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ABSTRACT 

 

In the manufacturing process of packaging fluid, there are processes in between 

the assigned producing jobs called ‘changeover’ in which the machine or the production 

line must have an adjustment to prepare for the upcoming job. Therefore, scheduling 

requires optimization to minimize the total production time from the changeover of the 

sequence scheduled. The process is normally executed by a planner with effort spent to 

find the optimal solution with the lowest makespan as fast as possible. This research 

considers the job scheduling problem with sequence-dependent changeover times on a 

single machine to minimize the makespan of the jobs assigned. Different changeover 

types with varied required times will be assumed. To provide an effort improvement 

tool, a mixed integer linear programming (MILP) is developed to compute the optimal 

solution and compared with the human-executed heuristic proposed to find the solution 

with a better computational time in exchange for a non-optimized solution. Up to 71 

jobs, the developed MILP with a tolerance 0.5% takes approximately 60 minutes to find 

the solution. In comparison, the heuristic cannot reduce the computational time until 

scheduling 71 jobs and can reduce the computational time by 87.5%. However, 

compared to the MILP with a tolerance of 5%, it can reduce the computational time and 
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the MILP with a tolerance of 0.5% and can improve the results compared to the heuristic 

at any number of jobs.  

 

Keywords:  Machine scheduling problem, Sequence-dependent setup time, Makespan, 

   Heuristic, Mixed integer linear programming  

Ref. code: 25656522040390QPK



(3) 

 

 

ACKNOWLEDGEMENTS 

 

My horizon in optimization problems has been widening since I was given 

knowledge by my professor, Associate Professor Dr. Jirachai Buddhakulsomsiri. The 

benefit and application of this topic were not clear from my perspective until I work on 

this research. Also, I would like to express my sincere gratitude to my professor for his 

immeasurable patience and feedback on this work that has been pushing me to continue 

my journey on this research. His knowledge and expertise have been essential to deliver 

and improve my work. 

I would also like to express my appreciation to the faculty members at SIIT who 

have supported me since the day I joined this program. Without their help, my study 

life could not be this convenient and constructive in learning. 

Lastly, I am also grateful to my peers in the same batch who consistently 

supported me academically and mentally. This has been my significant impact as 

energy and inspiration for learning. 

 

 

Naphat Ormsapsin   

Ref. code: 25656522040390QPK



(4) 

 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT (1) 

 

ACKNOWLEDGEMENTS (3) 

 

LIST OF TABLES   (6) 

 

LIST OF FIGURES (7) 

 

LIST OF SYMBOLS/ABBREVIATIONS (8) 

 

CHAPTER 1 INTRODUCTION  

1.1 Problem statement 1 

1.2 Objectives of the study 1 

1.3 Overview of research 2 

 

CHAPTER 2 REVIEW OF LITERATURE  3 

2.1 Sequence-dependent job scheduling problem 3 

2.2 Literature with application of MILP on job scheduling 4 

 

CHAPTER 3 METHODOLOGY  7 

3.1 Data preparation 7 

3.1.1 Original production plan 7 

3.1.2 Changeover time calculation logic 9 

3.1.3 Changeover time for each SKU crossover 10 

3.1.4 Setup time 11 

3.2 MILP model 11 

3.3 Excel Open Solver 13 

3.4 Python CPLEX Solver 14 

3.5 Heuristic 15 

Ref. code: 25656522040390QPK



(5) 

 

 

 

CHAPTER 4 RESULTS  18 

4.1 Excel Open Solver 18 

4.2 Python CPLEX Solver 19 

4.3 Heuristic 20 

 

CHAPTER 5 DISCUSSION 21 

 

CHAPTER 6 CONCLUSION 24 

 

REFERENCES 25 

 

APPENDIX  

APPENDIX A 29 

 

BIOGRAPHY 31 

 

  

  

Ref. code: 25656522040390QPK



(6) 

 

 

LIST OF TABLES 

 

Tables  Page 

2.1 Literature review summary 6 

3.1 Changeover time for each changeover type 10 

3.2 Example of changeover time for each job crossover 11 

3.3 MILP model notation 11 

3.4 Example of decision variable Xjk in Excel (Sequence job 1>2>3) 13 

3.5 Example of decision variable C, C0, and Cmax table in Excel 13 

3.6 Left-hand-side of equation 6 table in Excel 14 

3.7 Right-hand-side of equation 6 table in Excel 14 

4.1 Computation time and total setup time results between MILP5 and MILP0.5 19 

4.2 Computation time and total setup time results of heuristic 20 

5.1 Computation time for heuristic, MILP5, and MILP0.5 21 

5.2 Total setup time results for heuristic, MILP5, and MILP0.5 23 

 

