

APPLICATION OF MIXED INTEGER LINEAR

PROGRAMMING IN OPTIMIZATION OF SEQUENCE-

DEPENDENT FLUID PACKAGING PRODUCTION

SCHEDULING

BY

NAPHAT ORMSAPSIN

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY

CHAIN SYSTEMS ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2022

Ref. code: 25656522040390QPK

(1)

Independent Study Title APPLICATION OF MIXED INTEGER

LINEAR PROGRAMMING IN

OPTIMIZATION OF SEQUENCE-

DEPENDENT FLUID PACKAGING

PRODUCTION SCHEDULING

Author Naphat Ormsapsin

Degree Master of Engineering (Logistics and Supply

Chain Systems Engineering)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Advisor Associate Professor Jirachai Buddhakulsomsiri,

Ph.D.

Academic Years 2022

ABSTRACT

In the manufacturing process of packaging fluid, there are processes in between

the assigned producing jobs called ‘changeover’ in which the machine or the production

line must have an adjustment to prepare for the upcoming job. Therefore, scheduling

requires optimization to minimize the total production time from the changeover of the

sequence scheduled. The process is normally executed by a planner with effort spent to

find the optimal solution with the lowest makespan as fast as possible. This research

considers the job scheduling problem with sequence-dependent changeover times on a

single machine to minimize the makespan of the jobs assigned. Different changeover

types with varied required times will be assumed. To provide an effort improvement

tool, a mixed integer linear programming (MILP) is developed to compute the optimal

solution and compared with the human-executed heuristic proposed to find the solution

with a better computational time in exchange for a non-optimized solution. Up to 71

jobs, the developed MILP with a tolerance 0.5% takes approximately 60 minutes to find

the solution. In comparison, the heuristic cannot reduce the computational time until

scheduling 71 jobs and can reduce the computational time by 87.5%. However,

compared to the MILP with a tolerance of 5%, it can reduce the computational time and

Ref. code: 25656522040390QPK

(2)

the MILP with a tolerance of 0.5% and can improve the results compared to the heuristic

at any number of jobs.

Keywords: Machine scheduling problem, Sequence-dependent setup time, Makespan,

 Heuristic, Mixed integer linear programming

Ref. code: 25656522040390QPK

(3)

ACKNOWLEDGEMENTS

My horizon in optimization problems has been widening since I was given

knowledge by my professor, Associate Professor Dr. Jirachai Buddhakulsomsiri. The

benefit and application of this topic were not clear from my perspective until I work on

this research. Also, I would like to express my sincere gratitude to my professor for his

immeasurable patience and feedback on this work that has been pushing me to continue

my journey on this research. His knowledge and expertise have been essential to deliver

and improve my work.

I would also like to express my appreciation to the faculty members at SIIT who

have supported me since the day I joined this program. Without their help, my study

life could not be this convenient and constructive in learning.

Lastly, I am also grateful to my peers in the same batch who consistently

supported me academically and mentally. This has been my significant impact as

energy and inspiration for learning.

Naphat Ormsapsin

Ref. code: 25656522040390QPK

(4)

TABLE OF CONTENTS

 Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (3)

LIST OF TABLES (6)

LIST OF FIGURES (7)

LIST OF SYMBOLS/ABBREVIATIONS (8)

CHAPTER 1 INTRODUCTION

1.1 Problem statement 1

1.2 Objectives of the study 1

1.3 Overview of research 2

CHAPTER 2 REVIEW OF LITERATURE 3

2.1 Sequence-dependent job scheduling problem 3

2.2 Literature with application of MILP on job scheduling 4

CHAPTER 3 METHODOLOGY 7

3.1 Data preparation 7

3.1.1 Original production plan 7

3.1.2 Changeover time calculation logic 9

3.1.3 Changeover time for each SKU crossover 10

3.1.4 Setup time 11

3.2 MILP model 11

3.3 Excel Open Solver 13

3.4 Python CPLEX Solver 14

3.5 Heuristic 15

Ref. code: 25656522040390QPK

(5)

CHAPTER 4 RESULTS 18

4.1 Excel Open Solver 18

4.2 Python CPLEX Solver 19

4.3 Heuristic 20

CHAPTER 5 DISCUSSION 21

CHAPTER 6 CONCLUSION 24

REFERENCES 25

APPENDIX

APPENDIX A 29

BIOGRAPHY 31

Ref. code: 25656522040390QPK

(6)

LIST OF TABLES

Tables Page

2.1 Literature review summary 6

3.1 Changeover time for each changeover type 10

3.2 Example of changeover time for each job crossover 11

3.3 MILP model notation 11

3.4 Example of decision variable Xjk in Excel (Sequence job 1>2>3) 13

3.5 Example of decision variable C, C0, and Cmax table in Excel 13

3.6 Left-hand-side of equation 6 table in Excel 14

3.7 Right-hand-side of equation 6 table in Excel 14

4.1 Computation time and total setup time results between MILP5 and MILP0.5 19

4.2 Computation time and total setup time results of heuristic 20

5.1 Computation time for heuristic, MILP5, and MILP0.5 21

5.2 Total setup time results for heuristic, MILP5, and MILP0.5 23

Ref. code: 25656522040390QPK

(7)

