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ABSTRACT

Let G be a graph without isolated vertices. A total dominating set of G is

a set D ⊆ V(G) such that every vertex of G is adjacent to at least one vertex in D. A

paired dominating set of G is a total dominating set whose induced subgraph contains

a perfect matching. The total (paired) domination number of G is the minimum cardi-

nality of a total (paired) dominating set of G. The γ-total (γ-paired) dominating graph

of G is the graph whose vertex set contains all minimum total (paired) dominating sets

of G, and two vertices of this graph are adjacent if they differ by exactly one vertex.

In this dissertation, we determine the total domination numbers and the paired domina-

tion numbers of some cylinders, some wheel related graphs, windmill graphs, lollipop

graphs, umbrella graphs, and coconut graphs. We also determine the γ-total dominating

graphs and the γ-paired dominating graphs of some families of graphs including some

graphs mentioned above.

Keywords: total domination number, paired domination number, total dominating graph,

paired dominating graph, gamma graph
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CHAPTER 1

INTRODUCTION

Graph theory, which is a branch of discrete mathematics, concerns with the

relationship between vertices and edges. It has been used in our daily life, for example,

using GPS to determine a shortest or quickest route (destinations and their connections

are considered as vertices and edges, respectively) and designing a bus route to pick up

students to deliver to the school (each bus stop and each route are viewed as a vertex

and an edge, respectively, so a Hamiltonian path represents one of the possible routes

containing all bus stops).

Graph theory has been used as a tool to solve mathematical problems for

years. It is also widely used to study and model various applications in different areas

such as chemistry, biology, computer science, etc. In particular, during the pandemic,

graph can be used to find the possible spread of COVID-19 [11, 43]. Consequently,

graph theory has become more popular as people realized its significant advantages.

We first introduce several fundamental concepts in graph theory such as

neighborhoods, subgraphs, graph operations, and isomorphisms. Moreover, we provide

the definitions for various families of graphs, including paths, cycles, complete graphs,

bipartite graphs, and complete bipartite graphs. For notations and terminologies, we in

general follow [66].

Formally, a graph G comprises a vertex set V(G), an edge set E(G), and a

relation that associates with each edge two vertices called its endpoints. If an edge e

has endpoints u and v, then we denote that by e = uv; moreover, u and v are said to be

adjacent, and u and e are said to be incident. We write |V(G)| and |E(G)| for the number

of vertices and edges, respectively, in G.

An edge is called a loop if its endpoints are the same. Edges are said to be

multiple if they have the same endpoints. A graph with no loops or multiple edges is

said to be simple.

Let G be a simple graph. The degree of a vertex v ∈ V(G), denoted by d(v),
is the number of edges incident to v. An isolated vertex is a vertex with degree zero. A

vertex of degree one is called a leaf, and a vertex adjacent to a leaf is called a support

vertex.
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For any vertex v ∈ V(G), the open neighborhood of v is N(v) = {u ∈
V(G) : uv ∈ E(G)}, and the closed neighborhood of v is N[v] = N(v) ∪ {v}. For

a set D ⊆ V(G), the open neighborhood of D is N(D) = ∪
v∈D N(v), and the closed

neighborhood of D is N[D] = N(D) ∪ D.

A matching in a graph is a set of edges with no shared endpoints. A perfect

matching in a graph is a matching such that every vertex of the graph is incident to

exactly one edge in the matching.

A graph H is a subgraph of a graph G, denoted by H ⊆ G, if V(H) ⊆ V(G)
and E(H) ⊆ E(G). For a set D ⊆ V(G), the induced subgraph G[D] is the graph whose

vertex set is D and whose egde set consists of all edges in E(G) that have both endpoints

in D. The induced subgraph G[D] may also be called the subgraph of G induced by D.

A spanning subgraph of a graph G is a subgraph with vertex set V(G).
A path with p vertices, denoted by Pp, is a sequence of p vertices where

any two consecutive vertices in the sequence are adjacent in the graph. The first and the

last vertices in the sequence are called the endpoints. A cycle with p vertices, denoted

by Cp, is the graph obtained from a path Pp by adding the edge joining two endpoints.

We use Pp = (v1, v2, . . . , vp) to represent the path with V(Pp) = {v1, v2, . . . , vp} and

E(Pp) = {vivi+1 : 1 ≤ i ≤ p − 1}. Similarly, Cp = (v1, v2, . . . , vp) represents the cycle

with V(Cp) = {v1, v2, . . . , vp} and E(Cp) = {vivi+1 : 1 ≤ i ≤ p − 1} ∪ {vpv1}.
A graph G is connected if each pair of vertices in G belongs to a path;

otherwise, G is disconnected. A component of a graph G is a connected subgraph of

G that is not contained in any other connected subgraph of G. An odd component of a

graph is a component with odd vertices.

Let G−D be the graph obtained from G by deleting all vertices in D ⊆ V(G)
and edges incident with them.

The complement of a graph G is the graph G such that V(G) = V(G) and

two distinct vertices of G are adjacent if they are not adjacent in G.

The union of graphs G1,G2, . . . ,Gp, denoted by G1 ∪ G2 ∪ · · · ∪ Gp, is the

graph with the vertex set
∪p

i=1 V(Gi) and the edge set
∪p

i=1 E(Gi).
The disjoint union of graphs G and H, denoted by G + H, is the graph

obtained by taking the union of G and H with disjoint vertex sets. In general, pG is the

graph consisting of p pairwise disjoint copies of G.
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The join of graphs G and H, denoted by G ∨ H, is the graph obtained from

the disjoint union G + H by adding the edge uv for all u ∈ V(G) and v ∈ V(H).
The cartesian product of graphs G and H, denoted by G□H, is the graph

with the vertex set V(G)×V(H), and two vertices (u, v) and (u′, v′) are adjacent in G□H

if either u = u′ and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G). If G and H are both paths

(respectively, both cycles), then G□H is called a grid (respectively, a toroidal mesh). If

one of G and H is a path and the other is a cycle, then G□H is called a cylinder.

Let G and H be graphs. An isomorphism from G to H is a bijection f :

V(G) → V(H) such that any two vertices u and v are adjacent in G if and only if f (u)
and f (v) are adjacent in H. If there exists an isomorphism from G to H, then G is

isomorphic to H, denoted by G � H.

A complete graphKp with p vertices is the graph whose vertices are pairwise

adjacent.

A fan graph Fp,q is the join Kp ∨ Pq. If p = 1, then the vertex of degree q is

called the central vertex.

A bipartite graph is the graph whose vertex set can be partitioned into two

independent sets (sets of pairwise nonadjacent vertices) called partite sets.

A complete bipartite graph is a bipartite graph such that two vertices are

adjacent if they are in different partite sets. We use Kp,q to denote a complete bipartite

graph with partite sets of cardinalities p and q.

A double star Sp,q is the graph obtained from K1,p and K1,q by adding the

edge joining the two support vertices.

We next discuss domination and its variations in graphs, which are a wide

and well-studied field of graph theory. A dominating set of G is a set D ⊆ V(G) such

that every vertex not in D is adjacent to some vertex in D. The domination number γ(G)
of G is the minimum cardinality of a dominating set of G. A dominating set of G with

cardinality γ(G) is called a γ(G)-set. Domination was introduced formally by Berge [3]

in 1958, and the domination number of a graph was referred to as the “coefficient of

external stability”. In 1962, Ore [54] first used the term “domination number”. For

detailed literature on domination in graphs, see Haynes et al. [25, 26]. Applications of

dominating sets include security models where each vertex in a dominating set repre-

sents the location of a guard capable of protecting every vertex it dominates.
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In addition to usual domination, there are many well-known domination

parameters such as total domination and paired domination, which are studied in this

dissertation. A set D ⊆ V(G) is a total dominating set of G if every vertex in V(G) is

adjacent to some vertex in D. The total domination number of G, denoted by γt(G),
is the minimum cardinality of a total dominating set of G. A total dominating set of

cardinality γt(G) is called a γt(G)-set. Total domination in graphs was introduced by

Cockayne et al. [9] and extensively studied by Henning and Teo [29]. Total domination

plays a role in the problem of placing monitoring devices in a system. Every site in the

system, including the monitors, is adjacent to a monitor site. If a monitor is damaged,

then an adjacent monitor can still protect the system.

A set D ⊆ V(G) is a paired dominating set of G if it is a dominating set of G

and the subgraph of G induced by D contains a perfect matching M . If an edge uv ∈ M ,

then {u, v} is said to be paired. The paired domination number of G, denoted by γpr(G),
is the minimum cardinality of a paired dominating set of G. A paired dominating set of

cardinality γpr(G) is called a γpr(G)-set. Paired domination in graphs was introduced by

Haynes and Slater [27]. For more details on this topic, see [13]. Paired domination can

be a model for assigning backups to police officers. To ensure the safety of each officer,

it is common practice that officers are dispatched in pairs, that is, they are assigned

partners so each can back up the other.

Note that γpr(G) ≥ γt(G) since a paired dominating set of G is also a total

dominating set of G, and the paired domination number is an even integer.

This dissertation is organized as follows. Chapter 2 recalls some previous

results and provides a brief summary of new findings. Chapter 3 demonstrates the total

domination numbers and the paired domination numbers of various graphs. The γ-total

dominating graphs and the γ-paired dominating graphs of several graphs are contained

in Chapter 4. Finally, Chapter 5 provides the conclusions and discussions.
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CHAPTER 2

REVIEW OF LITERATURE

In this chapter, we state some results from the literature and give an overview

of new results. We begin with some results on domination numbers, total domination

numbers, and paired domination numbers of some graphs. We then review the results

on γ-graphs (defined below), including several versions of γ-graphs.

2.1 Domination Numbers

The study of domination numbers and other related domination parameters

of graphs serves several important purposes and has various applications in graph theory

and related fields. Domination numbers have received attention from scholars for many

reasons. For example, in facility location problems, businesses and organizations need

to decide where to place facilities such as hospitals, police stations, and service centers to

provide coverage. The domination number helps in determining the minimum number

of locations needed to serve a population effectively. Due to the reasons mentioned

above, there were many scholars researching domination numbers of graphs, with a

particular focus on a grid Pp□Pq, a toroidal mesh Cp□Cq, and a cylinder Pp□Cq, where

p and q are both positive integers. The domination number of Pp□Pq was determined

by Jacobson and Kinch [32] for p ∈ {1, 2, 3, 4} and all q, and by Chang and Clark [7]

for p ∈ {5, 6} and all q. Chang [6] devoted his dissertation to study the domination

number of Pp□Pq. He also provided its upper bound for 7 ≤ p ≤ q and a conjecture

γ(Pp□Pq) = ⌊ (p+2)(q+2)5 ⌋ − 4 for 16 ≤ p ≤ q. Fisher [18] used programming algorithms

to compute the domination number of Pp□Pq for p ≤ 21 and all q. This computation

comfirmed that the Chang’s conjecture holds for 16 ≤ p ≤ 21. For p ∈ {22, 23},
Gonçalves et al. [21] mentioned that it can also be proved by using the Fisher’s method.

Moreover, they proved the Chang’s conjecture for 24 ≤ p ≤ q.

Klavžar and Seifter [35] computed the domination number of Cp□Cq for

p ∈ {3, 4, 5} and q ≥ p, except when p = 5 and q ≡ 3 (mod 5). Klavžar and

Žerovnik [36] gave the value for this exceptional case. Pavlič and Žerovnik [55] showed

the domination number of Cp□Cq for p ∈ {6, 7} and q ≥ p.
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The domination number of Pp□Cq was studied by Nandi et al. [53]. They

determined the exact value of γ(Pp□Cq) for p ∈ {2, 3, 4} and q ≥ 3, as well as its bounds

for p = 5. Pavlič and Žerovnik [55] completed the case for p = 5 and also provided

the exact value for p ∈ {6, 7} and q ≥ 3. Moreover, they determined the domination

number of Pp□Cq for all p and q ∈ {3, 4, . . . , 11}.
For the Jahangir graph Jp,q with q ≥ 3, the domination number of Jp,q was

computed by different researchers. Specifically, Mojdeh and Ghameshlou [46], Shaheen

et al. [59], and Mtarneh et al. [48] computed the domination number of Jp,q for p = 2,

p = 3, and p ≥ 4, respectively. Later, Shaheen et al. [60] identified inaccuracies in the

results from [48] for some values of q and sebsequently corrected them.

Several scholars have also determined the total and the paired domination

numbers of graphs for various reasons, such as facility location problems, surveillance

systems, and security applications. The total and the paired domination numbers of

graphs, particularly Pp□Pq, Cp□Cq, and Pp□Cq, have been studied. Gravier [22] and

Proffitt et al. [56] determined the total domination number and the paired domination

number, respectively, of Pp□Pq for p ∈ {2, 3, 4} and q ≥ 2. Klobučar [37] computed the

total domination number of Pp□Pq for p ∈ {5, 6} and q ≥ 2. Kuziak et al. [41] showed

that Klobučar’s result was false when p = 6 and q ≡ 0, 4, 5, 6 (mod 7), and they then

corrected that result. The paired domination number of Pp□Pq for p ∈ {5, 6} and q ≥ p

is investigated in Section 3. Hu and Xu [31] determined the total domination number

and the paired domination number of Cp□Cq for p ∈ {3, 4} and q ≥ 3, and they provided

some upper bounds for p, q ≥ 5. Hu et al. [30] provided the total domination number

and the paired domination number of Pp□Cq for p ≥ 2 and q ∈ {3, 4}. We extend the

previous results by presenting the total domination number and the paired domination

number of Pp□Cq for p ∈ {2, 3, 4} and q ≥ 5 in Subsection 3.3.1. We also give their

upper and lower bounds for the other values of p and q in Subsections 3.3.2 and 3.3.3,

respectively.

Mojdeh and Ghameshlou [46] determined the total domination number of

the Jahangir graph J2,q for q ≥ 3, while Mtarneh et al. [48] gave the total domination

number of the Jahangir graph Jp,q for p, q ≥ 3. In Section 3.2, we demonstrate that,

for p ≥ 4, the previously mentioned result is incorrect for some values of q, and we

subsequently correct this mistake.
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Apart from the results mentioned above, further results on total domination

numbers can be found in [47] for 3-regular Knödel graphs, in [38, 45] for hexagonal

grids, in [8, 33] for central graphs, in [12] for splitting graphs, in [34] for middle graphs,

in [39] for line graphs, in [44] for total graphs, and in [4, 61] for other graph classes.