 

  

Ref. code: 25656522040390QPK



(7) 

 

 

LIST OF FIGURES 

 

Figures Page 

2.1 Sequence-dependent changeover 4 

3.1 Sample production plan 9 

3.2 Changeover time for SKU crossover in Excel 10 

3.3 Sequence core and filler heuristic 15 

4.1 Excel Open Solver computational results for 10-job problem 18 

4.2 Optimized sequenced plan of 10-job problem by Excel Open Solver 18 

5.1 Computation time for heuristic, MILP5, and MILP0.5 22 

5.2 Total setup time result and %difference from MILP0.5 23  

Ref. code: 25656522040390QPK



(8) 

 

 

LIST OF SYMBOLS/ABBREVIATIONS 

 

Symbols/Abbreviations Terms  

MILP Mixed Integer Linear Programming  

SKU Stock Keeping Unit  

WO Washout  

SHM Shampoo  

CON Conditioner  

LC Line Clearance  

MILP5 MILP With 5% Solution Tolerance  

MILP0.5 MILP With 0.5% Solution Tolerance 

 

 

 

  

Ref. code: 25656522040390QPK



1 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

In manufacturing and service industries, competitive sequencing and scheduling 

are necessary for marketplace survival as a form of decision-making to eliminate loss 

internally as a producer with efficient production and externally to meet customer 

satisfaction (Pinedo, 2008). Optimizing production schedules can eliminate costs and 

elevate productivity for manufacturers. For instance, an optimal production schedule 

can lead to the shortest makespan (time required to produce all jobs assigned). As a 

result, manufacturers will pay the least fixed cost compared to the number of jobs 

assigned, and they will be able to produce more jobs with the same available time. 

Another example is that an optimal production schedule can provide the lowest cost of 

production. Assuming a fluid filling process where some bulk products can be filled 

consecutively without washing required and some that cannot, the optimal sequence 

can be the one with the lowest amount of washing process to minimize cost. 

 

1.1 Problem statement 

In a system with one fluid filling machine in a package with different sizes, 

which requires changeover when size is changed between production batches, an 

optimal solution of a sequence must provide the least makespan. Changeover time for 

each changeover is presumably given. 

 

1.2 Objectives of the study 

1. To create mixed integer linear programming to solve for the optimized solution with 

minimized makespan 

2. To generate the sequencing solution with the least makespan  

3. To develop the heuristic to solve the problem 

4. To compare the computational time and the solution results between the MILP and 

the heuristic 
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1.3 Overview of Research 

Overall, this research attempts to solve the production scheduling problem of a 

single machine system with varied changeover time to minimize the total makespan of 

the sequenced solution. The tool utilized will be the application of MILP and the 

heuristic to find the optimal solution from the given set of jobs. Therefore, the main 

delivery is the development of the MILP model and heuristic based on the literature 

review and the application of these methods in this designed system. In addition, from 

the solution delivery, the performance of the tools used will be analyzed to evaluate the 

number of jobs that the model can feasibly deliver the results.  
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CHAPTER 2 

REVIEW OF LITERATURE 

 

The review of literature in this study emphasizes the previous work related to 

the use of MILP in scheduling problems. Each literature will have a different MILP 

model. Furthermore, heuristics were proposed for the improvement as there were large 

job amount constraints that the MILP model cannot handle. The objective can vary 

among different research similarly to the amount and system of the machine in the 

system. Parameters such as due date and release date can be added into consideration.  

 

2.1 Sequence-dependent job scheduling problem 

Sequence-dependent job scheduling was first published by Gilmore and 

Gomory (Gilmore & Gomory, 1964) who utilized the traveling salesman problem 

concept to solve the problem with total setup cost as an objective. To optimize the 

solution to the same problem, Presby and Wolfson (Presby & Wolfson, 1967) used 

MILP under the constraint of a small problem size. There is a review of Allahverdi et 

al. (Allahverdi et al., 1999) which classified multiple literature based on the sequence 

dependency and batch system and provides the objective measure of each literature for 

solving scheduling problems. In this case, the sequence dependency is how each job 

relates to each other when they are placed adjacent. The changeover or setup time or 

cost will vary if the sequence is dependent and vice versa for a sequence-independent 

system as shown in Figure 1. Moreover, jobs can be classified further if they can be 

grouped without changeover required or not. If there is no changeover required, the 

system can be called a batch system, while the system will be called non-batch in case 

a changeover is needed for each job. This literature review guides through the 

mentioned configuration in different manufacturing systems including single machines, 

parallel machines, flow shops, and job shops. This literature was updated in 2006 and 