LIST OF FIGURES

Figures Page

2.1 Sequence-dependent changeover 4

3.1 Sample production plan 9

3.2 Changeover time for SKU crossover in Excel 10

3.3 Sequence core and filler heuristic 15

4.1 Excel Open Solver computational results for 10-job problem 18

4.2 Optimized sequenced plan of 10-job problem by Excel Open Solver 18

5.1 Computation time for heuristic, MILP5, and MILP0.5 22

5.2 Total setup time result and %difference from MILP0.5 23

Ref. code: 25656522040390QPK

(8)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

MILP Mixed Integer Linear Programming

SKU Stock Keeping Unit

WO Washout

SHM Shampoo

CON Conditioner

LC Line Clearance

MILP5 MILP With 5% Solution Tolerance

MILP0.5 MILP With 0.5% Solution Tolerance

Ref. code: 25656522040390QPK

1

CHAPTER 1

INTRODUCTION

In manufacturing and service industries, competitive sequencing and scheduling

are necessary for marketplace survival as a form of decision-making to eliminate loss

internally as a producer with efficient production and externally to meet customer

satisfaction (Pinedo, 2008). Optimizing production schedules can eliminate costs and

elevate productivity for manufacturers. For instance, an optimal production schedule

can lead to the shortest makespan (time required to produce all jobs assigned). As a

result, manufacturers will pay the least fixed cost compared to the number of jobs

assigned, and they will be able to produce more jobs with the same available time.

Another example is that an optimal production schedule can provide the lowest cost of

production. Assuming a fluid filling process where some bulk products can be filled

consecutively without washing required and some that cannot, the optimal sequence

can be the one with the lowest amount of washing process to minimize cost.

1.1 Problem statement

In a system with one fluid filling machine in a package with different sizes,

which requires changeover when size is changed between production batches, an

optimal solution of a sequence must provide the least makespan. Changeover time for

each changeover is presumably given.

1.2 Objectives of the study

1. To create mixed integer linear programming to solve for the optimized solution with

minimized makespan

2. To generate the sequencing solution with the least makespan

3. To develop the heuristic to solve the problem

4. To compare the computational time and the solution results between the MILP and

the heuristic

Ref. code: 25656522040390QPK

2

1.3 Overview of Research

Overall, this research attempts to solve the production scheduling problem of a

single machine system with varied changeover time to minimize the total makespan of

the sequenced solution. The tool utilized will be the application of MILP and the

heuristic to find the optimal solution from the given set of jobs. Therefore, the main

delivery is the development of the MILP model and heuristic based on the literature

review and the application of these methods in this designed system. In addition, from

the solution delivery, the performance of the tools used will be analyzed to evaluate the

number of jobs that the model can feasibly deliver the results.

Ref. code: 25656522040390QPK

3

CHAPTER 2

REVIEW OF LITERATURE

The review of literature in this study emphasizes the previous work related to

the use of MILP in scheduling problems. Each literature will have a different MILP

model. Furthermore, heuristics were proposed for the improvement as there were large

job amount constraints that the MILP model cannot handle. The objective can vary

among different research similarly to the amount and system of the machine in the

system. Parameters such as due date and release date can be added into consideration.

2.1 Sequence-dependent job scheduling problem

Sequence-dependent job scheduling was first published by Gilmore and

Gomory (Gilmore & Gomory, 1964) who utilized the traveling salesman problem

concept to solve the problem with total setup cost as an objective. To optimize the

solution to the same problem, Presby and Wolfson (Presby & Wolfson, 1967) used

MILP under the constraint of a small problem size. There is a review of Allahverdi et

al. (Allahverdi et al., 1999) which classified multiple literature based on the sequence

dependency and batch system and provides the objective measure of each literature for

solving scheduling problems. In this case, the sequence dependency is how each job

relates to each other when they are placed adjacent. The changeover or setup time or

cost will vary if the sequence is dependent and vice versa for a sequence-independent

system as shown in Figure 1. Moreover, jobs can be classified further if they can be

grouped without changeover required or not. If there is no changeover required, the

system can be called a batch system, while the system will be called non-batch in case

a changeover is needed for each job. This literature review guides through the

mentioned configuration in different manufacturing systems including single machines,

parallel machines, flow shops, and job shops. This literature was updated in 2006 and

2015 with consideration made on setup times and costs by Allahverdi et al. (Allahverdi

et al., 2008) and Allahverdi (Allahverdi, 2015). The updated review further classified

the setup into a normal setup between each job and family setup where jobs can be

grouped into the same family with minimal to no setup required. The results of different

approaches were compared by performance in each environment. Meanwhile, Yang

Ref. code: 25656522040390QPK

4

(Yang, 1999) also published literature with the intent to compare scheduling involving

setup times in different dimensions including (i) job vs. class (family) setup (ii)

sequence-dependent vs. sequence-independent (iii) separable vs. inseparable setups

where separable means the setup of the next job can be performed during the time when

the machine is idle.