2.2 γ-Graphs

Some graphs have many minimum dominating sets, so it is worth to ask a

question that, for a graph G, whether a γ(G)-set can be obtained from another γ(G)-set

by deleting and adding a single vertex. This problem has motivated many authors to

define a new class of graphs called γ-graphs, which have two versions. First defined by

Subramanian and Sridharan [64] in 2008, the γ-graph of a graph G, denoted by γ ·G, is

the graph whose vertices are γ(G)-sets, and two vertices D1 and D2 of γ ·G are adjacent

if they satisfy the following condition:

D2 = (D1 \ {u}) ∪ {v} for some u ∈ D1 and v < D1. (2.2.1)

In other words, D1 and D2 differ by exactly one vertex. This version of the γ-graph is

also refered to as the jump adjacency model. For additional results on γ ·G, see [42, 62,

63].

In 2011, Fricke et al. [19] independently defined a different γ-graph of G,

denoted by G(γ). The vertex set of G(γ) is the same as γ · G, and two vertices of G(γ)
are adjacent if they satisfy the condition (2.2.1) and uv is an edge in G. This version of

the γ-graph is referred to as the slide adjacency model. Observe that G(γ) is a spanning

subgraph of γ · G. The γ-graph G(γ) has been further studied in [5, 10, 16].

Mynhardt and Roux [49, 50] and Mynhardt and Teshima [52] defined and

studied the graphs with the slide adjacency model for many domination parameters.

There are also many graphs using other domination variants with the jump adjacency

model as discussed below. The γ-total dominating graph T Dγ(G) of G is the graph

whose vertices are γt(G)-sets and is defined by Wongsriya and Trakultraipruk [67] in

2017. These two authors presented the γ-total dominating graphs of paths and cycles.

This dissertation also presents the γ-total dominating graphs of other classes of graphs

appeared in Sections 4.1, 4.2, 4.4, and 4.5. In 2019, Samanmoo et al. [57] introducted the
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γ-independent dominating graph of G, which is the graph whose vertices are γi(G)-sets

(the minimum independent dominating sets). The authors provided the γ-independent

dominating graphs of all paths and all cycles. Sanguanpong and Trakultraipruk [58] in

2022 presented the graph whose vertices are γip(G)-sets (the minimum induced-paired

dominating sets), and this graph is called the γ-induced-paired dominating graph of G.

The γ-induced-paired dominating graphs of all paths and all cycles were investigated.

The γ-paired dominating graph PDγ(G) of G, which is defined by Eakawinrujee and

Trakultraipruk [15] in 2022, is the graph having γpr(G)-sets as its vertices. The authors

determined the γ-paired dominating graphs of paths. In this dissertation, we present the

γ-paired dominating graphs of cycles in Section 4.3, and the ones of other classes of

graphs are determined in Sections 4.1, 4.2, 4.4, and 4.5.

Another class of graphs having a vertex set consisting of all dominating sets

which are not necessarily minimum was introduced by Haas and Seyffarth [23]. The k-

dominating graph Dk(G) of G is the graph whose vertices are dominating sets with

cardinality at most k. Two vertices of Dk(G) are adjacent if they differ by either adding

or deleting a single vertex of G. Further results on Dk(G) can be found in [1, 14, 24,

51, 65]. The k-total dominating graph [2] and the k-independent dominating graph [17]

are defined analogously by using total dominating sets and independent dominating sets,

respectively, instead of dominating sets.
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CHAPTER 3

TOTAL AND PAIRED DOMINATION NUMBERS

In this chapter, we first recall some definitions and useful results that are

used in our main proofs. We next determine the total and the paired domination numbers

of wheel graphs, flower graphs, helm graphs, sunflower graphs, Jahangir graphs, some

cylinders, some closed helm graphs, some web graphs, lollipop graphs, umbrella graphs,

and coconut graphs. Moreover, we present some upper and lower bounds for the total

and the paired domination numbers of the other cylinders. We also provide some upper

bounds for the total and the paired domination numbers of the other closed helm graphs

and web graphs.

Let D be a total (paired) dominating set of G. We say that a vertex u ∈ D

dominates a vertex v if they are adjacent in G. In addition, a vertex u ∈ D dominates a

set S ⊆ V(G) if u is adjacent to every vertex in S. Note that every leaf must be dominated

by its support vertex, so we get the following observation.

Observation 3.0.1. Every support vertex of a graph G is in every total dominating set

of G and in every paired dominating set of G.

Henning [28] and Haynes and Slater [27] determined the total domination

numbers and the paired domination numbers, respectively, of paths and cycles, which

are shown in the following lemmas.

Lemma 3.0.2 ([28]). For any integer p ≥ 3, γt(Pp) = γt(Cp) = ⌊ p+2
4 ⌋ + ⌊ p+3

4 ⌋.

Lemma 3.0.3 ([27]). For any integer p ≥ 3, γpr(Pp) = γpr(Cp) = 2⌈ p
4⌉.

Gavlas and Schultz [20] and Proffitt et al. [56] defined efficient total domi-

nation and efficient paired domination, respectively. A set D is an efficient total (paired)

dominating set of G if D is a total (paired) dominating set of G and |N(v) ∩ D | = 1 for

every v ∈ V(G).

Lemma 3.0.4 ([40, 56]). If D is an efficient total (paired) dominating set of G, then

γt(G) = |D | (γpr(G) = |D |).
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3.1 Wheel Graphs, Helm Graphs, Flower Graphs, and Sunflower Graphs

We first provide the definitions of these four graphs, and we then determine

their total and paired domination numbers. For an integer p ≥ 3,

1. the wheel graph Wp is the join K1 ∨ Cp, where V(K1) = {c} and V(Cp) =
{u1, u2, . . . , up},

2. the helm graph Hp is obtained from the wheel graph Wp by adding the vertices

v1, v2, . . . , vp and the edge uivi for all i ∈ {1, 2, . . . , p},

3. the flower graph Flp is obtained from the helm graph Hp by adding the edge cvi

for all i ∈ {1, 2, . . . , p}, and

4. the sunflower graph S fp is obtained from the helm graph Hp by adding the edges

vpu1 and viui+1 for all i ∈ {1, 2, . . . , p − 1}.

The wheel graph Wp and the helm graph Hp are shown in Figure 3.1, while

the flower graph Fl6 and the sunflower graph S f6 are depicted in Figure 3.2.

c

up

u3

u1

u4 u2

up−1

c

up

u3

u1
u4

u2

up−1

vp

v1

v2

v3

v4

vp−1

Figure 3.1 The wheel graph Wp (left) and the helm graph Hp (right)

c

u6

u3

u1
u4

u2

u5

v6

v1

v2

v3

v4

v5

c

u6

u3

u1

u4 u2

u5

v2

v6v5

v4 v1

v3

Figure 3.2 The flower graph Fl6 (left) and the sunflower graph S f6 (right)
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Note that {c, u1} is a minimum total (paired) dominating set of wheel graphs

and flower graphs, so we obtain the following obvious result.

Theorem 3.1.1. For any integer p ≥ 3, γt(Wp) = γpr(Wp) = γt(Flp) = γpr(Flp) = 2.

The total and the paired domination numbers of helm graphs are calculated

in the following theorem.

Theorem 3.1.2. For any integer p ≥ 3,

γt(Hp) = p and γpr(Hp) =


p if p is even;

p + 1 if p is odd.

Proof. By Observation 3.0.1, the vertices u1, u2, . . . , up are in every γt(Hp)-set. Hence,

γt(Hp) ≥ p. Since D = {u1, u2, . . . , up} is a total dominating set of Hp, γt(Hp) ≤ |D | =
p. It follows that γt(Hp) = p. Moreover, D is a paired dominating set of Hp if p is even,

and D∪ {c} is a paired dominating set of Hp if p is odd. Thus, γpr(Hp) ≤ p if p is even,

and γpr(Hp) ≤ p + 1 if p is odd. Since γpr(Hp) ≥ γt(Hp) = p and γpr(Hp) is even, we

get that γpr(Hp) = p if p is even, and γpr(Hp) = p + 1 if p is odd. □

We next determine the total and the paired domination numbers of sunflower

graphs as shown below.

Theorem 3.1.3. For any integer p ≥ 3,

γt(S fp) =

2 if p = 3;

⌈ p
2⌉ + 1 if p ≥ 4;

and γpr(S fp) = 2⌈p
3
⌉ .

Proof. Clearly, γt(S f3) = 2. Let p ≥ 4 and D be a γt(S fp)-set. To dominate v1, v2, . . . , vp,

D contains at least ⌈ p
2⌉ vertices from {u1, u2, . . . , up}. If |D | = ⌈ p

2⌉, then, without loss

of generality, D = {ui : i ≡ 1 (mod 2)}. We can see that there is some vertex in D that

is not dominated. This contradicts the fact that D is a total dominating set of S fp, so

|D | ≥ ⌈ p
2⌉ + 1. Since {c} ∪ {ui : i ≡ 1 (mod 2)} is a total dominating set of S fp with

cardinality ⌈ p
2⌉ + 1, we get that γt(S fp) = ⌈ p

2⌉ + 1.

Note that any two adjacent vertices can dominate at most three vertices in

{v1, v2, . . . , vp}, so γpr(S fp) ≥ 2⌈ p
3⌉. If p ≡ 0, 2 (mod 3), let D = {ui, ui+1 : i ≡ 1

(mod 3)}; otherwise, let D = {ui, ui+1 : i ≡ 1 (mod 3), i , p} ∪ {up−1, up}. Then D is

a paired dominating set of S fp with cardinality 2⌈ p
3⌉, so γpr(S fp) = 2⌈ p

3⌉. □
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3.2 Jahangir Graphs

Let p ≥ 1 and q ≥ 3 be integers. Let Cpq be the cycle with the vertex set

V(Cpq) = {ui, j : 1 ≤ i ≤ p, 1 ≤ j ≤ q} and the edge set E(Cpq) = {ui, jui+1, j : 1 ≤
i ≤ p − 1, 1 ≤ j ≤ q} ∪ {up, ju1, j+1 : 1 ≤ j ≤ q − 1} ∪ {up,qu1,1}. The Jahangir

graph Jp,q is obtained from the cycle Cpq by adding the vertex c and the edge cu1, j for

all j ∈ {1, 2, . . . , q}. Note that J1,q is the wheel graph Wq and J2,q is known as the gear

graph. Figure 3.3 illustrates the Jahangir graphs J2,q and J3,q.

c

u1,q−1

u2,q−1
u1,q u2,q

u1,1

u2,1

u1,2

u2,2u1,3
u2,3

u1,4

c

u1,q−1

u1,q

u1,1

u1,2

u1,3

u1,4

Figure 3.3 The Jahangir graphs J2,q (left) and J3,q (right)

For any integer q ≥ 3, the total domination number of the Jahangir graph

Jp,q was determined by Mojdeh and Ghameshlou [46] when p = 2 and by Mtarneh et

al. [48] when p ≥ 3 is an integer.

Lemma 3.2.1. For any integer q ≥ 3,

1. [46] γt(J2,q) = ⌈ q
2⌉ + 1 and

2. [48] γt(J3,q) = q + 1 and γt(Jp,q) = ⌊ pq+2
4 ⌋ + ⌊ pq+3

4 ⌋ for any integer p ≥ 4.

Consider the Jahangir graph J7,3. Lemma 3.2.1(2) gives that γt(J7,3) = 11,

but {c, u1,1, u4,1, u5,1, u1,2, u4,2, u5,2, u1,3, u4,3, u5,3} is a total dominating set of J7,3 with

cardinality 10. It seems that, for p ≡ 1, 2, 3 (mod 4) and p ≥ 4, the value γt(Jp,q) =
⌊ pq+2

4 ⌋ + ⌊ pq+3
4 ⌋ does not hold for some values of q. We then correct this mistake in the

next theorem.
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Theorem 3.2.2. Let p ≥ 4 and q ≥ 3 be integers. Then

γt(Jp,q) =


pq
2 if p ≡ 0 (mod 4);
(p−1)q

2 + 2 if p ≡ 1 (mod 4);

⌈ (p−1)q2 ⌉ + 1 if p ≡ 2, 3 (mod 4).

Proof. If p ≡ 0 (mod 4), then by Lemma 3.2.1(2), we have γt(Jp,q) = ⌊ pq+2
4 ⌋ + ⌊ pq+3

4 ⌋
can be simplified as γt(Jp,q) = pq

2 .

Let p = 4k + 1 for some k ≥ 1 and D = {c, u1,1} ∪ {ui, j, ui+1, j : i ≡ 3

(mod 4), 1 ≤ j ≤ q} (see Figure 3.4 for p = 5 and q = 4). We can check that D is a

c

u4,2
u3,2

u4,1
u3,1

u1,1
u4,4

u3,4

u4,3
u3,3

Figure 3.4 The total dominating set (bold vertices) of J5,4

total dominating set of Jp,q with |D | = (p−1)q
2 + 2. By the constraction of D, we have

that |D | ≤ |S | for every total dominating set S with c ∈ S and |{u1,1, u1,2, . . . , u1,q} ∩
S | = 1. We claim that among all total dominating sets containing the vertex c, D is

minimum. Suppose that D′ is a total dominating set containing c with |D′| < |D |.
Then |{u1,1, u1,2, . . . , u1,q} ∩ D′| ≥ 2. Without loss of generality, we may assume that

u1,1, u1, j ∈ D′ for some j ∈ {2, 3, . . . , q}. Note that D′ contains at least 2k vertices from

{u2, j−1, u3, j−1, . . . , up, j−1} and at least 2k vertices from {u2, j, u3, j, . . . , up, j}. Thus, D′′ =

(D′\{u2, j−1, . . . , up, j−1, u1, j, u2, j, . . . , up, j})∪{ui, j−1, ui+1, j−1, ui, j, ui+1, j : i ≡ 3 (mod 4)}
is a total dominating set of Jp,q with |D′′| < |D′| and |{u1,1, u1,2, . . . , u1,q} ∩ D′′| <
|{u1,1, u1,2, . . . , u1,q}∩D′|. We repeat this process until we get that |{u1,1, u1,2, . . . , u1,q}∩
D′′| = 1. We get a contradiction since |D | ≤ |D′′| < |D′| < |D |, so the claim holds.

Next, we show that D is a γt(Jp,q)-set. Assume that D̂ is a total dominating set with

|D̂ | < |D |. Then c < D̂ and D̂ is also a total dominating set of Cpq, so we get that
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|D̂ | ≥ γt(Cpq) = ⌊ pq+2
4 ⌋ + ⌊ pq+3

4 ⌋ by Lemma 3.0.2. Then

|D̂ | ≥



8kl + 2l ≥ 8kl + 2 = (p−1)q
2 + 2 = |D | if q = 4l, l ≥ 1;

8kl + 2k + 2l + 1 > 8kl + 2k + 2 = (p−1)q
2 + 2 = |D | if q = 4l + 1, l ≥ 1;

8kl + 4k + 2l + 2 > 8kl + 4k + 2 = (p−1)q
2 + 2 = |D | if q = 4l + 2, l ≥ 1;

8kl + 6k + 2l + 2 ≥ 8kl + 6k + 2 = (p−1)q
2 + 2 = |D | if q = 4l + 3, l ≥ 0;

contradicting with the assumption |D̂ | < |D|. Therefore, γt(Jp,q) = (p−1)q
2 + 2.