2015 with consideration made on setup times and costs by Allahverdi et al. (Allahverdi 

et al., 2008) and Allahverdi (Allahverdi, 2015). The updated review further classified 

the setup into a normal setup between each job and family setup where jobs can be 

grouped into the same family with minimal to no setup required. The results of different 

approaches were compared by performance in each environment. Meanwhile, Yang 
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(Yang, 1999) also published literature with the intent to compare scheduling involving 

setup times in different dimensions including (i) job vs. class (family) setup (ii) 

sequence-dependent vs. sequence-independent (iii) separable vs. inseparable setups 

where separable means the setup of the next job can be performed during the time when 

the machine is idle. 

 

Figure 2.1 Sequence-dependent changeover 

 

2.2 Literature with application of MILP on job scheduling 

The first work found was from Vélez-Gallego et al. (Vélez-Gallego et al., 2016) 

with MILP developed to solve job scheduling for a single machine with arbitrary release 

dates and sequence-dependent setup times to minimize the makespan. Since the 

problem is nondeterministic polynomial hard, a beam search technique is proposed for 

searching high-performance solutions with fast computation. Bianco (Bianco et al., 

1988) also developed a MILP model to minimize the makespan of a single machine 

system with sequence dependence and anticipatory setup times. A heuristic algorithm 

of the upper bound, lower bound, and dominance criteria was proposed. Kelly and 

Zyngier (Kelly & Zyngier, 2007) also presented a MILP model to minimize the cost of 

the sequence-dependent changeover for uniform discrete-time scheduling problems 

using memory operation logic variables. This can be applied to both batch and non-

batch setups. Yalaoui and Nguyen (Yalaoui & Quy Nguyen, 2021) created a graph-

based and sequence-based MILP model with a parallel machine with sequence-

dependent setup times and release dates to minimize the makespan. Choobineh et al. 
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(Choobineh et al., 2006) also formulated the MILP model on sequence-dependent setup 

times on a single machine as well as developing an m-objective tabu search algorithm 

for sequencing n jobs. Antonioli et al. (Antonioli et al., 2022) created the MILP model 

with sequence-dependent setup times to minimize the total tardiness of the scheduling. 

With hybrid metaheuristics, the performance measures were evaluated and compared 

among proposed methods using the relative deviation index and success rate. Kucukkoc 

(Kucukkoc, 2019) used MILP in additive manufacturing machine scheduling problems 

to minimize makespan with various machine configurations. The calculation was 

performed in the CPLEX solver. For the flow shop system, Meng et al. (Meng et al., 

2019) utilized the MILP with parallel configuration to minimize the makespan. 8 MILP 

models were formulated and tested to solve under sequence-dependent setup times, no-

wait, and with blocking. Al-harkan and Qamhan (Al-harkan & Qamhan, 2019) created 

the MILP model under parallel machines with non-zero arbitrary release dates and non-

anticipatory sequence-dependent setup times to minimize the makespan. A hybrid 

metaheuristic based on variable neighborhood search hybrid and simulated annealing 

was used for better computational time. Mousakhani (Mousakhani, 2013) performed 

MILP under a job shop system with sequence-dependent setup times to minimize 

tardiness. A metaheuristic under iterated local search was newly proposed and then 

perform comparative analyses with tabu search and variable neighborhood search 

algorithm previously mentioned. Naderi and Salmasi (Naderi & Salmasi, 2012) 

emphasized the application of MILP in sequence-dependent group scheduling in a flow 

shop system to minimize the makespan. In addition, a metaheuristic hybridizing genetic 

and simulated annealing algorithm was developed to compare the performance with the 

MILP solution. Xiao and Zheng (Xiao & Zheng, 2010) used MILP in the manufacturing 

and assembling processes of semiconductors, where the system is a two-stage hybrid 

flow shop with a sequence-dependent setup to minimize makespan. A heuristic was 

created with the rule designed by the authors. Lastly, Kongsri and Buddhakulsomsiri 

(Kongsri & Buddhakulsomsiri, 2020) developed a MILP on parallel machine 

scheduling with sequence dependence to minimize makespan and tardiness. 
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Table 2.1 Literature review summary 

 

 

  

  