Figure 2.1 Sequence-dependent changeover

2.2 Literature with application of MILP on job scheduling

The first work found was from Vélez-Gallego et al. (Vélez-Gallego et al., 2016)

with MILP developed to solve job scheduling for a single machine with arbitrary release

dates and sequence-dependent setup times to minimize the makespan. Since the

problem is nondeterministic polynomial hard, a beam search technique is proposed for

searching high-performance solutions with fast computation. Bianco (Bianco et al.,

1988) also developed a MILP model to minimize the makespan of a single machine

system with sequence dependence and anticipatory setup times. A heuristic algorithm

of the upper bound, lower bound, and dominance criteria was proposed. Kelly and

Zyngier (Kelly & Zyngier, 2007) also presented a MILP model to minimize the cost of

the sequence-dependent changeover for uniform discrete-time scheduling problems

using memory operation logic variables. This can be applied to both batch and non-

batch setups. Yalaoui and Nguyen (Yalaoui & Quy Nguyen, 2021) created a graph-

based and sequence-based MILP model with a parallel machine with sequence-

dependent setup times and release dates to minimize the makespan. Choobineh et al.

Ref. code: 25656522040390QPK

5

(Choobineh et al., 2006) also formulated the MILP model on sequence-dependent setup

times on a single machine as well as developing an m-objective tabu search algorithm

for sequencing n jobs. Antonioli et al. (Antonioli et al., 2022) created the MILP model

with sequence-dependent setup times to minimize the total tardiness of the scheduling.

With hybrid metaheuristics, the performance measures were evaluated and compared

among proposed methods using the relative deviation index and success rate. Kucukkoc

(Kucukkoc, 2019) used MILP in additive manufacturing machine scheduling problems

to minimize makespan with various machine configurations. The calculation was

performed in the CPLEX solver. For the flow shop system, Meng et al. (Meng et al.,

2019) utilized the MILP with parallel configuration to minimize the makespan. 8 MILP

models were formulated and tested to solve under sequence-dependent setup times, no-

wait, and with blocking. Al-harkan and Qamhan (Al-harkan & Qamhan, 2019) created

the MILP model under parallel machines with non-zero arbitrary release dates and non-

anticipatory sequence-dependent setup times to minimize the makespan. A hybrid

metaheuristic based on variable neighborhood search hybrid and simulated annealing

was used for better computational time. Mousakhani (Mousakhani, 2013) performed

MILP under a job shop system with sequence-dependent setup times to minimize

tardiness. A metaheuristic under iterated local search was newly proposed and then

perform comparative analyses with tabu search and variable neighborhood search

algorithm previously mentioned. Naderi and Salmasi (Naderi & Salmasi, 2012)

emphasized the application of MILP in sequence-dependent group scheduling in a flow

shop system to minimize the makespan. In addition, a metaheuristic hybridizing genetic

and simulated annealing algorithm was developed to compare the performance with the

MILP solution. Xiao and Zheng (Xiao & Zheng, 2010) used MILP in the manufacturing

and assembling processes of semiconductors, where the system is a two-stage hybrid

flow shop with a sequence-dependent setup to minimize makespan. A heuristic was

created with the rule designed by the authors. Lastly, Kongsri and Buddhakulsomsiri

(Kongsri & Buddhakulsomsiri, 2020) developed a MILP on parallel machine

scheduling with sequence dependence to minimize makespan and tardiness.

Ref. code: 25656522040390QPK

6

Table 2.1 Literature review summary

Objective System Parameter Setup type

Author Heuristic
Make

span

Tardines

s
Cost Profit Single Parallel Serial

job

shop

Due

date

Release

date

Anticip

atory

Non-

anticipa

tory

(Vélez-

Gallego et

al., 2016)

Beam

search
x x x x

(Kelly &

Zyngier,

2007)

 x x x x x

(Yalaoui

& Quy

Nguyen,

2021)

Branch-

and-bound

algorithm

x x x x

(Choobin

eh et al.,

2006)

Tabu search x x x x x

(Antoniol

i et al.,

2022)

Order-

Scheduling

Modified

Due-Date

heuristic

x x x x x

(Kucukko

c, 2019)
 x x x x x x

(Meng et

al., 2019)
 x x x

(Al-

harkan &

Qamhan,

2019)

Two-stage

hybrid

variable

neighborho

od search

hybrid and

simulated

annealing

x x x x

(Mousakh

ani, 2013)
Tabu search x x x x x

(Naderi &

Salmasi,

2012)

Genetic and

simulated

annealing

algorithm

x x x

(Xiao &

Zheng,

2010)

Bottleneck

station
x x x x

(Kongsri

&

Buddhaku

lsomsiri,

2020)

Predetermin

ed batch

size based

on business

and assign

high

volume

product to

least

flexible

machine

x x x x x

(Bianco et

al., 1988)

Upper,

lower

bound and

dominance

criteria

x x x x x

Ref. code: 25656522040390QPK

7

CHAPTER 3

METHODOLOGY

3.1 Data preparation

3.1.1 Original production plan

Initially, the original production plan is obtained from the actual production

plan. The production plan contains multiple components as follows and related to

shampoo/conditioner bottle filling industry.