Let p = 4k + 2 for some k ≥ 1 and D = {c} ∪ {u1, j : j ≡ 1 (mod 2)} ∪
{ui, j, ui+1, j : i ≡ 0 (mod 4), j ≡ 1 (mod 2)} ∪ {ui, j, ui+1, j : i ≡ 3 (mod 4), j ≡ 0

(mod 2)} (see Figure 3.5 for p = 6 and q = 4). We can check that D is a total dominating

c

u1,3

u4,2
u3,2

u5,1
u4,1

u1,1

u4,4
u3,4

u5,3
u4,3

Figure 3.5 The total dominating set (bold vertices) of J6,4

set of Jp,q with |D | = ⌈ (p−1)q2 ⌉ + 1. We show that among all total dominating sets

containing the vertex c, D is minimum. Suppose that D′ is total dominating set with c ∈
D′ and |D′| < |D |. If u1, j ∈ D′ for all j ∈ {1, 2, . . . , q}, then |{u2, j, u3, j, . . . , up, j}∩D′| ≥
2k, so |D′| ≥ 1+q+2kq = 1+ (1+2k)q = 1+ ⌈ (4k+2)q

2 ⌉ ≥ 1+ ⌈ (4k+1)q
2 ⌉ = 1+ ⌈ (p−1)q2 ⌉ =

|D |, a contradiction. Thus, u1, j < D′ for some j ∈ {1, 2, . . . , q}. If u1, j+1 < D′, then

|{u2, j, u3, j, . . . , up, j}∩D′| ≥ 2k+1. Hence, D′′ = (D′\{u2, j, u3, j, . . . , up, j})∪{ui, j, ui+1, j :

i ≡ 3 (mod 4)} ∪ {u1, j+1} is a total dominating set of Jp,q with |D′′| ≤ |D′|, so we can

assume that if u1, j < D′, then u1, j+1 ∈ D′. This implies that |{u1,1, u1,2, . . . , u1,q} ∩
D′| ≥ ⌈ q

2⌉ and |{u2, j, u3, j, . . . , up, j} ∩ D′| ≥ 2k for each j ∈ {1, 2, . . . , q}. Therefore,

|D′| ≥ 1+ ⌈ q
2⌉ +2kq = 1+ ⌈ q

2 +
(p−2)q

2 ⌉ = 1+ ⌈ (p−1)q2 ⌉ = |D |, a contradiction. The claim

follows. Next, we prove that D is a γt(Jp,q)-set. We assume that D̂ is a total dominating

set of Jp,q with |D̂ | < |D |, so c < D̂. We note that |D̂ | ≥ γt(Cpq) = ⌊ pq+2
4 ⌋ + ⌊ pq+3

4 ⌋.
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Then

|D̂ | ≥

4kl + 2l > 4kl + l + 1 = ⌈ (p−1)q2 ⌉ + 1 = |D | if q = 2l, l ≥ 2;

4kl + 2k + 2l + 2 > 4kl + 2k + l + 2 = ⌈ (p−1)q2 ⌉ + 1 = |D | if q = 2l + 1, l ≥ 1;

which is a contradiction. It follows that γt(Jp,q) = ⌈ (p−1)q2 ⌉ + 1.

Let p = 4k+3 for some k ≥ 1 and D = {c}∪{u1, j : 1 ≤ j ≤ q}∪{ui, j, ui+1, j :

i ≡ 0 (mod 4), 1 ≤ j ≤ q} (see Figure 3.6 for p = 7 and q = 4). Then D is a total

c

u1,3

u5,2
u4,2

u1,2

u5,1
u4,1

u1,1
u5,4

u4,4

u1,4

u5,3
u4,3

Figure 3.6 The total dominating set (bold vertices) of J7,4

dominating set of Jp,q with |D | = ⌈ (p−1)q2 ⌉ + 1. Note that among all total dominating

sets containing c and u1,1, u1,2, . . . , u1,q, D is minimum. If D′ is a total dominating set

containing c and |D′| < |D |, then u1, j < D′ for some j ∈ {1, 2, . . . , q}. We can check

that D′ contains at least 2k + 1 vertices from {u2, j, u3, j, . . . , up, j} if u1, j+1 ∈ D′ and at

least 2k+2 vertices from {u2, j, u3, j, . . . , up, j} if u1, j+1 < D′. If u1, j+1 ∈ D′, let D′′ = (D′\
{u2, j, u3, j, . . . , up, j}) ∪ {u1, j} ∪ {ui, j, ui+1, j : i ≡ 0 (mod 4)}; otherwise, let D′′ = (D′ \
{u2, j, u3, j, . . . , up, j}) ∪ {u1, j, u1, j+1} ∪ {ui, j, ui+1, j : i ≡ 0 (mod 4)}. Thus, D′′ is a total

dominating set with |D′′| ≤ |D′| and |{u1,1, u1,2, . . . , u1,q}∩D′′| > |{u1,1, u1,2, . . . , u1,q}∩
D′|. We repeat this process until we obtain that |{u1,1, u1,2, . . . , u1,q} ∩ D′′| = q. We

see that |D | ≤ |D′′| ≤ |D′| < |D |, a contradiction. This follows that among all total

dominating sets containing c, D is minimum. We next prove that D is a γt(Jp,q)-set. If

D̂ is a total dominating set with |D̂ | < |D |, then c < D̂. We get a contradiction because

|D̂ | ≥ γt(Cpq) = ⌊ pq+2
4 ⌋ + ⌊ pq+3

4 ⌋ ≥ ⌊ pq+2
4 +

pq+3
4 ⌋ − 1 ≥ ⌊ pq

2 ⌋ ≥ ⌊ pq
2 − q

2 + 1⌋ =
⌊ (p−1)q2 ⌋ + 1 = ⌈ (p−1)q2 ⌉ + 1 = |D |. This completes the proof. □

According to the proofs of Theorem 3.2.2, we observe that, for all p ≥ 4,

the results of Theorem 3.2.2 give the smaller values than the results of Lemma 3.2.1(2)
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when p ≡ 1 (mod 4) and q ≥ 5, p ≡ 2 (mod 4) and q ≥ 3, and p ≡ 3 (mod 4) and

q ≥ 3.

Next, we calculate the paired domination number of Jp,q for any integers

p ≥ 2 and q ≥ 3.

Theorem 3.2.3. Let p ≥ 2 and q ≥ 3 be integers. Then

γpr(Jp,q) =


2⌈ pq

4 ⌉ if p ≡ 0, 2 (mod 4);
(p−1)q

2 + 2 if p ≡ 1 (mod 4);

2⌈ pq−⌈ q−33 ⌉
4 ⌉ if p ≡ 3 (mod 4).

Proof. We first determine γpr(Jp,q) for p ≡ 0, 1 (mod 4). By the fact that γpr(Jp,q) ≥
γt(Jp,q) and Theorem 3.2.2, we immediately obtain the lower bounds of γpr(Jp,q) for

p ≡ 0, 1 (mod 4). For upper bounds, we observe that {ui, j, ui+1, j : i ≡ 1 (mod 4), 1 ≤
j ≤ q} is a paired dominating set of Jp,q with cardinality 2⌈ pq

4 ⌉ if p ≡ 0 (mod 4), and

{c, u1,1} ∪ {ui, j, ui+1, j : i ≡ 3 (mod 4), 1 ≤ j ≤ q} is a paired dominating set of Jp,q

with cardinality (p−1)q
2 + 2 if p ≡ 1 (mod 4).

Let p = 4k+2 for some k ≥ 0. We can check that {u1, j, u2, j, u5, j, u6, j : j ≡ 1

(mod 2)} ∪ {u3, j, u4, j : j ≡ 0 (mod 2)} (see Figure 3.7 for p = 6 and q = 4) is a paired

u1,1

u5,1

u3,2
u4,2

u1,3

u5,3

u3,4
u4,4

u6,1

u2,1

u6,3

u2,3

Figure 3.7 The paired dominating set (bold vertices) of J6,4

dominating set of Jp,q with cardinality 2⌈ pq
4 ⌉, so γpr(Jp,q) ≤ 2⌈ pq

4 ⌉. Next, we show that

γpr(Jp,q) ≥ 2⌈ pq
4 ⌉. Let D be a γpr(Jp,q)-set. If c < D, then D is also a paired dominating

set of Cpq, and thus |D | ≥ γpr(Cpq) = 2⌈ pq
4 ⌉. Next, without loss of generality, we

assume that the pair {c, u1,1} ⊆ D. Then |{u3,1, u4,1, . . . , up,1} ∩ D | ≥ 2k. To dominate

u2,2 j, . . . , up,2 j, u1,2 j+1, u2,2 j+1, . . . , up,2 j+1 for each 1 ≤ j ≤ ⌊ q−2
2 ⌋, D contains at least

4k + 2 vertices from them. If q = 2l for some l ≥ 2, then |{u2,q, u3,q, . . . , up−1,q} ∩
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D | ≥ 2k, and hence |D| ≥ 2 + (2k) + ⌊ q−2
2 ⌋(4k + 2) + (2k) = 4kl + 2l = 2⌈ pq

4 ⌉. If

q = 2l + 1 for some l ≥ 1, then |{u2,q−1, . . . , up,q−1, u1,q, u2,q, . . . , up−1,q} ∩ D | ≥ 4k + 2,

so |D | ≥ 2 + (2k) + ⌊ q−2
2 ⌋(4k + 2) + (4k + 2) = 4kl + 2l + 2k + 2 = 2⌈ pq

4 ⌉.
Let p = 4k + 3 for some k ≥ 0. Define the set E = {c} ∪ {ui, j, ui+1, j : i ≡ 3

(mod 4), i < p, j ≡ 0 (mod 3)} ∪ {up, j : j ≡ 0 (mod 3)} ∪ {u1, j : j ≡ 1 (mod 3)} ∪
{ui, j, ui+1, j : i ≡ 0 (mod 4), j ≡ 1 (mod 3)} ∪ {ui, j, ui+1, j : i ≡ 1 (mod 4), j ≡ 2

(mod 3)} (see Figure 3.8 for p = 7 and q = 4). If q ≡ 1, 2 (mod 3) (respectively, q ≡ 0

c

u6,2
u5,2

u1,2

u5,1
u4,1

u1,1
u5,4

u4,4

u1,4

u4,3

u2,2u7,3

u3,3

Figure 3.8 The paired dominating set (bold vertices) of J7,4

(mod 3)), then D = E (respectively, D = E ∪{up−1,q}) is a paired dominating set of Jp,q

with |D | = 2⌈ pq−⌈ q−33 ⌉
4 ⌉. We claim that among all paired dominating sets containing c, D

is minimum. Let D′ be any paired dominating set of Jp,q containing c. Without loss of

generality, let {c, u1,1} be paired in D′. Then |{u3,1, . . . , up,1, u1,2, u2,2, . . . , up,2} ∩ D′| ≥
4k+2. To dominate u2,3 j, . . . , up,3 j, u1,3 j+1, u2,3 j+1, . . . , up,3 j+1, u1,3 j+2, u2,3 j+2, . . . , up,3 j+2

for each 1 ≤ j ≤ ⌊ q−3
3 ⌋, D′ contains at least 6k + 4 vertices from them. If q = 3l

for some l ≥ 1, then |{u2,q, u3,q, . . . , up−1,q} ∩ D′| ≥ 2k + 2, and hence |D′| ≥ 2 +

(4k + 2) + ⌊ q−3
3 ⌋(6k + 4) + (2k + 2) = 6kl + 4l + 2 = 2⌈ pq−⌈ q−33 ⌉

4 ⌉. If q = 3l + 1

for some l ≥ 1, then |{u2,q−1, . . . , up,q−1, u2,q, . . . , up−1,q} ∩ D′| ≥ 4k + 2, so |D′| ≥
2+ (4k+2)+ ⌊ q−3

3 ⌋(6k+4)+ (4k+2) = 6kl+2k+4l+2 = 2⌈ pq−⌈ q−33 ⌉
4 ⌉. If q = 3l+2 for

some l ≥ 1, then |{u2,q−2, . . . , up,q−2, u2,q−1, . . . , up,q−1, u2,q, . . . , up−1,q} ∩ D′| ≥ 6k + 4,

so |D′| ≥ 2+ (4k+2)+ ⌊ q−3
3 ⌋(6k+4)+ (6k+4) = 6kl+4k+4l+4 = 2⌈ pq−⌈ q−33 ⌉

4 ⌉. Now,

the claim holds. We next prove that D is a γpr(Jp,q)-set. If D′′ is a paired dominating

set with |D′′| < |D |, then c < D′′. Note that D′′ is also a paired dominating set of Cpq,

so |D′′| ≥ γpr(Cpq) = 2⌈ pq
4 ⌉ ≥ 2⌈ pq−⌈ q−33 ⌉

4 ⌉ = |D |, a contradiction. We conclude that

γpr(Jp,q) = 2⌈ pq−⌈ q−33 ⌉
4 ⌉. □
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3.3 Cylinders

In this section, we compute the total and the paired domination numbers of

a cylinder Pp□Cq for p ∈ {2, 3, 4} and q ≥ 5. We also provide their upper and lower

bounds for the other values of p and q.

Gravier [22] and Proffitt et al. [56] determined the total domination number

and the paired domination number, respectively, of Pp□Pq for p ∈ {2, 3, 4} and q ≥ p,

as stated in the following lemmas.

Lemma 3.3.1 ([22, 56]). For any integer q ≥ 2, γt(P2□Pq) = γpr(P2□Pq) = 2⌈ q
3⌉.

Lemma 3.3.2 ([22, 56]). For any integer q ≥ 3, γt(P3□Pq) = q and

γpr(P3□Pq) =


q if q is even;

q + 1 if q is odd.

Lemma 3.3.3 ([22, 56]). For any integer q ≥ 4,

γt(P4□Pq) = γpr(P4□Pq) =

⌊ 6q+8

5 ⌋ if q ≡ 1, 2, 4 (mod 5);

⌊ 6q+12
5 ⌋ if q ≡ 0, 3 (mod 5).

Klobučar [37] computed the total domination number of P5□Pq for q ≥ 5.

Lemma 3.3.4 ([37]). For any integer q ≥ 5, γt(P5□Pq) =

10 if q = 6;

⌊ 3q
2 ⌋ + 2 if q , 6.