Objective System Parameter Setup type 

Author Heuristic 
Make 

span 

Tardines

s 
Cost Profit Single Parallel Serial 

job 

shop 

Due 

date 

Release 

date 

Anticip

atory 

Non-

anticipa

tory 

(Vélez-

Gallego et 

al., 2016) 

Beam 

search 
x    x     x  x 

(Kelly & 

Zyngier, 

2007) 

   x  x x x    x  

(Yalaoui 

& Quy 

Nguyen, 

2021) 

Branch-

and-bound 

algorithm 

x     x    x  x 

(Choobin

eh et al., 

2006) 

Tabu search x x   x    x   x 

(Antoniol

i et al., 

2022) 

Order-

Scheduling 

Modified 

Due-Date 

heuristic 

x x    x   x   x 

(Kucukko

c, 2019) 
 x    x x x  x  x  

(Meng et 

al., 2019) 
 x     x      x 

(Al-

harkan & 

Qamhan, 

2019) 

Two-stage 

hybrid 

variable 

neighborho

od search 

hybrid and 

simulated 

annealing 

x     x    x  x 

(Mousakh

ani, 2013) 
Tabu search x x      x x   x 

(Naderi & 

Salmasi, 

2012) 

Genetic and 

simulated 

annealing 

algorithm 

x      x     x 

(Xiao & 

Zheng, 

2010) 

Bottleneck 

station 
x      x   x  x 

(Kongsri 

& 

Buddhaku

lsomsiri, 

2020) 

Predetermin

ed batch 

size based 

on business 

and assign 

high 

volume 

product to 

least 

flexible 

machine 

x x    x   x   x 

(Bianco et 

al., 1988) 

Upper, 

lower 

bound and 

dominance 

criteria 

x    x     x x x 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Data preparation 

3.1.1 Original production plan 

Initially, the original production plan is obtained from the actual production 

plan. The production plan contains multiple components as follows and related to 

shampoo/conditioner bottle filling industry. 

• Process order number 

• Start date and time 

• End date and time  

• SKU 

• Planned production amount 

• Bulk material (filling fluid) 

• Product group 

• Package size 

• Processing time 

• ID (1 to n number of jobs) 
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Figure 3.1 Sample production plan 

3.1.2 Changeover time calculation logic 

To determine the changeover time between each job connection from the 

original production plan, a changeover time determination logic is provided below. The 

flowchart indicates the condition required to determine the changeover type. SKU will 

be compared between the job before and the job after and the characteristics of both 

jobs will result in different changeover types. 

1. Do they have the same product group? 

1.1. If yes, do they use the same bulk material? 

1.1.1. If yes, are they the same SKU? 

1.1.1.1. If yes, then we must perform “line clearance” to change the 

process order. 

1.1.1.2. If not, then we must perform “1D changeover” to change artwork 

of the package. 

1.1.2. If no and the job before is conditioner, then we need to perform 

“washout conditioner” 

1.1.3. If no and the job before is shampoo, then we need to perform “washout 

shampoo” 

1.2. If not, do they have the same package size? 

1.2.1. If yes and the job before is shampoo, then we need to perform “washout 

shampoo” 

1.2.2. If yes and the job before is conditioner, then we need to perform 

“washout conditioner” 
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1.2.3. If no and they have the same bulk material, then we need to perform a 

“3D changeover without washout” 

1.2.4. If no and they have different bulk material where bulk before is 

conditioner, we must perform “washout conditioner” 

1.2.5. If no and they have different bulk material where bulk before is 

shampoo, we must perform “washout shampoo” 

Table 3.1 Changeover time for each changeover type 

Changeover type Time (min) 

3D WO SHM 25 

3D WO CON 30 

3D no WO 19 

1D 14 

LC 10 

WO SHM 17 

WO CON 21 

 

3.1.3 Changeover time for each SKU crossover 

In Excel where the Excel Open Solver will be used, figure 3 was created to 

allow data connection between SKU of job before and job after for changeover time 

determination. 

 

Figure 3.2 Changeover time for SKU crossover in Excel 
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3.1.4 Setup time  

Setup time will be included as one of the parameters for the MILP model 

constraint. Therefore, the table was created and pulled data from the original production 

plan and changeover (setup) time from the changeover time for SKU crossover Excel 

table. 