• Process order number

• Start date and time

• End date and time

• SKU

• Planned production amount

• Bulk material (filling fluid)

• Product group

• Package size

• Processing time

• ID (1 to n number of jobs)

Ref. code: 25656522040390QPK

8

Ref. code: 25656522040390QPK

9

Figure 3.1 Sample production plan

3.1.2 Changeover time calculation logic

To determine the changeover time between each job connection from the

original production plan, a changeover time determination logic is provided below. The

flowchart indicates the condition required to determine the changeover type. SKU will

be compared between the job before and the job after and the characteristics of both

jobs will result in different changeover types.

1. Do they have the same product group?

1.1. If yes, do they use the same bulk material?

1.1.1. If yes, are they the same SKU?

1.1.1.1. If yes, then we must perform “line clearance” to change the

process order.

1.1.1.2. If not, then we must perform “1D changeover” to change artwork

of the package.

1.1.2. If no and the job before is conditioner, then we need to perform

“washout conditioner”

1.1.3. If no and the job before is shampoo, then we need to perform “washout

shampoo”

1.2. If not, do they have the same package size?

1.2.1. If yes and the job before is shampoo, then we need to perform “washout

shampoo”

1.2.2. If yes and the job before is conditioner, then we need to perform

“washout conditioner”

Ref. code: 25656522040390QPK

10

1.2.3. If no and they have the same bulk material, then we need to perform a

“3D changeover without washout”

1.2.4. If no and they have different bulk material where bulk before is

conditioner, we must perform “washout conditioner”

1.2.5. If no and they have different bulk material where bulk before is

shampoo, we must perform “washout shampoo”

Table 3.1 Changeover time for each changeover type

Changeover type Time (min)

3D WO SHM 25

3D WO CON 30

3D no WO 19

1D 14

LC 10

WO SHM 17

WO CON 21

3.1.3 Changeover time for each SKU crossover

In Excel where the Excel Open Solver will be used, figure 3 was created to

allow data connection between SKU of job before and job after for changeover time

determination.

Figure 3.2 Changeover time for SKU crossover in Excel

Ref. code: 25656522040390QPK

11

3.1.4 Setup time

Setup time will be included as one of the parameters for the MILP model

constraint. Therefore, the table was created and pulled data from the original production

plan and changeover (setup) time from the changeover time for SKU crossover Excel

table.

Table 3.2 Example of changeover time for each job crossover

From\To Job 1 Job 2 Job 3

Job 1 15 min 16 min 14 min

Job 2 20 min 12 min 11 min

Job 3 17 min 19 min 5 min

3.2 MILP Model

Table 3.3 MILP model notation

Index sets

𝑗, 𝑘 ∈ 𝑁 = {1, 2, . . . , 𝑛}

Indices of jobs, where N denotes the set

of jobs. j means a job that goes first, and

k is a job that goes after job j

𝑁0 = {0, 1, 2, . . ., 𝑛}
N0 denotes the set of jobs including a

dummy job

Parameters

𝑆𝑗𝑘

The setup time (changeover) of change

from job j to job k (In this system, the

makespan is equivalent to the total setup

time as there is only a single machine)

Decision variables

𝑋𝑗𝑘
1 if job k is scheduled after job j, or 0

otherwise

𝐶𝑗 The completion time of job j

𝐶𝑚𝑎𝑥
Maximum completion time among job j

(makespan)

Ref. code: 25656522040390QPK

12

Objective function:

min Cmax (3.1)

{Minimize makespan (Cmax)}

Constraints:

∑ 𝑋𝑗𝑘 = 1 𝑗∈𝑁0:𝑗≠𝑘 ∀𝑘 ∈ 𝑁 (3.2)

{Each job has 1 job before}

∑ 𝑋𝑗𝑘 = 1 𝑘∈𝑁0:𝑗≠𝑘 ∀𝑗 ∈ 𝑁 (3.3)

{Each job has 1 job after}

∑ 𝑋𝑗𝑘𝑘∈𝑁0:𝑗≠𝑘 − ∑ 𝑋ℎ𝑗ℎ∈𝑁0:ℎ≠𝑗 = 0 ∀𝑗 ∈ 𝑁 (3.4)

{Job flow balance: The job cannot turn back to produce the already done one}

∑ 𝑋0𝑘𝑘∈𝑁 = 1 (3.5)

{Specify first job of the machine must have only one job selected}

𝐶𝑘 − 𝐶𝑗 + 𝑉(1 − 𝑋𝑗𝑘) ≥ 𝑆𝑗𝑘∀𝑗 ∈ 𝑁0, ∀𝑘 ∈ 𝑁: 𝑗 ≠ 𝑘 (3.6)

{Ensure completion time of job after is equal to completion time of job before + setup

time of job after. V is a large constant in case the job j and k are not connected}

𝐶0 = 0 (3.7)

{Set dummy job completion time to zero}

𝑋𝑗𝑘 ∈ {0,1}∀𝑗 ∈ 𝑁0, ∀𝑘 ∈ 𝑁: 𝑗 ≠ 𝑘 (3.8)

{Define binary decision variable}

𝐶𝑗 ≥ 0 ∀𝑗 ∈ 𝑁 (3.9)

{Positive completion time}

𝐶𝑚𝑎𝑥 = ∑ (𝑋𝑗𝑘 × 𝑆𝑗𝑘)𝑗,𝑘∈𝑁0, (3.10)

{Total completion time is equal to sum of product of changeover time and Xjk}

Ref. code: 25656522040390QPK

13

3.3 Excel Open Solver

Apart from the data prepared in Excel, here is the MILP model preparation in

Excel for Excel Open Solver. Firstly, a decision variable 𝑋𝑗𝑘 table was created as

shown in table 4 below. The row and column header are the same list of jobs from the

original production plan. The values for the decision variable are then used for other

related constraints.