Klobučar also published a result on the total domination number of P6□Pq;

however, Kuziak et al. [41] later showed that this result was false. Their improved result

is shown in the following lemma.

Lemma 3.3.5 ([41]). For any integer q ≥ 6,

γt(P6□Pq) =


⌊ 12q

7 ⌋ + 2 if q ≡ 0, 4, 6 (mod 7);

⌊ 12q
7 ⌋ + 3 if q ≡ 1, 2, 3 (mod 7);

⌊ 12q
7 ⌋ + 4 if q ≡ 5 (mod 7).

Ref. code: 25666109320413HRB



19

Let Pp = (1, 2, . . . , p) and Pq = (1, 2, . . . , q) be two paths with p and q

vertices, respectively. We use vi, j to denote the vertex in Pp□Pq corresponding to vertex

(i, j) for all i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. We consider the vertices of Pp□Pq as

the entries in a matrix.

We next present the paired domination number of Pp□Pq for p ∈ {5, 6} and

q ≥ p in the following two theorems.

Theorem 3.3.6. For any integer q ≥ 5,

γpr(P5□Pq) =


10 if q = 6;

⌊ 3q
2 ⌋ + 2 if q ≡ 0, 3 (mod 4);

⌊ 3q
2 ⌋ + 3 if q ≡ 1, 2 (mod 4) and q , 6.

Proof. Since γpr(P5□Pq) ≥ γt(P5□Pq) and γpr(P5□Pq) is even, by Lemma 3.3.4, we

get that

γpr(P5□Pq) ≥


10 if q = 6;

⌊ 3q
2 ⌋ + 2 if q ≡ 0, 3 (mod 4);

⌊ 3q
2 ⌋ + 3 if q ≡ 1, 2 (mod 4) and q , 6.

We check that {v1,2, v2,2, v1,5, v2,5, v4,1, v4,2, v4,3, v4,4, v4,5, v4,6} is a paired dominating set

of P5□P6, so γpr(P5□P6) = 10. Let q , 6 and D = {v1,i : i ≡ 3, 4, 7, 10, 11, 14, 15

(mod 16)} ∪ {v2,i : i ≡ 1, 7 (mod 16)} ∪ {v3,i : i ≡ 1, 4, 5, 9, 12, 13 (mod 16)} ∪ {v4,i :
i ≡ 9, 15 (mod 16)} ∪ {v5,i : i ≡ 2, 3, 6, 7, 11, 12, 15 (mod 16)} (see Figure 3.9 for

q = 19).

v3,1

v2,1

v5,2 v5,3

v1,3 v1,4

v3,4 v3,5

v5,6 v5,7

v2,7

v1,7

v4,9

v3,9

v1,10 v1,11

v5,11 v5,12

v3,12 v3,13

v1,14 v1,15

v4,15

v5,15

v2,17

v3,17

v5,18

v1,19

v2,19

v5,19

Figure 3.9 The paired dominating set (black vertices) of P5□P19

If q ≡ 7, 15 (mod 16), then D is a paired dominating set of P5□Pq, so

γpr(P5□Pq) ≤ ⌊ 3q
2 ⌋ + 2.
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If q ≡ 3, 4, 12 (mod 16), then D ∪ {v2,q} is a paired dominating set of

P5□Pq, so γpr(P5□Pq) ≤ ⌊ 3q
2 ⌋ + 2.

If q ≡ 0, 9, 13 (mod 16), then D ∪ {v1,q, v2,q} is a paired dominating set of

P5□Pq, so γpr(P5□Pq) ≤ ⌊ 3q
2 ⌋ + 2 if q ≡ 0 (mod 16), and γpr(P5□Pq) ≤ ⌊ 3q

2 ⌋ + 3 if

q ≡ 9, 13 (mod 16).
If q ≡ 2, 6 (mod 16), then D ∪ {v1,q, v2,q, v4,q} is a paired dominating set of

P5□Pq, so γpr(P5□Pq) ≤ ⌊ 3q
2 ⌋ + 3.

If q ≡ 11 (mod 16), then D ∪ {v4,q} is a paired dominating set of P5□Pq,

so γpr(P5□Pq) ≤ ⌊ 3q
2 ⌋ + 2.

If q ≡ 1, 5, 8 (mod 16), then D ∪ {v4,q, v5,q} is a paired dominating set of

P5□Pq, so γpr(P5□Pq) ≤ ⌊ 3q
2 ⌋ + 3 if q ≡ 1, 5 (mod 16), and γpr(P5□Pq) ≤ ⌊ 3q

2 ⌋ + 2 if

q ≡ 8 (mod 16).
If q ≡ 10, 14 (mod 16), then D ∪ {v2,q, v4,q, v5,q} is a paired dominating set

of P5□Pq, so γpr(P5□Pq) ≤ ⌊ 3q
2 ⌋ + 3.

Clearly, if q ≡ 0, 4, 8, 12 (mod 16), then q ≡ 0 (mod 4) and γpr(P5□Pq) ≤
⌊ 3q
2 ⌋ + 2. If q ≡ 1, 5, 9, 13 (mod 16), then q ≡ 1 (mod 4) and γpr(P5□Pq) ≤ ⌊ 3q

2 ⌋ + 3.

If q ≡ 2, 6, 10, 14 (mod 16), then q ≡ 2 (mod 4) and γpr(P5□Pq) ≤ ⌊ 3q
2 ⌋ + 3. If q ≡

3, 7, 11, 15 (mod 16), then q ≡ 3 (mod 4) and γpr(P5□Pq) ≤ ⌊ 3q
2 ⌋ + 2. The theorem

follows. □

Theorem 3.3.7. For any integer q ≥ 6,

γpr(P6□Pq) =


⌊ 12q

7 ⌋ + 2 if q ≡ 0, 4, 6 (mod 7);

⌊ 12q
7 ⌋ + 3 if q ≡ 1, 2, 3 (mod 7);

⌊ 12q
7 ⌋ + 4 if q ≡ 5 (mod 7).

Proof. By the fact that γpr(P6□Pq) ≥ γt(P6□Pq) and Lemma 3.3.5, we obtain the lower

bound for γpr(P6□Pq) immediately.

Let D = {v1,i, v6,i : i ≡ 2, 3, 6 (mod 7)} ∪ {v2,i, v5,i : i ≡ 6 (mod 7)} ∪
{v3,i, v4,i : i ≡ 1, 4 (mod 7)} (see Figure 3.10 for q = 11).

If q ≡ 4, 6 (mod 7), then D is a paired dominating set of P6□Pq, and thus

γpr(P6□Pq) ≤ ⌊ 12q
7 ⌋ + 2.
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v4,1

v3,1

v6,2 v6,3

v3,4

v4,4

v2,6

v5,6

v6,6

v3,8
v4,8

v6,9 v6,10

v3,11

v4,11

v1,2 v1,3 v1,6 v1,9 v1,10

Figure 3.10 The paired dominating set (black vertices) of P6□P11

If q ≡ 0, 3 (mod 7), then D∪{v3,q, v4,q} is a paired dominating set of P6□Pq,

and thus γpr(P6□Pq) ≤ ⌊ 12q
7 ⌋ + 2 if q ≡ 0 (mod 7) and γpr(P6□Pq) ≤ ⌊ 12q

7 ⌋ + 3 if

q ≡ 3 (mod 7).
If q ≡ 1, 2 (mod 7), then D∪{v2,q, v5,q} is a paired dominating set of P6□Pq,

so γpr(P6□Pq) ≤ ⌊ 12q
7 ⌋ + 3.

If q ≡ 5 (mod 7), then D ∪ {v1,q, v2,q, v5,q, v6,q} is a paired dominating set

of P6□Pq, so γpr(P6□Pq) ≤ ⌊ 12q
7 ⌋ + 4.

This completes the proof. □

3.3.1 Total and Paired Domination Numbers of Some Cylinders

Hu et al. [30] provided the total and the paired domination numbers of

Pp□Cq for p ≥ 2 and q ∈ {3, 4}.

Theorem 3.3.8 ([30]). For any integer p ≥ 2,

γt(Pp□C3) =

⌈4p
5 ⌉ + 1 if p ≡ 0, 1 (mod 5);

⌈4p
5 ⌉ if p ≡ 2, 3, 4 (mod 5);

and

γpr(Pp□C3) =


⌈4p
5 ⌉ + 2 if p ≡ 0 (mod 5);

⌈4p
5 ⌉ + 1 if p ≡ 1, 3 (mod 5);

⌈4p
5 ⌉ if p ≡ 2, 4 (mod 5).

Theorem 3.3.9 ([30]). For any integer p ≥ 2,

γt(Pp□C4) = γpr(Pp□C4) =


p + 1 if p is odd;

p + 2 if p is even.
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Let Pp = (1, 2, . . . , p) be the path with p vertices and Cq = (1, 2, . . . , q) the

cycle with q vertices. We denote the vertex of Pp□Cq corresponding to vertex (i, j) as

vi, j for all i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. We think of vi, j as being in row i and

column j of Pp□Cq. For each j ∈ {1, 2, . . . , q}, let Yj = {vi, j : 1 ≤ i ≤ p}.
We now investigate the total and the paired domination numbers of Pp□Cq

for p ∈ {2, 3, 4} and q ≥ 5.

Theorem 3.3.10. For any integer q ≥ 5, γt(P2□Cq) = γpr(P2□Cq) = 2⌈ q
3⌉.

Proof. Let D be a γt(P2□Cq)-set. Let f (l) be the cardinality of D in the first l column of

P2□Cq for any 5 ≤ l ≤ q. We claim that f (l + 3) ≥ f (l)+ 2 for 5 ≤ l ≤ q. Consider the

graph P2□Cl+3. To dominate all vertices inYl+1∪Yl+2∪Yl+3, we need at least two vertices.

Then these two vertices do not dominate any vertices in
∪l

i=1Yi, so we need at least f (l)
vertices to dominate

∪l
i=1Yi. The claim follows. Next, we prove that f (q) ≥ 2⌈ q

3⌉. We

prove by induction on q. It is easy to check that f (5) ≥ 4. Let q > 5 and suppose that

the result holds for all values less than q. Then f (q) ≥ f (q−3)+2 ≥ 2⌈ q−3
3 ⌉+2 = 2⌈ q

3⌉.
Hence, γt(P2□Cq) = |D | = f (q) ≥ 2⌈ q

3⌉.
Let D = {v1,i, v2,i : i ≡ 2 (mod 3)}. If q ≡ 0 (mod 3), then D is a paired

dominating set of P2□Cq and γpr(P2□Cq) ≤ 2⌈ q
3⌉. If q ≡ 1, 2 (mod 3), then D ∪

{v1,q, v2,q} is a paired dominating set of P2□Cq, so γpr(P2□Cq) ≤ 2⌈ q
3⌉. Therefore,

2⌈ q
3⌉ ≤ γt(P2□Cq) ≤ γpr(P2□Cq) ≤ 2⌈ q

3⌉, so we are done. □

Theorem 3.3.11. For any integer q ≥ 5,

γt(P3□Cq) = q

and

γpr(P3□Cq) =


q if q is even;

q + 1 if q is odd.

Proof. It is easy to check that D = {v2,i : 1 ≤ i ≤ q} is a total dominating set of P3□Cq

with |D | = q. We show that D is a γt(P3□Cq)-set. Clearly, this claim holds for q = 3 and

then we let q ≥ 4. Assume on the contrary that there is a total dominating set D′ such

that |D′| < |D |. It follows that there exists a set Yi such that Yi ∩D′ = ∅; such Yi is called

a zero column. Among all total dominating sets, let D′ have the fewest zero columns.
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Let i be the smallest index such that Yi∩D′ = ∅, and we may assume that i < {1, q} since

P3□Cq is symmetric. Then |Yj ∩ D′| ≥ 1 for each 1 ≤ j < i. If |Yj ∩ D′| ≥ 2 for some

j < i, then D′′ = (D′ \ {v1,k, v3,k})∪ {v2,k} for 1 ≤ k ≤ i is a total dominating set having

fewer zero columns than D′, which contradicts our choice of D′. Thus, we may assume

that |Yj ∩ D′| = 1 for each 1 ≤ j < i, which implies that Yj ∩ D′ = {v2, j}. We see that

v2,i−1 dominates v2,i. Hence, to dominate v1,i and v3,i, D′ must contain the vertices v1,i+1
and v3,i+1. If v2,i+1 ∈ D′, then (D′\{v1,i+1, v3,i+1})∪{v2,i, v2,i+2} is a total dominating set

having fewer zero columns than D′, contradicting our choice of D′. If v2,i+1 < D′, then

v1,i+2, v3,i+2 ∈ D′, and thus (D′\{v1,i+1, v1,i+2, v3,i+1, v3,i+2})∪{v2,i, v2,i+1, v2,i+2, v2,i+3} is

a total dominating set having fewer zero columns than D′, again contradicting our choice

of D′. Now, we can conclude that D is a γt(P3□Cq)-set. Thus, γt(P3□Cq) = |D | = q.

We also get that γpr(P3□Cq) ≥ q if q is even, and γpr(P3□Cq) ≥ q + 1 if q is odd. To

complete the proof, we observe that {v2,i : 1 ≤ i ≤ q} (respectively, {v2,i : 1 ≤ i ≤
q} ∪ {v1,q}) is a paired dominating set of P3□Cq if q is even (respectively, q is odd).

Thus, γpr(P3□Cq) ≤ q if q is even, and γpr(P3□Cq) ≤ q + 1 if q is odd. □

Theorem 3.3.12. For any integer q ≥ 5,

γt(P4□Cq) = γpr(P4□Cq) =


⌊ 6q+8

5 ⌋ − 1 if q ≡ 0 (mod 5);

⌊ 6q+8
5 ⌋ if q ≡ 1, 2, 4 (mod 5);

⌊ 6q+8
5 ⌋ + 1 if q ≡ 3 (mod 5).

Proof. Let D = {v2,i, v3,i, v1,i+2, v1,i+3, v4,i+2, v4,i+3 : i ≡ 1 (mod 5)} (see Figure 3.11 for

q = 10). If q ≡ 0 (mod 5), then D is efficient total and efficient paired dominating

sets of P4□Cq, and by Lemma 3.0.4, γt(P4□Cq) = γpr(P4□Cq) = 6q
5 = ⌊ 6q+8

5 ⌋ − 1.

If q ≡ 1, 4 (mod 5), then D is a paired dominating set of P4□Cq and γpr(P4□Cq) ≤
⌊ 6q+8

5 ⌋. If q ≡ 2, 3 (mod 5), then D ∪ {v2,q, v3,q} is a paired dominating set of P4□Cq,

so γpr(P4□Cq) ≤ ⌊ 6q+8
5 ⌋ if q ≡ 2 (mod 5), and γpr(P4□Cq) ≤ ⌊ 6q+8

5 ⌋ + 1 if q ≡
3 (mod 5).