Table 3.2 Example of changeover time for each job crossover 

From\To Job 1 Job 2 Job 3 

Job 1 15 min 16 min 14 min 

Job 2 20 min 12 min 11 min 

Job 3 17 min 19 min 5 min 

 

3.2 MILP Model 

Table 3.3 MILP model notation 

Index sets 

𝑗, 𝑘 ∈ 𝑁 = {1, 2, . . . , 𝑛} 

Indices of jobs, where N denotes the set 

of jobs. j means a job that goes first, and 

k is a job that goes after job j 

𝑁0 = {0, 1, 2, . . ., 𝑛} 
N0 denotes the set of jobs including a 

dummy job 

Parameters 

𝑆𝑗𝑘 

The setup time (changeover) of change 

from job j to job k (In this system, the 

makespan is equivalent to the total setup 

time as there is only a single machine) 

Decision variables 

𝑋𝑗𝑘 
1 if job k is scheduled after job j, or 0 

otherwise 

𝐶𝑗 The completion time of job j 

𝐶𝑚𝑎𝑥 
Maximum completion time among job j 

(makespan) 
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Objective function:  

min Cmax  (3.1) 

{Minimize makespan (Cmax)} 

Constraints:  

∑ 𝑋𝑗𝑘 = 1 𝑗∈𝑁0:𝑗≠𝑘 ∀𝑘 ∈ 𝑁  (3.2) 

{Each job has 1 job before} 

 

∑ 𝑋𝑗𝑘 = 1 𝑘∈𝑁0:𝑗≠𝑘 ∀𝑗 ∈ 𝑁 (3.3)  

{Each job has 1 job after} 

 

∑ 𝑋𝑗𝑘𝑘∈𝑁0:𝑗≠𝑘 − ∑ 𝑋ℎ𝑗ℎ∈𝑁0:ℎ≠𝑗 =  0 ∀𝑗 ∈ 𝑁 (3.4)  

{Job flow balance: The job cannot turn back to produce the already done one} 

 

∑ 𝑋0𝑘𝑘∈𝑁 = 1 (3.5) 

{Specify first job of the machine must have only one job selected} 

 

𝐶𝑘 − 𝐶𝑗 + 𝑉(1 − 𝑋𝑗𝑘) ≥ 𝑆𝑗𝑘∀𝑗 ∈ 𝑁0, ∀𝑘 ∈ 𝑁: 𝑗 ≠ 𝑘 (3.6)  

{Ensure completion time of job after is equal to completion time of job before + setup 

time of job after. V is a large constant in case the job j and k are not connected} 

 

𝐶0 = 0 (3.7)  

{Set dummy job completion time to zero} 

 

𝑋𝑗𝑘 ∈ {0,1}∀𝑗 ∈ 𝑁0, ∀𝑘 ∈ 𝑁: 𝑗 ≠ 𝑘 (3.8)  

{Define binary decision variable} 

 

𝐶𝑗 ≥ 0 ∀𝑗 ∈ 𝑁 (3.9)  

{Positive completion time} 

 

𝐶𝑚𝑎𝑥 = ∑ (𝑋𝑗𝑘 × 𝑆𝑗𝑘)𝑗,𝑘∈𝑁0,  (3.10)  

{Total completion time is equal to sum of product of changeover time and Xjk} 
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3.3 Excel Open Solver 

Apart from the data prepared in Excel, here is the MILP model preparation in 

Excel for Excel Open Solver. Firstly, a decision variable 𝑋𝑗𝑘  table was created as 

shown in table 4 below. The row and column header are the same list of jobs from the 

original production plan. The values for the decision variable are then used for other 

related constraints.   

Table 3.4 Example of decision variable 𝑋𝑗𝑘 in Excel (Sequence job 1>2>3) 

j\k Dummy job Job 1 Job 2 Job 3 ∑ 𝑿𝒋𝒌 

𝒌∈𝑵𝟎:𝒋≠𝒌

 

Dummy job 0 1 0 0 1 

Job 1 0 0 1 0 1 

Job 2 0 0 0 1 1 

Job 3 1 0 0 0 1 

∑ 𝑿𝒋𝒌 

𝒋∈𝑵𝟎:𝒋≠𝒌

 1 1 1 1  

 

Second, completion time is also considered the decision variable in the model. 

Table 5 shown will be designated for the location of decision variables 𝐶, 𝐶0, 𝐶𝑚𝑎𝑥 .  