Table 3.4 Example of decision variable 𝑋𝑗𝑘 in Excel (Sequence job 1>2>3)

j\k Dummy job Job 1 Job 2 Job 3 ∑ 𝑿𝒋𝒌

𝒌∈𝑵𝟎:𝒋≠𝒌

Dummy job 0 1 0 0 1

Job 1 0 0 1 0 1

Job 2 0 0 0 1 1

Job 3 1 0 0 0 1

∑ 𝑿𝒋𝒌

𝒋∈𝑵𝟎:𝒋≠𝒌

 1 1 1 1

Second, completion time is also considered the decision variable in the model.

Table 5 shown will be designated for the location of decision variables 𝐶, 𝐶0, 𝐶𝑚𝑎𝑥 .

Table 3.5 Example of decision variable 𝐶, 𝐶0, 𝐶𝑚𝑎𝑥 table in Excel

Job Completion time (min)

Dummy job

(j or k = 0)
0

Job 1 20

Job 2 10

Job 3 30

Makespan

(𝐶𝑚𝑎𝑥)
30

Third, a matrix for constraint equation 6 was created to compare the summation

of changeover time in the prepared data section.

Ref. code: 25656522040390QPK

14

Table 3.6 Left-hand-side of equation (3.6) table in Excel

j\k Dummy job Job 1 Job 2 Job 3

Dummy job 𝑉 + 𝐶0 − 𝐶0 𝑉 + 𝐶1 − 𝐶0 𝑉 + 𝐶2 − 𝐶0 𝑉 + 𝐶3 − 𝐶0

Job 1 𝑉 + 𝐶0 − 𝐶1 𝑉 + 𝐶1 − 𝐶1 𝑉 + 𝐶2 − 𝐶1 𝑉 + 𝐶3 − 𝐶1

Job 2 𝑉 + 𝐶0 − 𝐶2 𝑉 + 𝐶1 − 𝐶2 𝑉 + 𝐶2 − 𝐶2 𝑉 + 𝐶3 − 𝐶2

Job 3 𝑉 + 𝐶0 − 𝐶3 𝑉 + 𝐶1 − 𝐶3 𝑉 + 𝐶2 − 𝐶3 𝑉 + 𝐶3 − 𝐶3

Table 3.7 Right-hand-side of equation 6 table in Excel

j\k Dummy job Job 1 Job 2 Job 3

Dummy job 0 min 0 min 0 min 0 min

Job 1 0 min 15 min 16 min 14 min

Job 2 0 min 20 min 12 min 11 min

Job 3 0 min 17 min 19 min 5 min

Finally, the decision variables, objective function, and constraints were inputted

in the Open Solver and the optimization results can be obtained. The MILP will

calculate the completion time for each job and reconcile it into constraint 6 to find the

optimal solution. The sequence results will be validated by manual calculation to

confirm that the output measure is correlated with the sequenced plan proposed.

3.4 Python CPLEX Solver

To improve the computational time of the MILP model even further, a CPLEX

solver using Python was done. Firstly, it is required to import the Pandas library to

import necessary data from Excel and Docplex to utilize CPLEX solver for MILP

optimization. There are global variables including n (number of jobs + 1), N (index set

of jobs), N0 (index set of jobs including dummy job), V (big M for constraint equation

6), and A (matrix of Xjk). The decision variables were set to include Xjk (binary), C

(stored in N0 with positive value), and Cmax (denoted as z). The objective function is set

to minimize z. And like Excel solver, the constraints were added to the model.

Moreover, the optimal solution tolerance is varied between 5% and 0.5% for

computational time comparison.

Ref. code: 25656522040390QPK

15

3.5 Heuristic

Using the Excel file, the heuristic is developed based on the logic of trying to

group the same package size together (as changing size has the highest changeover

time) and then trying to connect the same bulk material across different sizes as much

as possible. The logic will try to find the “cores” or the structure of the sequencing by

knowing which size should be produced first or later from connecting the same bulk

together (same bulk means there is no washing process, which will save changeover

time). Then fill the one that is not the sequence core with the “fillers”.

Figure 3.3 Sequence core and filler heuristic

1. Preparation phase (Prepare data for the heuristic)

a. Concatenate the bulk material code and the size to create a unique

combination of bulk and size.

b. Highlight duplicated bulk material using conditional formatting function:

This is for Excel to filter the duplication by color.

2. Filtering phase (Filter the filler out for later scheduling)

a. Filter to have only the duplicated bulk material. The unduplicated bulk

material will be stored as pool 1 for later scheduling.

b. Filter the duplicated concatenation of bulk material and size. Then sort

ascending.