To complete the proof, we only show the lower bound of γt(P4□Cq) for

q ≡ 1, 2, 3, 4 (mod 5). We first let q = 5k + 3, where k ≥ 1. Note that D is an

efficient total dominating set of P4□C5k with |D | = 6k. These 6k vertices dominate

only the vertices in
∪5k−1

i=1 Yi∪{v1,5k, v4,5k, v2,5k+3, v3,5k+3} of P4□C5k+3. To dominate the

remaining vertices in Y5k+1 ∪Y5k+2 ∪ {v2,5k, v3,5k, v1,5k+3, v4,5k+3}, we need six vertices.
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v3,1

v2,1

v4,3

v1,3 v1,4

v4,4

v2,6

v3,6

v1,8

v4,8 v4,9

v1,9

Figure 3.11 The total and paired dominating sets (black vertices) of P4□C10

Thus, γt(P4□Cq) ≥ 6k + 6 = ⌊ 6q+8
5 ⌋ + 1 for q = 5k + 3. We next consider the case q ≡

1, 2, 4 (mod 5). To dominate all vertices in Yq−2 ∪ Yq−1, we need at least four vertices.

These four vertices do not dominate any vertices in
∪q−4

i=1 Yi. Note that the induced

subgraph P4□Cq[
∪q−4

i=1 Yi] is P4□Pq−4. Therefore, γt(P4□Cq) ≥ 4 + γt(P4□Pq−4). By

Lemma 3.3.3, we get that

γt(P4□Cq) ≥


4 + ⌊ 6(5k−3)+8

5 ⌋ = 6k + 2 = ⌊ 6(5k+1)+8
5 ⌋ = ⌊ 6q+8

5 ⌋ if q = 5k + 1, k ≥ 1;

4 + ⌊ 6(5k−2)+12
5 ⌋ = 6k + 4 = ⌊ 6(5k+2)+8

5 ⌋ = ⌊ 6q+8
5 ⌋ if q = 5k + 2, k ≥ 1;

4 + ⌊ 6(5k)+12
5 ⌋ = 6k + 6 = ⌊ 6(5k+4)+8

5 ⌋ = ⌊ 6q+8
5 ⌋ if q = 5k + 4, k ≥ 1.

This completes the proof. □

3.3.2 Upper Bounds of γt(Pp□Cq) and γpr(Pp□Cq)
We recently determine the exact values of γt(Pp□Cq) and γpr(Pp□Cq) for

p ∈ {2, 3, 4} and q ≥ 5. Now, we present the upper bounds of γt(Pp□Cq) and γpr(Pp□Cq)
for the other values of p and q. In the next three lemmas, we first give their upper bounds

for small values of p and q, that is, p ≥ 5 and q = 5 [30]; p = 5 and q ≥ 6; p = 6 and

q ≥ 6. We then provide upper bounds for p ≥ 7 and q ≥ 6 in Theorem 3.3.19 (below).

Lemma 3.3.13 ([30]). For any integer p ≥ 5,

γt(Pp□C5) ≤

⌈9p
7 ⌉ if p ≡ 4 (mod 7);

⌈9p
7 ⌉ + 1 otherwise;
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and

γpr(Pp□C5) ≤


⌈4p
3 ⌉ if p ≡ 1 (mod 3);

⌈4p
3 ⌉ + 1 if p ≡ 2 (mod 3);

⌈4p
3 ⌉ + 2 if p ≡ 0 (mod 3).

Note that γt(Pp□Cq) ≤ γt(Pp□Pq) and γpr(Pp□Cq) ≤ γpr(Pp□Pq). By

Lemma 3.3.4 and Theorem 3.3.6, we immediately get the upper bounds of γt(P5□Cq)
and γpr(P5□Cq) for q ≡ 1, 2, 3 (mod 4) in Lemma 3.3.14; however, if q ≡ 0 (mod 4),
then we have γt(P5□Cq) = γpr(P5□Cq) = 3q

2 by Lemma 3.3.16. By Lemma 3.3.5

and Theorem 3.3.7, we have the results of Lemma 3.3.15 for q ≡ 1, 2, 4, 5, 6 (mod 7)).
If q ≡ 0, 3 (mod 7), let D = {v1,i, v6,i : i ≡ 2, 3, 6 (mod 7)} ∪ {v2,i, v5,i : i ≡ 6

(mod 7)}∪ {v3,i, v4,i : i ≡ 1, 4 (mod 7)} as defined in the proof of Theorem 3.3.7. Then

D is a paired dominating set of P6□Cq with cardinality ⌊ 12q
7 ⌋ (respectively, ⌊ 12q

7 ⌋ + 1)

if q ≡ 0 (mod 7) (respectively, q ≡ 3 (mod 7)).

Lemma 3.3.14. For any integer q ≥ 6,

γt(P5□Cq) ≤

10 if q = 6;

⌊ 3q
2 ⌋ + 2 if q ≡ 1, 2, 3 (mod 4) and q , 6;

and

γpr(P5□Cq) ≤


10 if q = 6;

⌊ 3q
2 ⌋ + 3 if q ≡ 1, 2 (mod 4) and q , 6;

⌊ 3q
2 ⌋ + 2 if q ≡ 3 (mod 4).

Lemma 3.3.15. For any integer q ≥ 6,

γt(P6□Cq) ≤ γpr(P6□Cq) ≤



⌊ 12q
7 ⌋ if q ≡ 0 (mod 7);

⌊ 12q
7 ⌋ + 3 if q ≡ 1, 2 (mod 7);

⌊ 12q
7 ⌋ + 1 if q ≡ 3 (mod 7);

⌊ 12q
7 ⌋ + 2 if q ≡ 4, 6 (mod 7);

⌊ 12q
7 ⌋ + 4 if q ≡ 5 (mod 7).

Before we establish the upper bounds of γt(Pp□Cq) and γpr(Pp□Cq) for

p ≥ 7 and q ≥ 6, we need the following lemmas.
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Lemma 3.3.16. If p ≡ 1 (mod 2) and q ≡ 0 (mod 4), then γt(Pp□Cq) = γpr(Pp□Cq) =
(p+1)q

4 .

Proof. Let D = {vi, j, vi, j+1, vi+2, j+2, vi+2, j+3 : i, j ≡ 1 (mod 4)}. It is easy to check

that D is both an efficient total and an efficient paired dominating set of Pp□Cq with

|D | = (p+1)q
4 , so the theorem follows. □

Lemma 3.3.17 ([30]). For any integers p ≥ 1 and q ≥ 4, γt(Pp□Cq) ≤ γt(Pp+1□Cq)
and γpr(Pp□Cq) ≤ γpr(Pp+1□Cq).

Lemma 3.3.18. For any integers p ≥ 1 and q ≥ 4, γt(Pp□Cq) ≤ γt(Pp□Cq+1) and
γpr(Pp□Cq) ≤ γpr(Pp□Cq+1).

Proof. Let D be a γt(Pp□Cq+1)-set or a γpr(Pp□Cq+1)-set. IfYq+1∩D = ∅, then D is both

a total and a paired dominating set of Pp□Cq, so γt(Pp□Cq) ≤ |D | and γpr(Pp□Cq) ≤
|D |. Next, we assume thatYq+1∩D , ∅. Let A = {i : vi,q+1 ∈ D}, B = {i : vi,q ∈ D}, and

D′ = D\{vi,q+1 : i ∈ A∩B}∪{vi,q−1 : i ∈ A∩B}\{vi,q+1 : i ∈ A\B}∪{vi,q : i ∈ A\B}.
We can check that D′ is a total dominating set of Pp□Cq. Hence, γt(Pp□Cq) ≤ |D′| ≤
|D |. If the induced subgraph Pp□Cq[D′] does not contain odd components, then D′ is a

paired dominating set of Pp□Cq, so γt(Pp□Cq) ≤ |D |. Thus, we assume that Pp□Cq[D′]
contains k ≥ 1 odd component. By the construction of D′ from D, |D′| ≤ |D| − k.

Let D′′ be the set obtained from D′ by adding k vertices such that Pp□Cq[D′′] does

not contain odd components. Therefore, D′′ is a paired dominating set of Pp□Cq, so

γpr(Pp□Cq) ≤ |D′′| = |D′| + k ≤ (|D | − k) + k = |D |. □

We next provide the upper bounds for the total and the paired domination

numbers of Pp□Cq for p ≥ 7 and q ≥ 6.

Theorem 3.3.19. For any integers p ≥ 7 and q ≥ 6,

γt(Pp□Cq) ≤ γpr(Pp□Cq) ≤ 2⌈p + 1
2

⌉ ⌈q
4
⌉ .

Proof. We only show the upper bound of γpr(Pp□Cq). Let p = 2k1+1−i and q = 4k2− j,

where k1 and k2 are positive integers, i ∈ {0, 1}, and j ∈ {0, 1, 2, 3}. By Lemma 3.3.16,

γpr(P2k1+1□C4k2) =
(2k1+2)(4k2)

4 = 2⌈ p+1
2 ⌉ ⌈ q

4⌉. Lemmas 3.3.17 and 3.3.18 show that

γpr(Pp□Cq) ≤ γpr(P2k1+1□C4k2) = 2⌈ p+1
2 ⌉ ⌈ q

4⌉. □
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Next, we give some upper bounds of γt(Pp□Cq) and γpr(Pp□Cq) which are

better than those in Theorem 3.3.19 for some special values of p and q. For Theorems

3.3.20, 3.3.21, 3.3.22, and 3.3.23, we let

D = {vi, j, vi, j+1, vi+2, j+2, vi+2, j+3 : i, j ≡ 1 (mod 4)}.

Theorem 3.3.20. If 7 ≤ p ≡ 1 (mod 2) and 9 ≤ q ≡ 1 (mod 4), then γt(Pp□Cq) ≤
(p+1)(q+1)

4 .

Proof. For p ≡ 1, 3 (mod 4), let Dt = D ∪ {vi,q : i ≡ 3 (mod 4)} (see Figure 3.12). It

is easy to check that Dt is a total dominating set of Pp□Cq with |Dt | = (p+1)(q+1)
4 . Thus,

γt(Pp□Cq) ≤ (p+1)(q+1)
4 . □

Figure 3.12 The total dominating sets (black vertices) of P9□C9 (left) and P11□C9 (right)

Let p = 2k1 + 1 and q = 4k2 + 1, where k1 ≥ 3 and k2 ≥ 2. We get

that γt(Pp□Cq) ≤ 2(k1 + 1)(k2 + 1
2 ) by Theorem 3.3.20, which is better than that of

Theorem 3.3.19, providing γt(Pp□Cq) ≤ 2(k1 + 1)(k2 + 1), for these values of p and q.

Theorem 3.3.21. If 8 ≤ p ≡ 0 (mod 2) and 9 ≤ q ≡ 1 (mod 4), then γt(Pp□Cq) ≤
(p+2)(q+1)

4 − 2 and γpr(Pp□Cq) ≤ (p+2)(q+3)
4 − 4.

Proof. For p ≡ 0 (mod 4), let Dt = D∪{vi,q : i ≡ 3 (mod 4), i < p−1}∪ {vp, j, vp, j+1 :

j ≡ 1 (mod 4), j < q} (see Figure 3.13 (left) for p = 8 and q = 9) and Dp = Dt ∪ {vi,q :

i ≡ 0, 2 (mod 4), i < p}. Then Dt is a total dominating set of Pp□Cq with |Dt | =
(p+2)(q+1)

4 − 2 and Dp is a paired dominating set of Pp□Cq with |Dp | = (p+2)(q+3)
4 − 4.
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Figure 3.13 The total dominating sets (black vertices) of P8□C9 (left) and P10□C9 (right)

For p ≡ 2 (mod 4), let Dt = (D ∪ {vi,q : i ≡ 3 (mod 4)} ∪ {vp, j, vp, j+1 :

j ≡ 3 (mod 4), j < q}) \ {vp−1,q} (see Figure 3.13 (right) for p = 10 and q = 9)

and Dp = Dt ∪ {vi,q : i ≡ 0, 2 (mod 4), i < p}. Then Dt is a total dominating set

of Pp□Cq with |Dt | = (p+2)(q+1)
4 − 2 and Dp is a paired dominating set of Pp□Cq with

|Dp | = (p+2)(q+3)
4 − 4. □

Let p = 2k1 and q = 4k2 + 1, where k1 ≥ 4 and k2 ≥ 2. Theorem 3.3.21

gives that γt(Pp□Cq) ≤ 2(k1 + 1)(k2 + 1
2 ) − 2 and γpr(Pp□Cq) ≤ 2(k1 + 1)(k2 + 1) − 4,

which are better than those of Theorem 3.3.19, showing that γt(Pp□Cq) ≤ γpr(Pp□Cq) ≤
2(k1 + 1)(k2 + 1), for these specific values of p and q.

Theorem 3.3.22. If 8 ≤ p ≡ 0 (mod 2) and 6 ≤ q ≡ 2 (mod 4), then γt(Pp□Cq) ≤
γpr(Pp□Cq) ≤ (p+2)(q+2)

4 − 4.

Proof. If p ≡ 0 (mod 4), let Dp = (D ∪ {vi,1, vi,q : i ≡ 3 (mod 4), i < p − 1} ∪
{vp, j, vp, j+1 : j ≡ 1 (mod 4)}) \ {vp,2, vp,q−1} (see Figure 3.14 (left) for p = 8 and

q = 10). If p ≡ 2 (mod 4), let Dp = (D∪{vi,1, vi,q : i ≡ 3 (mod 4)}∪{vp, j, vp, j+1 : j ≡ 1

(mod 4)}) \ {vp−1,1, vp−1,q, vp,1, vp,q} (see Figure 3.14 (right) for p = 10 and q = 10).

Then Dp is a paired dominating set of Pp□Cq with |Dp | = (p+2)(q+2)
4 − 4. □

Let p = 2k1 and q = 4k2 + 2, where k1 ≥ 4 and k2 ≥ 1. Theorem 3.3.22

shows that γt(Pp□Cq) ≤ γpr(Pp□Cq) ≤ 2(k1+1)(k2+1)−4, which are better than those
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Figure 3.14 The paired dominating sets (black vertices) of P8□C10 (left) and P10□C10

(right)

of Theorem 3.3.19, providing that γt(Pp□Cq) ≤ γpr(Pp□Cq) ≤ 2(k1 + 1)(k2 + 1), for

these specific values of p and q.

Theorem 3.3.23. If 8 ≤ p ≡ 0 (mod 2) and 7 ≤ q ≡ 3 (mod 4), then γt(Pp□Cq) ≤
γpr(Pp□Cq) ≤ (p+2)(q+1)

4 − 2.