Table 3.5 Example of decision variable 𝐶, 𝐶0, 𝐶𝑚𝑎𝑥 table in Excel 

Job Completion time (min) 

Dummy job 

(j or k = 0) 
0 

Job 1 20 

Job 2 10 

Job 3 30 

Makespan 

(𝐶𝑚𝑎𝑥) 
30 

 

Third, a matrix for constraint equation 6 was created to compare the summation 

of changeover time in the prepared data section.  
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Table 3.6 Left-hand-side of equation (3.6) table in Excel 

j\k Dummy job Job 1 Job 2 Job 3 

Dummy job 𝑉 + 𝐶0 − 𝐶0 𝑉 + 𝐶1 − 𝐶0 𝑉 + 𝐶2 − 𝐶0 𝑉 + 𝐶3 − 𝐶0 

Job 1 𝑉 + 𝐶0 − 𝐶1 𝑉 + 𝐶1 − 𝐶1 𝑉 + 𝐶2 − 𝐶1 𝑉 + 𝐶3 − 𝐶1 

Job 2 𝑉 + 𝐶0 − 𝐶2 𝑉 + 𝐶1 − 𝐶2 𝑉 + 𝐶2 − 𝐶2 𝑉 + 𝐶3 − 𝐶2 

Job 3 𝑉 + 𝐶0 − 𝐶3 𝑉 + 𝐶1 − 𝐶3 𝑉 + 𝐶2 − 𝐶3 𝑉 + 𝐶3 − 𝐶3 

 

Table 3.7 Right-hand-side of equation 6 table in Excel 

j\k Dummy job Job 1 Job 2 Job 3 

Dummy job 0 min 0 min 0 min 0 min 

Job 1 0 min 15 min 16 min 14 min 

Job 2 0 min 20 min 12 min 11 min 

Job 3 0 min 17 min 19 min 5 min 

 

Finally, the decision variables, objective function, and constraints were inputted 

in the Open Solver and the optimization results can be obtained. The MILP will 

calculate the completion time for each job and reconcile it into constraint 6 to find the 

optimal solution. The sequence results will be validated by manual calculation to 

confirm that the output measure is correlated with the sequenced plan proposed. 

 

3.4 Python CPLEX Solver 

To improve the computational time of the MILP model even further, a CPLEX 

solver using Python was done. Firstly, it is required to import the Pandas library to 

import necessary data from Excel and Docplex to utilize CPLEX solver for MILP 

optimization. There are global variables including n (number of jobs + 1), N (index set 

of jobs), N0 (index set of jobs including dummy job), V (big M for constraint equation 

6), and A (matrix of Xjk). The decision variables were set to include Xjk (binary), C 

(stored in N0 with positive value), and Cmax (denoted as z). The objective function is set 

to minimize z. And like Excel solver, the constraints were added to the model. 

Moreover, the optimal solution tolerance is varied between 5% and 0.5% for 

computational time comparison.   
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3.5 Heuristic 

Using the Excel file, the heuristic is developed based on the logic of trying to 

group the same package size together (as changing size has the highest changeover 

time) and then trying to connect the same bulk material across different sizes as much 

as possible. The logic will try to find the “cores” or the structure of the sequencing by 

knowing which size should be produced first or later from connecting the same bulk 

together (same bulk means there is no washing process, which will save changeover 

time). Then fill the one that is not the sequence core with the “fillers”.  

 

Figure 3.3 Sequence core and filler heuristic 

 

1. Preparation phase (Prepare data for the heuristic) 

a. Concatenate the bulk material code and the size to create a unique 

combination of bulk and size. 

b. Highlight duplicated bulk material using conditional formatting function: 

This is for Excel to filter the duplication by color. 

2. Filtering phase (Filter the filler out for later scheduling) 

a. Filter to have only the duplicated bulk material. The unduplicated bulk 

material will be stored as pool 1 for later scheduling. 

b. Filter the duplicated concatenation of bulk material and size. Then sort 

ascending. 
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c. Create column “unique?” to check if the previous concatenation is similar 

to the current row or not. Starting from 0, if the previous concatenation is 

similar to the current row, add 1 from it. This point will not be correct if the 

concatenation column was not sorted before. 

d. Filter only the “unique?” column = 0 to obtain a set of only unique 

concatenations of bulk material and size. The others are stored as pool 2 for 

later scheduling. 

e. From number 2d, filter the duplicated bulk material and sort ascending by 

size and then by bulk material respectively. For the job with unique bulk 

material, stored as pool 3 for later scheduling. 