Ref. code: 25656522040390QPK

16

c. Create column “unique?” to check if the previous concatenation is similar

to the current row or not. Starting from 0, if the previous concatenation is

similar to the current row, add 1 from it. This point will not be correct if the

concatenation column was not sorted before.

d. Filter only the “unique?” column = 0 to obtain a set of only unique

concatenations of bulk material and size. The others are stored as pool 2 for

later scheduling.

e. From number 2d, filter the duplicated bulk material and sort ascending by

size and then by bulk material respectively. For the job with unique bulk

material, stored as pool 3 for later scheduling.

3. Sequencing phase (sequence the core after filtering fillers out)

a. Starting from the smallest size for the smallest bulk number, is there any

similar bulk in the next size?

i. If yes, then connect the similar bulk together

ii. If no, then go to number 3b

b. Consider the next bulk for the size. Is there any bulk that can connect to the

next size?

i. If yes, then connect the similar bulk together

ii. If no, then go to number 3c

c. Consider the next size. Is there any bulk that can connect to the next size?

i. If yes, then connect the similar bulk together and move to the next

size

ii. If no, then go to number 3d

d. Is all the job connected?

i. If yes, then go to number 3e

ii. If no, then repeat the process starting from number 3a

e. Is there > 1 connection group?

i. If yes, starting from the smallest size of any end, search for the

unconnected job for the connection with the end of another group

starting from the smallest size first

ii. If no, then go to number 4

4. Filling phase (fill the fillers after finishing the sequence core)

Ref. code: 25656522040390QPK

17

a. From the sequence core, combine unconnected jobs with jobs from pools 1,

2, and 3 together. Then sort ascending by size then bulk.

b. From the sequence core, the connected job will indicate “the end gap

between package size. Fill the jobs from number 4a into the middle gap of

each size by size

c. If there is a job with a size not connected, fill in the end

Ref. code: 25656522040390QPK

18

CHAPTER 4

RESULTS

4.1 Excel Open Solver

Initially, the production scheduling problem using the MILP model was

executed on Excel Open Solver. The computational time is 38696 seconds (10.8 hrs)

and the makespan result is 1039.45 minutes as the optimized solution for 10 jobs. The

computational time and sequenced plan are shown in Figures 5 and 6 respectively.

Figure 4.1 Excel Open Solver computational results for 10-job problem

Figure 4.2 Optimized sequenced plan of 10-job problem by Excel Open Solver

Ref. code: 25656522040390QPK

19

4.2 Python CPLEX Solver

As it is noticeable that Excel Open Solver requires an excessive amount of time

to perform optimization on the 10-job problem. Thus, the CPLEX solver is used to

compare results with the Excel Open Solver. The results can be seen in Table 8. It can

be observed that the CPLEX solver significantly improves the calculation time from

the Excel Open Solver, with the 10-job problem using only 1 second while Excel Open

Solver uses 10.8 hours.

Table 4.1 Computation time and total setup time results between MILP5 and

MILP0.5

 #job
Computational time (s) Total setup time (min)

MILP5 MILP0.5 MILP5 MILP0.5

10 1 1 177 177

20 1 1 343 339

30 1 2 489 489

40 1 6 663 650

50 5 75 782 761

60 5 224 905 880

71 18 3492 1033 1008

Comparing MILP with solution tolerance of 5% and 0.5%, as expected, the

computational time for MILP5 is better than MILP0.5, but the solution has a higher

total setup time.

With this result, the results from the CPLEX solver will be further compared

with the developing heuristics to improve the computation further while compensating

for the degraded output. Meanwhile, it is also worth considering a method to improve

the CPLEX solver.

Ref. code: 25656522040390QPK

20

4.3 Heuristic

From Table 9, the results showed increasing computational time as the number

of jobs increases. For the total setup time, it will be compared with other methods in

the later section.

Table 4.2 Computation time and total setup time results of heuristic

 #job Computational time (s) Total setup time (min)

10 78 182

20 230 353

30 320 503

40 393 670

50 385 791

60 410 914

71 438 1053

Ref. code: 25656522040390QPK

21

CHAPTER 5

DISCUSSION

In terms of computation time between the heuristic, MILP5, and MILP0.5, the

MILP5 reflects the fastest computation. Within the frame of job numbers of 10 to 71,

the computation time for MILP0.5 increases exponentially as almost an hour is needed

for optimizing 71 jobs. This is because of the narrower tolerance window of MILP0.5

allowing it to accept the solution quicker. For the heuristic, even though it has the

slowest computation compared to those from MILP. The characteristic of computation

time inclination is linear as there may certain points where it can compute quicker than

MILP5.

Table 5.1 Computation time for heuristic, MILP5, and MILP0.5

 Computation time (seconds)

#jobs Heuristic
Heuristic

%diff
MILP5

MILP5

%diff
MILP0.5 V

10 78 7700.0% 1 0.0% 1 506

20 230 22900.0% 1 0.0% 1 966

30 320 15900.0% 1 -50.0% 2 1412

40 393 6450.0% 1 -83.3% 6 1923

50 385 413.3% 5 -93.3% 75 2276

60 410 83.0% 5 -97.8% 224 2903

71 438 -87.5% 18 -99.5% 3492 3302

Ref. code: 25656522040390QPK

22

Figure 5.1 Computation time for heuristic, MILP5, and MILP0.5

In terms of the solution results, a clear trend can be seen as MILP0.5 can give

the best solution followed by MILP5 and the heuristic developed at any number of jobs.