Proof. If p ≡ 0 (mod 4), let Dp = D ∪ {vi,1 : i ≡ 3 (mod 4), i < p − 1} ∪ {vp, j, vp, j+1 :

j ≡ 3 (mod 4)} (see Figure 3.15 (left) for p = 8 and q = 11). If p ≡ 2 (mod 4), let

Dp = (D ∪ {vi,1 : i ≡ 3 (mod 4)} ∪ {vp, j, vp, j+1 : j ≡ 1 (mod 4)}) \ {vp−1,1, vp,1} (see

Figure 3.15 (right) for p = 10 and q = 11). Then Dp is a paired dominating set of Pp□Cq

with |Dp | = (p+2)(q+1)
4 − 2. □

Let p = 2k1 and q = 4k2 + 3, where k1 ≥ 4 and k2 ≥ 1. Theorem 3.3.23

gives that γt(Pp□Cq) ≤ γpr(Pp□Cq) ≤ 2(k1 + 1)(k2 + 1) − 2, which are better than those

of Theorem 3.3.19, showing that γt(Pp□Cq) ≤ γpr(Pp□Cq) ≤ 2(k1+1)(k2+1), for these

specific values of p and q.

3.3.3 Lower Bounds of γt(Pp□Cq) and γpr(Pp□Cq)
Previously, we obtain the exact values of γt(Pp□Cq) and γpr(Pp□Cq) for

p ∈ {2, 3, 4} and q ≥ 5 and their upper bounds for p, q ≥ 5. We next provide the lower

bounds of γt(Pp□Cq) and γpr(Pp□Cq) for p, q ≥ 5. We first need the following two

lemmas.
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Figure 3.15 The paired dominating sets (black vertices) of P8□C11 (left) and P10□C11

(right)

Lemma 3.3.24. For any integers p ≥ 1 and q ≥ 4, γt(Pp□Cq) ≥ γt(Pp□Pq−2).

Proof. Let D be a γt(Pp□Cq)-set, A = {i : vi,q ∈ D}, and B = {i : vi,q−1}. Define the

set D′ = D \ {vi,q : i ∈ A} ∪ {vi,2 : i ∈ A} \ {vi,q−1 : i ∈ B} ∪ {vi,q−3 : i ∈ B}. We

can verify that D′ is a total dominating set of Pp□Pq−2, so γt(Pp□Pq−2) ≤ |D′| ≤ |D | =
γt(Pp□Cq). □

Lemma 3.3.25 ([22]). For any integers p ≥ 17 and q ≥ 19,

γt(Pp□Pq−2) ≥
3p(q − 2) + 2(p + q − 2)

12
− 1.

By the fact that γpr(Pp□Cq) ≥ γt(Pp□Cq) and Lemmas 3.3.24 and 3.3.25,

we get the second result in Theorem 3.3.26. For the first result of Theorem 3.3.26, we

can get that by applying Lemma 3.3.17 and Theorem 3.3.12.

Theorem 3.3.26. Let p and q be integers.

1. If 5 ≤ p ≤ 16 and 5 ≤ q ≤ 18, then

γpr(Pp□Cq) ≥ γt(Pp□Cq) ≥


⌊ 6q+8

5 ⌋ − 1 if q ≡ 0 (mod 5);

⌊ 6q+8
5 ⌋ if q ≡ 1, 2, 4 (mod 5);

⌊ 6q+8
5 ⌋ + 1 if q ≡ 3 (mod 5).

2. If p ≥ 17 and q ≥ 19, then γpr(Pp□Cq) ≥ γt(Pp□Cq) ≥ 3p(q−2)+2(p+q−2)
12 − 1.
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3.4 Closed Helm Graphs and Web Graphs

Let Pp = (1, 2, . . . , p) be the path with p vertices and Cq = (1, 2, . . . , q) be

the cycle with q vertices. We use ui, j to denote the vertex of Pp□Cq corresponding to

the vertex (i, j) for all i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. For any integers p ≥ 1 and

q ≥ 3,

1. the closed helm graph CHp,q is obtained from Pp□Cq by adding the vertex c and

the edge cu1, j for all j ∈ {1, 2, . . . , q}, and

2. the web graph Wp,q is obtained from CHp,q by adding the vertices v1, v2, . . . , vq

and the edge up, jv j for all j ∈ {1, 2, . . . , q}.

We observe that CH1,q � Wq and W1,q � Hq for all q ≥ 3. The closed helm graph CHp,q

and the web graph Wp,q are illustrated in Figure 3.16.

c

u1,q

u1,3

u1,1

u1,2

up,q

up,1

up,2

up,3

c

u1,q

u1,3

u1,1

u1,2

up,q

up,1

up,2

up,3

vq

v3

v1

v4 v2

vq−1

Figure 3.16 The closed helm graph CHp,q (left) and the web graph Wp,q (right)

Throughout this section, for each i ∈ {1, 2, . . . , p}, let Ci = {ui, j : 1 ≤ j ≤
q} be the set of vertices in ith cycle of CHp,q and Wp,q.

In this section, we determine the total and the paired domination numbers

of CHp,q and Wp,q for some values of p and q. We then provide their upper bounds for

the other cases.
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3.4.1 Total andPairedDominationNumbers of SomeClosedHelmGraphs

We compute the total and the paired domination numbers of CHp,q, where

the values of p and q are divided as follows: p ≥ 2 and q = 3; p ≥ 2 and q = 4; p = 2

and q ≥ 5; p = 3 and q ≥ 5; p = 4 and q ≥ 5.

Theorem 3.4.1. For any integer p ≥ 2,

γt(CHp,3) =

⌈4p
5 ⌉ + 1 if p ≡ 0, 1 (mod 5);

⌈4p
5 ⌉ if p ≡ 2, 3, 4 (mod 5);

and

γpr(CHp,3) =


⌈4p
5 ⌉ + 2 if p ≡ 0 (mod 5);

⌈4p
5 ⌉ + 1 if p ≡ 1, 3 (mod 5);

⌈4p
5 ⌉ if p ≡ 2, 4 (mod 5).

Proof. Let D be a γt(CHp,3)-set. If c ∈ D, then, without loss of generality, u1,1 ∈ D to

dominate c. It follows that u2,1 < D; otherwise, D\{c} is a total dominating set of CHp,3

with cardinality less than D. Hence, D′ = (D \ {c}) ∪ {u2,1} is a total dominating set of

CHp,3 with |D′| = |D |, so we can assume that c < D. Then D is also a total dominating

set of Pp□C3, and thus |D | ≥ γt(Pp□C3). By Theorem 3.3.8, we get

γt(CHp,3) = |D| ≥ γt(Pp□C3) =

⌈4p
5 ⌉ + 1 if p ≡ 0, 1 (mod 5);

⌈4p
5 ⌉ if p ≡ 2, 3, 4 (mod 5).

Since γpr(CHp,3) ≥ γt(CHp,3) and γpr(CHp,3) is even, we get that γpr(CHp,3) ≥ ⌈4p
5 ⌉ if

p ≡ 2, 4 (mod 5), γpr(CHp,3) ≥ ⌈4p
5 ⌉+1 if p ≡ 1, 3 (mod 5), and γpr(CHp,3) ≥ ⌈4p

5 ⌉+2
if p ≡ 0 (mod 5).

To obtain the upper bounds of γt(CHp,3) and γpr(CHp,3), we let

D = {ui,2 : i ≡ 1, 2 (mod 5)} ∪ {ui,1, ui,3 : i ≡ 4 (mod 5)}.

If p ≡ 2, 4 (mod 5), then D is a total dominating set of CHp,3, so γt(CHp,3) ≤ |D | =
⌈4p
5 ⌉. If p ≡ 3 (mod 5), then D∪{up,2} is a total dominating set of CHp,3, so γt(CHp,3) ≤

|D |+1 = ⌈4p
5 ⌉. If p ≡ 0, 1 (mod 5), then D∪{up−1,2} is a total dominating set of CHp,3,

so γt(CHp,3) ≤ |D | + 1 = ⌈4p
5 ⌉ + 1. Now, the theorem holds for γt(CHp,3).
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If p ≡ 2, 4 (mod 5), then D is a paired dominating set of CHp,3, and thus

γpr(CHp,3) ≤ ⌈4p
5 ⌉. If p ≡ 1 (mod 5), then D ∪ {up,3} is a paired dominating set

of CHp,3, so γpr(CHp,3) ≤ ⌈4p
5 ⌉ + 1. If p ≡ 0, 3 (mod 5), then D ∪ {up,1, up,3} is

a paired dominating set of CHp,3, so γpr(CHp,3) ≤ ⌈4p
5 ⌉ + 2 if p ≡ 0 (mod 5), and

γpr(CHp,3) ≤ ⌈4p
5 ⌉ + 1 if p ≡ 3 (mod 5). The theorem follows. □

Theorem 3.4.2. For any integer p ≥ 2,

γt(CHp,4) = γpr(CHp,4) =


p + 1 if p is odd;

p + 2 if p is even.

Proof. Let D be a γt(CHp,4)-set. If c ∈ D, then, without loss of generality, u1,1 ∈ D,

and thus u1,2 < D. Therefore, D′ = (D \ {c}) ∪ {u1,2} is a total dominating set of CHp,4

with |D′| = |D |, so we can assume that c < D. Then D is also a total dominating set of

Pp□C4. By Theorem 3.3.9, we have

γt(CHp,4) = |D | ≥ γt(Pp□C4) =


p + 1 if p is odd;

p + 2 if p is even.

Note that γpr(CHp,4) ≥ γt(CHp,4). To complete this theorem, we only determine the

upper bound of γpr(CHp,4). Let D = {ui,1, ui,2 : i ≡ 1 (mod 4)} ∪ {ui,3, ui,4 : i ≡ 3

(mod 4)}. Then D is a paired dominating set of CHp,4 with cardinality p+ 1 if p is odd,

and D ∪ {up,1, up,2} is a paired dominating set of CHp,4 with cardinality p + 2 if p is

even. □

Theorem 3.4.3. For any integer q ≥ 5,

γt(CH2,q) =


4 if q = 6;

2⌈ q+3
4 ⌉ if q ≡ 0, 1 (mod 4);

2⌈ q+3
4 ⌉ − 1 if q ≡ 2, 3 (mod 4) and q , 6;

and

γpr(CH2,q) =

4 if q = 6;

2⌈ q+3
4 ⌉ otherwise.

Proof. Obviously, {u1,1, u2,1, u1,4, u2,4} is a γt(CH2,6)-set and a γpr(CH2,6)-set, so let

q , 6. If q ≡ 0, 1 (mod 4), let D = {c, u1,1}∪ {u2, j, u2, j+1 : j ≡ 3 (mod 4)}; otherwise,
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let D = {c, u1,1, u2,1}∪{u2, j, u2, j+1 : j ≡ 0 (mod 4)}. Then D is a total dominating set of

CH2,q with |D | = 2⌈ q+3
4 ⌉ if q ≡ 0, 1 (mod 4), and |D | = 2⌈ q+3

4 ⌉ −1 if q ≡ 2, 3 (mod 4).
We first show that among all total dominating sets containing c, D is minimum. Suppose

on the contrary that there is a total dominating set D′ containing c such that |D′| < |D|.
By the construction of D, we have |D | ≤ |S | for every total dominating set S with c ∈ S

and |S ∩ C1 | = 1. Without loss of generality, we assume that D′ contains at least two

vertices u1,1 and u1,l of C1 for some l , 1. Hence, D′′ = (D′ \ {u1,l})∪ {u2,l+1} is a total

dominating set with |D′′| ≤ |D′| and |D′′ ∩C1 | < |D′ ∩C1 |. We can repeat this process

until we obtain |D′′ ∩ C1 | = 1. Therefore, |D | ≤ |D′′| ≤ |D′| < |D |, a contradiction.

We next claim that D is a γt(CH2,q)-set. Suppose that D̂ is a total dominating

set with |D̂| < |D |. Then c < D̂, and thus D̂ is a total dominating set of P2□Cq. By

Theorem 3.3.10, |D̂ | ≥ γt(P2□Cq) = 2⌈ q
3⌉. Then

|D̂ | ≥



2⌈4k
3 ⌉ = 2(k + ⌈ k

3⌉) ≥ 2(k + 1) = 2⌈ q+3
4 ⌉ = |D | if q = 4k, k ≥ 2;

2⌈4k+1
3 ⌉ = 2(k + ⌈ k+1

3 ⌉) ≥ 2(k + 1) = 2⌈ q+3
4 ⌉ = |D | if q = 4k + 1, k ≥ 1;

2⌈4k+2
3 ⌉ = 2(k + ⌈ k+2

3 ⌉) > 2(k + 2) − 1 = 2⌈ q+3
4 ⌉ − 1 = |D | if q = 4k + 2, k ≥ 2;

2⌈4k+3
3 ⌉ = 2(k + ⌈ k+3

3 ⌉) > 2(k + 2) − 1 = 2⌈ q+3
4 ⌉ − 1 = |D | if q = 4k + 3, k ≥ 1;

contradicting the assumption |D̂ | < |D |, so our claim holds.

Since γpr(CH2,q) ≥ γt(CH2,q) and γpr(CH2,q) is even, we get γpr(CH2,q) ≥
2⌈ q+3

4 ⌉. If q ≡ 0, 1 (mod 4), then let D = {c, u1,1} ∪ {u2, j, u2, j+1 : j ≡ 3 (mod 4)};
otherwise, let D = {c, u1,1, u2,1, u2,2}∪{u2, j, u2, j+1 : j ≡ 0 (mod 4)}. Then D is a paired

dominating set of CH2,q with cardinality 2⌈ q+3
4 ⌉, and thus γpr(CH2,q) = 2⌈ q+3

4 ⌉. □

Theorem 3.4.4. For any integer q ≥ 5,

γt(CH3,q) =

2⌈ q+2

3 ⌉ if q ≡ 0, 2, 3 (mod 6);

2⌈ q+3
3 ⌉ − 1 otherwise;

and

γpr(CH3,q) = 2⌈q + 3
3

⌉ .

