = 12

796 st = 57

797 target = []

798 randomSample = random.sample(excluded_list,len(excluded_list));

799 # randomSample = random.sample(range(st, st+s), s);

800 for p in [’a’,’b’,’c’,’d’]:

801 for i in randomSample:

802 try:

803 name = f"{i}_{p}"

804 im = cv.imread(f"img_digitize/{name}.png")

805 im = cv.resize(im, (600,600),interpolation = cv.INTER_AREA)

806 db.append(im)

807 target.append(i)

808 except: continue

809

810 dbe = FRmodel.predict(np.array(db))

811 #save projector.tensorflow

812 np.savetxt("vecs.tsv", dbe, delimiter=’\t’)

813 out_m = io.open(’meta.tsv’, ’w’, encoding=’utf-8’)

814 for i in target:

815 out_m.write(str(i) + "\n")

816 out_m.close()

817

818 pca = PCA(n_components=2)

819 xs = StandardScaler().fit_transform(dbe)

820 pc = pca.fit_transform(xs)

821 colors = cm.rainbow(np.linspace(0, 1, s))

822 fig = figure(figsize=(8, 6), dpi=80)

823 # ax = fig.add_subplot(projection=’3d’)

824 ax = fig.add_subplot()

825

826 for i in range(len(dbe)):

827 # ax.scatter(pc[i][0], pc[i][1], pc[i][2], color=colors[i % s])

828 ax.scatter(pc[i][0], pc[i][1], color=colors[(i) % s])

829 box = ax.get_position()

830 ax.set_position([box.x0, box.y0, box.width * 0.95, box.height])

831 ax.set_xlabel("1st pca", fontsize=14)

Ref. code: 25656422040086FNZ

53

832 ax.set_ylabel("2nd pca", fontsize=14)

833 # ax.set_zlabel("3rd pca", fontsize=14)

834

835 # Put a legend to the right of the current axis

836 # ax.legend(range(st,st+s),loc=’center left’, bbox_to_anchor=(1, 0.5))

837 ax.legend(excluded_list,loc=’center left’, bbox_to_anchor=(1, 0.5))

838

839 plt.show()

840

841

842 from sklearn.manifold import TSNE

843 import random

844 tsne = TSNE(n_components=2, verbose=1, random_state=0,perplexity=5,n_iter

=1000)

845 pc = tsne.fit_transform(dbe)

846 colors = list(cm.rainbow(np.linspace(0, 1, s)))

847 # random.shuffle(colors)

848 fig = figure(figsize=(8, 6), dpi=80)

849 ax = fig.add_subplot()

850 # ax = fig.add_subplot(projection=’3d’)

851 mean = np.mean(pc)

852 standard_deviation = np.std(pc)

853

854 distance_from_mean = abs(pc - mean)

855 max_deviations = 2

856 for i in range(len(dbe)):

857 distance_from_mean = abs(pc[i] - mean)

858 # remove outlier

859 if np.any(distance_from_mean > max_deviations * standard_deviation):

860 continue

861 # ax.scatter(pc[i][0], pc[i][1], pc[i][2], color=colors[i % s])

862 ax.scatter(pc[i][0], pc[i][1], color=colors[i % s])#<<<<

863 # ax.scatter(pc[i][0], pc[i][1], color=colors[10])

864

865 # ax.legend(range(st,st+s),loc=’center left’, bbox_to_anchor=(1, 0.5))

866 ax.legend(excluded_list,loc=’center left’, bbox_to_anchor=(1, 0.5))

867 ax.set_xlabel("1st TSNE", fontsize=14)

Ref. code: 25656422040086FNZ

54

868 ax.set_ylabel("2nd TSNE", fontsize=14)

869 # ax.set_zlabel("3rd TSNE", fontsize=14)

870 plt.show()

871

872 # use excluded_list as database

873 database = {}

874 for i in excluded_list:

875 database[i] = img_to_encoding(f"img_digitize/{i}_b.png",FRmodel)

876

877 res = {}

878 c = 0

879 FR = 0

880 CA = 0

881 FA = 0

882 IDE = 0

883 for p in [’a’,’c’,’d’]:

884 # for i in range(Start,Stop+1):

885 for i in excluded_list:

886 match = False

887 name = f"{i}_{p}"

888 test_dir = f"img_digitize/{name}.png"

889 encoding = img_to_encoding(test_dir, FRmodel)

890 temp_dist = 10

891 # for j in range(Start,Stop+1):

892 for j in excluded_list:

893 dist = np.linalg.norm(encoding-database[j])

894 c += 1

895 if dist <= temp_dist:

896 temp_dist = dist

897 pre_iden = j

898 if temp_dist > 0.4:

899 FR +=1

900 if pre_iden != i:

901 IDE +=1

902 else:

903 match = True

904 elif temp_dist <= 0.4 and pre_iden == i:

Ref. code: 25656422040086FNZ

55

905 match = True

906 CA +=1

907 elif temp_dist <= 0.4 and pre_iden != i:

908 IDE +=1

909 FA +=1

910 # print(f"{i}_{p}: {match},{pre_iden},{temp_dist}")

911 res[f"{i}_{p}"] = [match,pre_iden,temp_dist]

912 print(c)

913

914 import pandas as pd

915 df=pd.DataFrame.from_dict(res).T

916 TP = len(df.loc[df[0]==True])

917 FP = len(df.loc[df[0]==False])

918 FN = FP

919 TN = c - (TP+FP+FN)

920 # print(f’FP: {FP}, FN: {FN}, TP: {TP}, TN: {TN}, Total: {c}’)

921 acc = (TP + TN)/(TP+FP+TN+FN)*100

922 pre = TP/(TP+FP)*100

923 rec = TP/(TP+FN)*100

924 # print(f’Accuracy: %.2f%% Precision: %.2f%% Recall: %.2f%% ’ %(acc,pre,rec)

)

925 FAR = (FP/(c))*100

926 FRR = (FN/(c))*100

927 # print("FAR = %.3f%% FRR = %.3f%%" %(FAR,FRR))

928

929 CR = c-(FR+CA+FA)

930 print(f"Total Checks = {(CR+CA+FR+FA)}")

931 print(f"Correct Acceptance = {CA} Correct Rejection = {CR}")

932 print(f"False Acceptance = {FA} False Rejection = {FR}")

933 print("FAR = %.2f%% FRR = %.2f%%" %((FA/c)*100,(FR/c)*100))

934 print(f"Top-Rank ID Error = %.2f%%" %((IDE/c)*100))

Ref. code: 25656422040086FNZ