In addition, there is no clear trend of the %difference compared to optimized answers

from MILP0.5. From this, it depends on the business to choose the suitable method for

job scheduling, whether it wants solution optimality, cost, or human effort. Currently,

with this problem setup, the MILP has the best proposal as it provides the optimal

solution with adjustable tolerance based on preference. However, if the CPLEX cost is

the concern or more jobs need to be sequenced, then a study must be conducted further

to determine the performance of the proposed heuristic at a larger job set.

0

100

200

300

400

500

10 20 30 40 50 60 71

Se
co

n
d

s

#jobs

Computation time

Heuristic MILP5 MILP0.5

Ref. code: 25656522040390QPK

23

Table 5.2 Total setup time results for heuristic, MILP5, and MILP0.5

Total setup time (minute)

#jobs Heuristic Heuristic %diff MILP5 MILP5 %diff MILP0.5 V

10 182 2.8% 177 0.0% 177 506

20 353 4.1% 343 1.2% 339 966

30 503 2.9% 489 0.0% 489 1412

40 670 3.1% 663 2.0% 650 1923

50 791 3.9% 782 2.8% 761 2276

60 914 3.9% 905 2.8% 880 2903

71 1053 4.5% 1033 2.5% 1008 3302

Figure 5.2 Total setup time result and %difference from MILP0.5

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

0

200

400

600

800

1000

1200

10 20 30 40 50 60 71

%
d

if
fe

re
n

ce
 f

ro
m

 M
IL

P
0

.5

M
in

u
te

s

#jobs

Total setup time

Heuristic MILP5 MILP0.5

Heuristic %difference MILP5 %difference

Ref. code: 25656522040390QPK

24

CHAPTER 6

CONCLUSION

In this study, the production scheduling of a job for a single shampoo/

conditioner filling machine is optimized using various proposed tools including the

Excel MILP solver, the CPLEX MILP python solver, and the heuristic developed to

minimize the makespan or the total production time for the manufacturing process.

Firstly, the MILP model was developed and executed using an Excel solver, and the

computation time is infeasible. Therefore, the CPLEX solver is used instead. Then the

heuristic is developed to compare with the MILP model to provide an alternative

method to reduce computation time and software cost. As a result, the MILP with a

solution tolerance of 0.5% provides the most optimized solution. However, the MILP

with a solution tolerance of 5% provides the fastest computation. For the heuristic, even

though it has the worst results in terms of the solution optimality and the computation

time, the computation time though has a linear trend. This means that, at a larger

problem size, the heuristic may be computed faster than MILP.

Ref. code: 25656522040390QPK

25

REFERENCES

Al-harkan, I. M., & Qamhan, A. A. (2019). Optimize unrelated parallel machines

scheduling problems with multiple limited additional resources, sequence-

dependent setup times and release date constraints. IEEE Access, 7, 171533–

171547. https://doi.org/10.1109/access.2019.2955975

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with

setup times/costs. European Journal of Operational Research, 246(2), 345–

378. https://doi.org/10.1016/j.ejor.2015.04.004

Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A review of

scheduling research involving setup considerations. Omega, 27(2), 219–239.

https://doi.org/10.1016/s0305-0483(98)00042-5

Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2008). A survey

of scheduling problems with setup times or costs. European Journal of

Operational Research, 187(3), 985–1032.

https://doi.org/10.1016/j.ejor.2006.06.060

Antonioli, M. P., Rodrigues, C. D., & Prata, B. de. (2022). Minimizing total

tardiness for the order scheduling problem with sequence-dependent setup

times using hybrid matheuristics. International Journal of Industrial

Engineering Computations, 13(2), 223–236.

https://doi.org/10.5267/j.ijiec.2021.11.002

Bianco, L., Ricciardelli, S., Rinaldi, G., & Sassano, A. (1988). Scheduling tasks

with sequence-dependent processing times. Naval Research Logistics, 35(2),

177–184. https://doi.org/10.1002/1520-6750(198804)35:2<177::aid-

nav3220350203>3.0.co;2-v

Choobineh, F. F., Mohebbi, E., & Khoo, H. (2006). A multi-objective Tabu

Search for a single-machine scheduling problem with sequence-dependent

setup times. European Journal of Operational Research, 175(1), 318–337.

https://doi.org/10.1016/j.ejor.2005.04.038

Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a one state-variable

machine: A solvable case of the traveling salesman problem. Operations

Ref. code: 25656522040390QPK

26

Research, 12(5), 655–679. https://doi.org/10.1287/opre.12.5.655

Kelly, J. D., & Zyngier, D. (2007). An improved MILP modeling of sequence-

dependent switchovers for discrete-time scheduling problems. Industrial

& Engineering Chemistry Research, 46(14), 4964–4973.