Proof. Let E1 = {c, u1,1}∪{u2, j, u3, j : j ≡ 0 (mod 3)}, E2 = {c, u1,1}∪{u2, j, u3, j : j ≡ 2

(mod 3)}, and E3 = {c, u1,1, u2,1} ∪ {u3, j, u3, j+1 : j ≡ 3 (mod 6)} ∪ {u2, j, u2, j+1 : j ≡ 0

Ref. code: 25666109320413HRB



35

(mod 6)}. If q ≡ 0, 3 (mod 6) (respectively, q ≡ 2 (mod 6) and q ≡ 1, 4, 5 (mod 6)),
then D = E1 (respectively, D = E2 and D = E3) is a total dominating set of CH3,q

with cardinality 2⌈ q+2
3 ⌉ (respectively, 2⌈ q+2

3 ⌉ and 2⌈ q+3
3 ⌉ − 1). We show that among all

total dominating sets containing the vertex c, D is minimum. Assume that D′ is a total

dominating set with c ∈ D′ and |D′| < |D |. Let S = {v : v < N(c)}. Then the induced

subgraph CH3,q[S] contains P2□Cq and the vertex c. Thus, D′ contains at least 2⌈ q
3⌉

vertices to dominate P2□Cq (by Theorem 3.3.10) and one vertex of C1 to dominate c.

Hence, |D′| ≥ 2⌈ q
3⌉ + 2 = 2⌈ q+3

3 ⌉ ≥ |D |, a contradiction.

We next show that D is a γt(CH3,q)-set. Suppose that D̂ is a total dominating

set with |D̂ | < |D|. Then c < D̂, and hence D̂ is also a total dominating set of P3□Cq.

By Theorem 3.3.11, |D̂ | ≥ γt(P3□Cq) = q. Then

|D̂ | ≥



6k ≥ 4k + 2 = 2(2k + 1) = 2⌈ q+2
3 ⌉ = |D | if q = 6k, k ≥ 1;

6k + 1 ≥ 4k + 3 = 2(2k + 2) − 1 = 2⌈ q+3
3 ⌉ − 1 = |D | if q = 6k + 1, k ≥ 1;

6k + 2 ≥ 4k + 4 = 2(2k + 2) = 2⌈ q+2
3 ⌉ = |D | if q = 6k + 2, k ≥ 1;

6k + 3 > 4k + 4 = 2(2k + 2) = 2⌈ q+2
3 ⌉ = |D | if q = 6k + 3, k ≥ 1;

6k + 4 > 4k + 5 = 2(2k + 3) − 1 = 2⌈ q+3
3 ⌉ − 1 = |D | if q = 6k + 4, k ≥ 1;

6k + 5 ≥ 4k + 5 = 2(2k + 3) − 1 = 2⌈ q+3
3 ⌉ − 1 = |D | if q = 6k + 5, k ≥ 0,

contradicting with our assumption |D̂ | < |D |.
Note that γpr(CH3,q) ≥ γt(CH3,q). If q ≡ 0, 2, 3 (mod 6), then γpr(CH3,q) ≥

2⌈ q+2
3 ⌉ = 2⌈ q+3

3 ⌉. Since γpr(CH3,q) is even, we get γpr(CH3,q) ≥ 2⌈ q+3
3 ⌉ for q ≡ 1, 4, 5

(mod 6). Consider the sets E1, E2, and E3 as defined above. We observe that the set E1

(respectively, E2) is a paired dominating set with cardinality 2⌈ q+2
3 ⌉ = 2⌈ q+3

3 ⌉ if q ≡ 0, 3

(mod 6) (respectively, q ≡ 2 (mod 6)). If q ≡ 1, 4, 5 (mod 6), then E3 ∪ {u3,1} is a

paired dominating set with cardinality 2⌈ q+3
3 ⌉. This completes the proof. □

Theorem 3.4.5. For any integer q ≥ 5,

γt(CH4,q) =

6 if q = 5;

q + 2 if q ≥ 6;
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and

γpr(CH4,q) =


6 if q = 5;

q + 2 if q is even;

q + 3 if q is odd and q , 5.

Proof. If q = 5, then it is clear that {u2,1, u3,1, u1,3, u1,4, u4,3, u4,4} is both a γt(CH4,q)-set

and a γpr(CH4,q)-set, so we let q ≥ 6. Let D = {c, u1,q} ∪ {u3, j : 1 ≤ j ≤ q}, which

is a total dominating set of CH4,q with |D | = q + 2. Let D′ be a total dominating set

containing c. Then the induced subgraph CH4,q[{v : v < N(c)}] consists of P3□Cq and

the vertex c. By Theorem 3.3.11, D′ contains at least q vertices to dominate P3□Cq. It

also contains one vertex of C1 to dominate c. Hence, |D′| ≥ q + 2. We conclude that

among all total dominating sets of CH4,q containing c, D is minimum.

Next, we show that D is a γt(CH4,q)-set. If D̂ is a total dominating set with

|D̂ | < |D |, then c < D̂, so D̂ is also a total dominating set of P4□Cq. Theorem 3.3.12

gives that

|D̂ | ≥ γt(P4□Cq) =


⌊ 6q+8

5 ⌋ − 1 if q ≡ 0 (mod 5);

⌊ 6q+8
5 ⌋ if q ≡ 1, 2, 4 (mod 5);

⌊ 6q+8
5 ⌋ + 1 if q ≡ 3 (mod 5).

It is easy to check that |D̂ | ≥ |D | for all q ≥ 6, a contradiction. Therefore, γt(CH4,q) =
q + 2.

Since γpr(CH4,q) ≥ γt(CH4,q) and γpr(CH4,q) is even, γpr(CH4,q) ≥ q + 2

if q is even, and γpr(CH4,q) ≥ q + 3 if q is odd. Note that D (respectively, D ∪ {u2,1})
defined above is a paired dominating set if q is even (respectively, odd). The theorem

follows. □

3.4.2 Upper Bounds of γt(CHp,q) and γpr(CHp,q)
Recently, we determine the exact values of γt(CHp,q) and γpr(CHp,q) for

some values of p and q. Next, we present their upper bounds for p, q ≥ 5. Before we

can achieve these bounds, we need the following result.

Let H be the graph obtained from CHp,q by deleting the vertices c and u1, j

for all j ∈ {1, 2, . . . , q}. Note that the union of {c, u1,1} and a γt(H)-set (respectively,
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a γpr(H)-set) is a total dominating set (respectively, a paired dominating set) of CHp,q.

Then we have the following lemma where we replace H by Pp−1□Cq.

Lemma 3.4.6. If p ≥ 2 and q ≥ 3 are integers, then γt(CHp,q) ≤ γt(Pp−1□Cq) + 2 and
γpr(CHp,q) ≤ γpr(Pp−1□Cq) + 2.

By using Lemma 3.4.6 and Lemma 3.3.13 (respectively, Theorem 3.3.12),

we can easily get Theorem 3.4.7 (respectively, Theorem 3.4.8).

Theorem 3.4.7. For any integer p ≥ 5,

γt(CHp,5) ≤

⌈9(p−1)7 ⌉ + 2 if p ≡ 5 (mod 7);

⌈9(p−1)7 ⌉ + 3 otherwise;

and

γpr(CHp,5) ≤


⌈4(p−1)3 ⌉ + 3 if p ≡ 0 (mod 3);

⌈4(p−1)3 ⌉ + 4 if p ≡ 1 (mod 3);

⌈4(p−1)3 ⌉ + 2 if p ≡ 2 (mod 3).

Theorem 3.4.8. For any integer q ≥ 6,

γt(CH5,q) ≤ γpr(CH5,q) ≤


⌊ 6q+8

5 ⌋ + 1 if q ≡ 0 (mod 5);

⌊ 6q+8
5 ⌋ + 2 if q ≡ 1, 2, 4 (mod 5);

⌊ 6q+8
5 ⌋ + 3 if q ≡ 3 (mod 5).

In the next theorem, if q ≡ 0 (mod 4), then γt(CH6,q) ≤ γpr(CH6,q) ≤
γpr(P5□Cq) + 2 = 6q

4 + 2 = ⌊ 3q
2 ⌋ + 2 by Lemmas 3.4.6 and 3.3.16. For the other cases,

we can get the results from Lemmas 3.4.6 and 3.3.14.

Theorem 3.4.9. For any integer q ≥ 6,

γt(CH6,q) ≤


12 if q = 6;

⌊ 3q
2 ⌋ + 2 if q ≡ 0 (mod 4);

⌊ 3q
2 ⌋ + 4 if q ≡ 1, 2, 3 (mod 4) and q , 6;
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and

γpr(CH6,q) ≤



12 if q = 6;

⌊ 3q
2 ⌋ + 2 if q ≡ 0 (mod 4);

⌊ 3q
2 ⌋ + 5 if q ≡ 1, 2 (mod 4) and q , 6;

⌊ 3q
2 ⌋ + 4 if q ≡ 3 (mod 4).

Theorems 3.4.10, 3.4.11, and 3.4.12 can be got from Lemma 3.4.6 with

Lemma 3.3.15, Theorem 3.3.19, and Theorem 3.3.20, respectively. Theorem 3.4.13 can

also be obtained from Lemma 3.4.6 and Theorems 3.3.21 - 3.3.23.

Theorem 3.4.10. For any integer q ≥ 6,

γt(CH7,q) ≤ γpr(CH7,q) ≤



⌊ 12q
7 ⌋ + 2 if q ≡ 0 (mod 7);

⌊ 12q
7 ⌋ + 5 if q ≡ 1, 2 (mod 7);

⌊ 12q
7 ⌋ + 3 if q ≡ 3 (mod 7);

⌊ 12q
7 ⌋ + 4 if q ≡ 4, 6 (mod 7);

⌊ 12q
7 ⌋ + 6 if q ≡ 5 (mod 7).

Theorem 3.4.11 gives the upper bounds of γt(CHp,q) and γpr(CHp,q) for

p ≥ 8 and q ≥ 6, while Theorems 3.4.12 and 3.4.13 give some better bounds than those

of Theorem 3.4.11 for some special values of p and q.

Theorem 3.4.11. For any integers p ≥ 8 and q ≥ 6,

γt(CHp,q) ≤ γpr(CHp,q) ≤ 2⌈p
2
⌉ ⌈q
4
⌉ + 2.

Theorem 3.4.12. If 8 ≤ p ≡ 0 (mod 2) and 9 ≤ q ≡ 1 (mod 4), then γt(CHp,q) ≤
p(q+1)

4 + 2.

Theorem 3.4.13. If 9 ≤ p ≡ 1 (mod 2) and q ≥ 6, then

γt(CHp,q) ≤

(p+1)(q+1)

4 if q ≡ 1, 3 (mod 4);
(p+1)(q+2)

4 − 2 if q ≡ 2 (mod 4);

and

γpr(CHp,q) ≤


(p+1)(q+3)

4 − 2 if q ≡ 1 (mod 4);
(p+1)(q+2)

4 − 2 if q ≡ 2 (mod 4);
(p+1)(q+1)

4 if q ≡ 3 (mod 4).

Ref. code: 25666109320413HRB



39

3.4.3 Total and Paired Domination Numbers of Some Web Graphs

We present the total and the paired domination numbers of a web graph Wp,q,

where the values of p and q are divided as follows: p ∈ {2, 3} and q ≥ 3; p ≥ 4 and

q ∈ {3, 4}; p ∈ {4, 5, 6} and q ≥ 5.

Theorem 3.4.14. For any integer q ≥ 3,

γt(W2,q) = q + 1 and γpr(W2,q) =


q + 1 if q is odd;

q + 2 if q is even.

Proof. Note that each γt(W2,q)-set must contain q support vertices and one vertex of C1,

so γt(W2,q) ≥ q+1. Since γpr(W2,q) is even, γpr(W2,q) ≥ q+1 if q is odd, and γpr(W2,q) ≥
q + 2 if q is even. Note that {u1,1} ∪ C2 is a total dominating set with cardinality q + 1,

and it is also a paired dominating set if q is odd. If q is even, then {c, u1,1} ∪ C2 is a

paired dominating set with cardinality q + 2. □

Theorem 3.4.15. For any integer q ≥ 3,

γt(W3,q) = q + 2 and γpr(W3,q) =


q + 2 if q is even;

q + 3 if q is odd.

Proof. Note that all q support vertices of C3 are in every γt(W3,q)-set. Let S = {v : v <

N(C3)}. Then the induced subgraph W3,q[S] � Wq. Since γt(Wq) = 2, γt(W3,q) ≥ q+ 2.

We also get that γpr(W3,q) ≥ q + 2 if q is even, and γpr(W3,q) ≥ q + 3 if q is odd. We

note that D = {c, u1,1}∪C3 is a total dominating set. If q is even, then D is also a paired

dominating set; otherwise, D ∪ {u2,1} is a paired dominating set. □

Before we prove the other results, we need the following lemma which

shows that the total (paired) domination number of Wp,q can be calculated from the

total (paired) domination number of CHp−2,q.

Lemma 3.4.16. For any integers p ≥ 4 and q ≥ 3,

γt(Wp,q) = γt(CHp−2,q) + q

and

γpr(Wp,q) =

γpr(CHp−2,q) + q if q is even;

γpr(CHp−2,q) + q + 1 if q is odd.
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Proof. Note that the union of a γt(CHp−2,q)-set and Cp is a total dominating set of Wp,q.

Futhermore, if |Cp | = q is even, then the union of a γpr(CHp−2,q)-set and Cp is a paired

dominating set of Wp,q; otherwise, the union of a γpr(CHp−2,q)-set and Cp ∪ {v1} is a

paired dominating set of Wp,q. Now, we get the upper bounds of γt(Wp,q) and γpr(Wp,q).
We know that all q support vertices of Cp are in every γt(Wp,q)-set and every

γpr(Wp,q)-set. Let S = {v : v < N(Cp)}. Then the induced subgraph Wp,q[S] is CHp−2,q.

Therefore, γt(Wp,q) ≥ γt(CHp−2,q) + q. Similarly, γpr(Wp,q) ≥ γpr(CHp−2,q) + q if q is

even, and γpr(Wp,q) ≥ γpr(CHp−2,q) + q + 1 if q is odd. □

By Lemma 3.4.16 together with Theorems 3.4.1 - 3.4.5, we obtain Theorems

3.4.17 - 3.4.21, respectively.

Theorem 3.4.17. For any integer p ≥ 4,

γt(Wp,3) =

⌈4(p−2)5 ⌉ + 3 if p ≡ 0, 1, 4 (mod 5);

⌈4(p−2)5 ⌉ + 4 if p ≡ 2, 3 (mod 5);

and

γpr(Wp,3) =


⌈4(p−2)5 ⌉ + 5 if p ≡ 0, 3 (mod 5);

⌈4(p−2)5 ⌉ + 4 if p ≡ 1, 4 (mod 5);

⌈4(p−2)5 ⌉ + 6 if p ≡ 2 (mod 5).

Theorem 3.4.18. For any integer p ≥ 4,

γt(Wp,4) = γpr(Wp,4) =


p + 3 if p is odd;

p + 4 if p is even.