3. Sequencing phase (sequence the core after filtering fillers out) 

a. Starting from the smallest size for the smallest bulk number, is there any 

similar bulk in the next size? 

i. If yes, then connect the similar bulk together 

ii. If no, then go to number 3b 

b. Consider the next bulk for the size. Is there any bulk that can connect to the 

next size? 

i. If yes, then connect the similar bulk together 

ii. If no, then go to number 3c 

c. Consider the next size. Is there any bulk that can connect to the next size? 

i. If yes, then connect the similar bulk together and move to the next 

size 

ii. If no, then go to number 3d 

d. Is all the job connected? 

i. If yes, then go to number 3e 

ii. If no, then repeat the process starting from number 3a 

e. Is there > 1 connection group? 

i. If yes, starting from the smallest size of any end, search for the 

unconnected job for the connection with the end of another group 

starting from the smallest size first 

ii. If no, then go to number 4 

4. Filling phase (fill the fillers after finishing the sequence core) 
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a. From the sequence core, combine unconnected jobs with jobs from pools 1, 

2, and 3 together. Then sort ascending by size then bulk. 

b. From the sequence core, the connected job will indicate “the end gap 

between package size. Fill the jobs from number 4a into the middle gap of 

each size by size 

c. If there is a job with a size not connected, fill in the end 
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CHAPTER 4 

RESULTS 

 

4.1 Excel Open Solver 

Initially, the production scheduling problem using the MILP model was 

executed on Excel Open Solver. The computational time is 38696 seconds (10.8 hrs) 

and the makespan result is 1039.45 minutes as the optimized solution for 10 jobs. The 

computational time and sequenced plan are shown in Figures 5 and 6 respectively.  

 

Figure 4.1 Excel Open Solver computational results for 10-job problem 

 

 

Figure 4.2 Optimized sequenced plan of 10-job problem by Excel Open Solver 
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4.2 Python CPLEX Solver 

As it is noticeable that Excel Open Solver requires an excessive amount of time 

to perform optimization on the 10-job problem. Thus, the CPLEX solver is used to 

compare results with the Excel Open Solver. The results can be seen in Table 8. It can 

be observed that the CPLEX solver significantly improves the calculation time from 

the Excel Open Solver, with the 10-job problem using only 1 second while Excel Open 

Solver uses 10.8 hours.  

Table 4.1 Computation time and total setup time results between MILP5 and 

MILP0.5 

 #job 
Computational time (s) Total setup time (min) 

MILP5 MILP0.5 MILP5 MILP0.5 

10 1 1 177 177 

20 1 1 343 339 

30 1 2 489 489 

40 1 6 663 650 

50 5 75 782 761 

60 5 224 905 880 

71 18 3492 1033 1008 

 

Comparing MILP with solution tolerance of 5% and 0.5%, as expected, the 

computational time for MILP5 is better than MILP0.5, but the solution has a higher 

total setup time. 

With this result, the results from the CPLEX solver will be further compared 

with the developing heuristics to improve the computation further while compensating 

for the degraded output. Meanwhile, it is also worth considering a method to improve 

the CPLEX solver. 
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4.3 Heuristic 

From Table 9, the results showed increasing computational time as the number 

of jobs increases. For the total setup time, it will be compared with other methods in 

the later section.  

Table 4.2 Computation time and total setup time results of heuristic 

 #job Computational time (s) Total setup time (min) 

10 78 182 

20 230 353 

30 320 503 

40 393 670 

50 385 791 

60 410 914 

71 438 1053 
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CHAPTER 5 

DISCUSSION 

 

In terms of computation time between the heuristic, MILP5, and MILP0.5, the 

MILP5 reflects the fastest computation. Within the frame of job numbers of 10 to 71, 

the computation time for MILP0.5 increases exponentially as almost an hour is needed 

for optimizing 71 jobs. This is because of the narrower tolerance window of MILP0.5 

allowing it to accept the solution quicker. For the heuristic, even though it has the 

slowest computation compared to those from MILP. The characteristic of computation 

time inclination is linear as there may certain points where it can compute quicker than 

MILP5.  

Table 5.1 Computation time for heuristic, MILP5, and MILP0.5 

 Computation time (seconds) 

#jobs Heuristic 
Heuristic 

%diff 
MILP5 

MILP5 

%diff 
MILP0.5 V 

10 78 7700.0% 1 0.0% 1 506 

20 230 22900.0% 1 0.0% 1 966 

30 320 15900.0% 1 -50.0% 2 1412 

40 393 6450.0% 1 -83.3% 6 1923 

50 385 413.3% 5 -93.3% 75 2276 

60 410 83.0% 5 -97.8% 224 2903 

71 438 -87.5% 18 -99.5% 3492 3302 
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Figure 5.1 Computation time for heuristic, MILP5, and MILP0.5  

 

In terms of the solution results, a clear trend can be seen as MILP0.5 can give 

the best solution followed by MILP5 and the heuristic developed at any number of jobs. 