https://doi.org/10.1021/ie061572g

Kongsri, P., & Buddhakulsomsiri, J. (2020). A mixed integer programming

model for unrelated parallel machine scheduling problem with sequence

dependent setup time to minimize makespan and total tardiness. 2020 IEEE

7th International Conference on Industrial Engineering and Applications

(ICIEA). https://doi.org/10.1109/iciea49774.2020.9102086

Kucukkoc, I. (2019). MILP models to minimise makespan in additive manufacturing

machine scheduling problems. Computers & Operations Research, 105,

58–67. https://doi.org/10.1016/j.cor.2019.01.006

Meng, L., Zhang, C., Shao, X., Zhang, B., Ren, Y., & Lin, W. (2019). More

MILP models for hybrid flow shop scheduling problem and its extended

problems. International Journal of Production Research, 58(13), 3905–3930.

https://doi.org/10.1080/00207543.2019.1636324

Mousakhani, M. (2013). Sequence-dependent setup time flexible job shop scheduling

problem to minimise total tardiness. International Journal of Production

Research, 51(12), 3476–3487. https://doi.org/10.1080/00207543.2012.746480

Naderi, B., & Salmasi, N. (2012). Permutation flowshops in group scheduling

with sequence-dependent setup times. European J. of Industrial Engineering,

6(2), 177. https://doi.org/10.1504/ejie.2012.045604

Pinedo, M. (2008). Scheduling: Theory, algorithms, and systems. Prentice Hall.

Presby, J. T., & Wolfson, M. L. (1967). An algorithm for solving job sequencing

problems. Management Science, 13(8).

https://doi.org/10.1287/mnsc.13.8.b454

Vélez-Gallego, M. C., Maya, J., & Montoya-Torres, J. R. (2016). A beam search

heuristic for scheduling a single machine with release dates and sequence

dependent setup times to minimize the makespan. Computers &

Operations Research, 73, 132–140. https://doi.org/10.1016/j.cor.2016.04.009

Xiao, J., & Zheng, L. (2010). A MILP-based batch scheduling for two-stage

Ref. code: 25656522040390QPK

27

hybrid flowshop with sequence-dependent setups in semiconductor assembly

and test manufacturing. 2010 IEEE International Conference on Automation

Science and Engineering. https://doi.org/10.1109/coase.2010.5584514

Yalaoui, F., & Quy Nguyen, N. (2021). Identical machine scheduling problem

with sequence-dependent setup times: MILP formulations computational

study. American Journal of Operations Research, 11(01), 15–34.

https://doi.org/10.4236/ajor.2021.111002

Yang, W.-H. (1999). Survey of scheduling research involving Setup Times.

International Journal of Systems Science, 30(2), 143–155.

https://doi.org/10.1080/002077299292498

Ref. code: 25656522040390QPK

28

APPENDIX

Ref. code: 25656522040390QPK

29

APPENDIX A

PYTHON CPLEX SOLVER CODE

import pandas as pd

from docplex.mp.model import Model

#variable setting

n=29

N=[i for i in range(1,n)]

N0=[0]+N

V=1412

A=[(j,k)for j in N0 for k in N0 if j!=k]

#print(' N=',N)#for debugging purpose

#print(' N0=',N0)#for debugging purpose

#print(' A=',A)#for debugging purpose

#import data from excel

SP = pd.read_excel (io='./Project final.xlsx',sheet_name='pythonsetup',index_col=0)

print(SP) #for debugging purpose

#print(' SP[1,1]=',SP.iloc[1,1])#for debugging purpose

#CPLEX model

md1=Model('MILP')

#step3 add decision variables

x=md1.binary_var_dict(A,name='x')

C=md1.continuous_var_list(N0,name='C',lb=0)

z=md1.continuous_var(name='z',lb=0)

#add MILP solution tolerance

md1.parameters.mip.tolerances.mipgap.set(float(0.005))

#objective function

md1.minimize(z)

#constraint 1:

for k in N:

 md1.add_constraint(md1.sum(x[j,k] for j in N0 if j!=k)==1)

#constraint 2:

for j in N:

 md1.add_constraint(md1.sum(x[j,k] for k in N0 if j!=k)==1)

#constraint 3:

for j in N:

 md1.add_constraint((md1.sum(x[j,k] for k in N0 if j!=k)-md1.sum(x[h,j] for h in

N0 if h!=j)==0))

#constraint 4:

md1.add_constraint(md1.sum(x[0,k] for k in N)==1)

#constraint 5:

Ref. code: 25656522040390QPK

30

for j in N0:

 for k in N:

 if j!=k:

 md1.add_constraint(C[k]-C[j]+V*(1-x[j,k])>=SP.iloc[j,k])

#constraint 6:

md1.add_constraint(C[0]==0)

#constraint 7:

for j in N:

 md1.add_constraint(C[j]>=0)

#constrain 8:

md1.add_constraint(z == md1.sum(SP.iloc[j,k]*x[j,k] for j,k in A))

print(md1.export_to_string())

#step6 solve the instance

solution=md1.solve(log_output=True)

print(solution)

Ref. code: 25656522040390QPK

31

BIOGRAPHY

Name Naphat Ormsapsin

 Education 2018: Bachelor of Engineering (Chemical

Engineering)

 Sirindhorn International Institute of Technology

Thammasat University

Ref. code: 25656522040390QPK