In addition, there is no clear trend of the %difference compared to optimized answers 

from MILP0.5. From this, it depends on the business to choose the suitable method for 

job scheduling, whether it wants solution optimality, cost, or human effort. Currently, 

with this problem setup, the MILP has the best proposal as it provides the optimal 

solution with adjustable tolerance based on preference. However, if the CPLEX cost is 

the concern or more jobs need to be sequenced, then a study must be conducted further 

to determine the performance of the proposed heuristic at a larger job set. 
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Table 5.2 Total setup time results for heuristic, MILP5, and MILP0.5 

 
Total setup time (minute) 

#jobs Heuristic Heuristic %diff MILP5 MILP5 %diff MILP0.5 V 

10 182 2.8% 177 0.0% 177 506 

20 353 4.1% 343 1.2% 339 966 

30 503 2.9% 489 0.0% 489 1412 

40 670 3.1% 663 2.0% 650 1923 

50 791 3.9% 782 2.8% 761 2276 

60 914 3.9% 905 2.8% 880 2903 

71 1053 4.5% 1033 2.5% 1008 3302 

 

 
Figure 5.2 Total setup time result and %difference from MILP0.5 
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CHAPTER 6 

CONCLUSION 

 

In this study, the production scheduling of a job for a single shampoo/ 

conditioner filling machine is optimized using various proposed tools including the 

Excel MILP solver, the CPLEX MILP python solver, and the heuristic developed to 

minimize the makespan or the total production time for the manufacturing process. 

Firstly, the MILP model was developed and executed using an Excel solver, and the 

computation time is infeasible. Therefore, the CPLEX solver is used instead. Then the 

heuristic is developed to compare with the MILP model to provide an alternative 

method to reduce computation time and software cost. As a result, the MILP with a 

solution tolerance of 0.5% provides the most optimized solution. However, the MILP 

with a solution tolerance of 5% provides the fastest computation. For the heuristic, even 

though it has the worst results in terms of the solution optimality and the computation 

time, the computation time though has a linear trend. This means that, at a larger 

problem size, the heuristic may be computed faster than MILP. 
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APPENDIX A 

PYTHON CPLEX SOLVER CODE 

 
import pandas as pd 

from docplex.mp.model import Model 

#variable setting 

n=29 

N=[i for i in range(1,n)] 

N0=[0]+N 

V=1412 

A=[(j,k)for j in N0 for k in N0 if j!=k] 

#print(' N=',N)#for debugging purpose 

#print(' N0=',N0)#for debugging purpose 

#print(' A=',A)#for debugging purpose 

#import data from excel 

SP = pd.read_excel (io='./Project final.xlsx',sheet_name='pythonsetup',index_col=0) 

print(SP) #for debugging purpose 

#print(' SP[1,1]=',SP.iloc[1,1])#for debugging purpose 

 

#CPLEX model 

md1=Model('MILP') 

 

#step3 add decision variables 

x=md1.binary_var_dict(A,name='x') 

C=md1.continuous_var_list(N0,name='C',lb=0) 

z=md1.continuous_var(name='z',lb=0) 

 

#add MILP solution tolerance 

md1.parameters.mip.tolerances.mipgap.set(float(0.005))    

 

#objective function 

md1.minimize(z) 

 

#constraint 1: 

for k in N: 

        md1.add_constraint(md1.sum(x[j,k] for j in N0 if j!=k)==1) 

#constraint 2: 

for j in N: 

        md1.add_constraint(md1.sum(x[j,k] for k in N0 if j!=k)==1) 

#constraint 3: 

for j in N: 

        md1.add_constraint((md1.sum(x[j,k] for k in N0 if j!=k)-md1.sum(x[h,j] for h in 

N0 if h!=j)==0)) 

#constraint 4: 

md1.add_constraint(md1.sum(x[0,k] for k in N)==1) 

#constraint 5: 
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for j in N0: 

        for k in N: 

                if j!=k: 

                        md1.add_constraint(C[k]-C[j]+V*(1-x[j,k])>=SP.iloc[j,k]) 

#constraint 6: 

md1.add_constraint(C[0]==0) 

 

#constraint 7: 

for j in N: 

        md1.add_constraint(C[j]>=0) 

 

#constrain 8: 

md1.add_constraint(z == md1.sum(SP.iloc[j,k]*x[j,k] for j,k in A)) 

 

print(md1.export_to_string()) 

#step6 solve the instance 

solution=md1.solve(log_output=True) 

print(solution) 
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