Theorem 3.4.19. For any integer q ≥ 5,

γt(W4,q) =


10 if q = 6;

2⌈ q+3
4 ⌉ + q if q ≡ 0, 1 (mod 4);

2⌈ q+3
4 ⌉ + q − 1 if q ≡ 2, 3 (mod 4) and q , 6;

and

γpr(W4,q) =


10 if q = 6;

2⌈ q+3
4 ⌉ + q if q is even and q , 6;

2⌈ q+3
4 ⌉ + q + 1 if q is odd.
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Theorem 3.4.20. For any integer q ≥ 5,

γt(W5,q) =

2⌈ q+2

3 ⌉ + q if q ≡ 0, 2, 3 (mod 6);

2⌈ q+3
3 ⌉ + q − 1 otherwise;

and

γpr(W5,q) =

2⌈ q+3

3 ⌉ + q if q is even;

2⌈ q+3
3 ⌉ + q + 1 if q is odd.

Theorem 3.4.21. For any integer q ≥ 5,

γt(W6,q) =

11 if q = 5;

2q + 2 if q ≥ 6;

and

γpr(W6,q) =


12 if q = 5;

2q + 2 if q is even;

2q + 4 if q is odd and q , 5.

3.4.4 Upper Bounds of γt(Wp,q) and γpr(Wp,q)
Previously, we show the exact values of γt(Wp,q) and γpr(Wp,q) for small

values of p and q. We now present the upper bounds of γt(Wp,q) and γpr(Wp,q) for p ≥ 7

and q ≥ 5. By using Lemma 3.4.16 together with Theorems 3.4.7 - 3.4.13, we easily

get Theorems 3.4.22 - 3.4.28, respectively.

Theorem 3.4.22. For any integer p ≥ 7,

γt(Wp,5) ≤

⌈9(p−3)7 ⌉ + 7 if p ≡ 0 (mod 7);

⌈9(p−3)7 ⌉ + 8 otherwise;

and

γpr(Wp,5) ≤


⌈4(p−3)3 ⌉ + 10 if p ≡ 0 (mod 3);

⌈4(p−3)3 ⌉ + 8 if p ≡ 1 (mod 3);

⌈4(p−3)3 ⌉ + 9 if p ≡ 2 (mod 3).
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Theorem 3.4.23. For any integer q ≥ 6,

γt(W7,q) ≤


⌊ 11q+8

5 ⌋ + 1 if q ≡ 0 (mod 5);

⌊ 11q+8
5 ⌋ + 2 if q ≡ 1, 2, 4 (mod 5);

⌊ 11q+8
5 ⌋ + 3 if q ≡ 3 (mod 5);

and

γpr(W7,q) ≤



⌊ 11q+8
5 ⌋ + 1 if q ≡ 0 (mod 10);

⌊ 11q+8
5 ⌋ + 3 if q ≡ 1, 7, 8, 9 (mod 10);

⌊ 11q+8
5 ⌋ + 2 if q ≡ 2, 4, 5, 6 (mod 10);

⌊ 11q+8
5 ⌋ + 4 if q ≡ 3 (mod 10).

Theorem 3.4.24. For any integer q ≥ 6,

γt(W8,q) ≤


18 if q = 6;

⌊ 5q
2 ⌋ + 2 if q ≡ 0 (mod 4);

⌊ 5q
2 ⌋ + 4 if q ≡ 1, 2, 3 (mod 4) and q , 6;

and

γpr(W8,q) ≤



18 if q = 6;

⌊ 5q
2 ⌋ + 2 if q ≡ 0 (mod 4);

⌊ 5q
2 ⌋ + 6 if q ≡ 1 (mod 4);

⌊ 5q
2 ⌋ + 5 if q ≡ 2, 3 (mod 4) and q , 6.

Theorem 3.4.25. For any integer q ≥ 6,

γt(W9,q) ≤



⌊ 19q
7 ⌋ + 2 if q ≡ 0 (mod 7);

⌊ 19q
7 ⌋ + 5 if q ≡ 1, 2 (mod 7);

⌊ 19q
7 ⌋ + 3 if q ≡ 3 (mod 7);

⌊ 19q
7 ⌋ + 4 if q ≡ 4, 6 (mod 7);

⌊ 19q
7 ⌋ + 6 if q ≡ 5 (mod 7);
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and

γpr(W9,q) ≤



⌊ 19q
7 ⌋ + 2 if q ≡ 0 (mod 14);

⌊ 19q
7 ⌋ + 6 if q ≡ 1, 9, 12 (mod 14);

⌊ 19q
7 ⌋ + 5 if q ≡ 2, 8, 11, 13 (mod 14);

⌊ 19q
7 ⌋ + 4 if q ≡ 3, 4, 6 (mod 14);

⌊ 19q
7 ⌋ + 7 if q ≡ 5 (mod 14);

⌊ 19q
7 ⌋ + 3 if q ≡ 7, 10 (mod 14).

The following theorem gives the upper bounds of γt(Wp,q) and γpr(Wp,q) for

p ≥ 10 and q ≥ 6.

Theorem 3.4.26. For any integers p ≥ 10 and q ≥ 6,

γt(Wp,q) ≤ 2⌈p − 2

2
⌉ ⌈q
4
⌉ + q + 2

and

γpr(Wp,q) ≤

2⌈ p−2

2 ⌉ ⌈ q
4⌉ + q + 2 if q is even;

2⌈ p−2
2 ⌉ ⌈ q

4⌉ + q + 3 if q is odd.

The next two theorems provide some better bounds of γt(Wp,q) and γpr(Wp,q)
than ones in Theorem 3.4.26 for some special values of p and q.

Theorem 3.4.27. If 10 ≤ p ≡ 0 (mod 2) and 9 ≤ q ≡ 1 (mod 4), then γt(Wp,q) ≤
(p+2)(q+1)

4 + 1.

Theorem 3.4.28. If 11 ≤ p ≡ 1 (mod 2) and q ≥ 6, then

γt(Wp,q) ≤

(p+3)(q+1)

4 − 1 if q ≡ 1, 3 (mod 4);
(p+3)(q+2)

4 − 4 if q ≡ 2 (mod 4);

and

γpr(Wp,q) ≤


(p+3)(q+3)

4 − 4 if q ≡ 1 (mod 4);
(p+3)(q+2)

4 − 4 if q ≡ 2 (mod 4);
(p+3)(q+1)

4 if q ≡ 3 (mod 4).
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3.5 Windmill Class of Graphs

The windmill class of graphs consists of the French windmill class of graphs

and the Dutch windmill class of graphs. In Subsection 3.5.1, we determine the total

domination numbers and the paired domination numbers for the French windmill class

of graphs. The total domination numbers and the paired domination numbers for the

Dutch windmill class of graphs appear in Subsection 3.5.2

3.5.1 French Windmill Class of Graphs

We first introduce French windmill graphs, French star windmill graphs,

French complete windmill graphs, and French cycle windmill graphs, which belong to

the French windmill class of graphs. Then the total domination numbers and the paired

domination numbers of these four graphs are computed.

For any integers p, q ≥ 1, let qKp have the vertex set V(qKp) = {v j
i : 1 ≤

i ≤ p, 1 ≤ j ≤ q} and the edge set E(qKp) = {v j
i v

j
i′ : i , i′, 1 ≤ j ≤ q}.

TheFrenchwindmill graphWp,q is obtained from qKp by adding the vertex c

and the edge cv j
i for all i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}.

The French star windmill graph SWp,q is obtained from qKp by adding the

vertex c and the edge cv j
1 for all j ∈ {1, 2, . . . , q}.

The French complete windmill graph KWp,q is obtained from qKp by adding

the edge v
j
1v

j ′

1 for all j , j′.

The French cycle windmill graphCWp,q is obtained from qKp by adding the

edges v11v
q
1 and v

j
1v

j+1
1 for all j ∈ {1, 2, . . . , q − 1}.

For instance, the French windmill graph W4,4 and the French star windmill

graph SW5,4 are shown in Figure 3.17, and the French complete windmill graph KW5,4

and the French cycle windmill graph CW5,4 are illustrated in Figure 3.18.

We roughly say that French star windmill graphs, French complete windmill

graphs, and French cycle windmill graphs are obtained by replacing the shared vertex c

of French windmill graphs with a star, a complete graph, and a cycle, respectively.

We now note that {c, v11} is a paired dominating set of Wp,q for all p, q ≥ 1,

so γpr(Wp,q) ≤ 2. Combining the fact that 2 ≤ γt(Wp,q) ≤ γpr(Wp,q), we can easily get

the following result.
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Figure 3.17 The French windmill graph W4,4 (left) and the French star windmill graph
SW5,4 (right)
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Figure 3.18 The French complete windmill graph KW5,4 (left) and the French cycle
windmill graph CW5,4 (right)

Lemma 3.5.1. Let p and q be positive integers. Then γt(Wp,q) = γpr(Wp,q) = 2.

We observe that SW1,q � K1,q for all q ≥ 1, so it is obvious that γt(SW1,q) =
2 = γpr(SW1,q). For any integers p ≥ 2 and q ≥ 1, we can have the results on γt(SWp,q)
and γpr(SWp,q) in the following theorem.

Theorem 3.5.2. Let p ≥ 2 and q ≥ 1 be integers. Then γt(SWp,q) = q + 1 and

γpr(SWp,q) = 2q.

Proof. If p = 2 or q = 1, then it is easy to check that {c, v11, v
2
1, . . . , v

q
1} is a γt(SWp,q)-set

and {v j
1, v

j
2 : 1 ≤ j ≤ q} is a γpr(SWp,q)-set, so we are done in this case. Let p ≥ 3, q ≥ 2,

and D be a γt(SWp,q)-set. We claim that c ∈ D. If c < D, then D must contain exactly

two vertices from {v j
1, v

j
2, . . . , v

j
p} for each j ∈ {1, 2, . . . , q}, whereas {c, v11, v

2
1, . . . , v

q
1}
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is a total dominating set with cardinality q + 1 < 2q = |D |, a contradiction. Next, we

assume on the contrary that v j
1 < D for some j ∈ {1, 2, . . . , q}. Then two vertices of

{v j
2, v

j
3, . . . , v

j
p} are in D. Hence, (D \ {v j

2, v
j
3, . . . , v

j
p}) ∪ {v j

1} is a total dominating set

with cardinality less than D. Thus, D contains the vertices c, v11, v
2
1, . . . , v

q
1 , implying

that γt(SWp,q) = |D | ≥ q + 1. Note that {c, v11, v
2
1, . . . , v

q
1} is a total dominating set of

SWp,q, so γt(SWp,q) ≤ q + 1. Now, we can conclude that γt(SWp,q) = q + 1.

Let D be a γpr(SWp,q)-set. We show that |D | ≥ 2q. If c < D, then D

contains two vertices from {v j
1, v

j
2, . . . , v

j
p} for each j ∈ {1, 2, . . . , q}, so |D | ≥ 2q. Next,

we assume that c ∈ D. Without loss of generality, we may assume that {c, v11} is paired

in D. Let S = {v : v < N({c, v11})}. Then the induced subgraph SWp,q[S] � (q−1)Kp−1.

Obviously, D contains two vertices from each Kp−1, so |D | ≥ 2+2(q−1) = 2q. We can

check that {v j
1, v

j
2 : 1 ≤ j ≤ q} is paired dominating set of SWp,q, so γpr(SWp,q) ≤ 2q.

We can conclude that γpr(SWp,q) = 2q. □

Obviously, the total and the paired domination numbers of KW1,1 � K1

are not defined. We next note that KWp,1 � Kp for all p ≥ 2 and KW1,q � Kq for

all q ≥ 2, so γt(KWp,1) = 2 = γpr(KWp,1) and γt(KW1,q) = 2 = γpr(KW1,q). In the

following theorem, we provide the total and the paired domination numbers of KWp,q

for all p, q ≥ 2.

Theorem 3.5.3. Let p, q ≥ 2 be integers. Then

γt(KWp,q) = q and γpr(KWp,q) =


q if q is even;

q + 1 if q is odd.

Proof. If p = 2, then Observation 3.0.1 implies that the q support vertices form a

γt(KWp,q)-set. Let p ≥ 3. Similar to the proof of Theorem 3.5.2, we can verify

that for any γt(KWp,q)-set D, D contains only the vertices v11, v
2
1, . . . , v

q
1 . Therefore,

γt(KWp,q) = q.

Since γpr(KWp,q) ≥ γt(KWp,q) and γpr(KWp,q) is even, γpr(KWp,q) ≥ q if q

is even, and γpr(KWp,q) ≥ q+1 if q is odd. Let D = {v j
1 : 1 ≤ j ≤ q}. If q is even, then

D is a paired dominating set of KWp,q, so γpr(KWp,q) = q. If q is odd, then D ∪ {v12} is

a paired dominating set of KWp,q, so γpr(KWp,q) = q + 1. □
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Clearly, γt(CW1,1) and γpr(CW1,1) are not defined, and γt(CWp,1) = 2 =

γpr(CWp,1) for all p ≥ 2 because CWp,1 � Kp. Note that CW1,2 � P2 and CW1,q � Cq

for all q ≥ 3, so we obtain the exact values of γt(CW1,q) and γpr(CW1,q) for all q ≥ 2 by

Lemmas 3.0.2 and 3.0.3, respectively. For any integers p, q ≥ 2, we have the following

theorem.

Theorem 3.5.4. Let p, q ≥ 2 be integers. Then

γt(CWp,q) = q and γpr(CWp,q) =


q if q is even;

q + 1 if q is odd.

Proof. Note that every total dominating set of CWp,q is also a total dominating set of

KWp,q, so we get that γt(CWp,q) ≥ γt(KWp,q). Likewise, we obtain that γpr(CWp,q) ≥
γpr(KWp,q). Theorem 3.5.3 gives the lower bounds of γt(CWp,q) and γpr(CWp,q). Let

D = {v j
1 : 1 ≤ j ≤ q}. Then D is a total dominating set of CWp,q, so γt(CWp,q) = q.

Moreover, D is a paired dominating set of CWp,q if q is even, and D ∪ {v12} is a paired

dominating set of CWp,q if q is odd. Thus, γpr(CWp,q) = q if q is even, and γpr(CWp,q) =
q + 1 if q is odd. □

3.5.2 Dutch Windmill Class of Graphs

The Dutch windmill class of graphs contains Dutch windmill graphs, Dutch

star windmill graphs, Dutch complete windmill graphs, and Dutch cycle windmill graphs,

of which the definitions are provided below. We then determine the total and the paired

domination numbers of these four graphs.

For any integers p, q ≥ 1, let qPp have the vertex set V(qPp) = {v j
i : 1 ≤

i ≤ p, 1 ≤ j ≤ q} and the edge set E(qPp) = {v j
i v

j
i+1 : 1 ≤ i ≤ p − 1, 1 ≤ j ≤ q}.

The Dutch windmill graph Dp,q is obtained from qPp by adding the vertex c

and the edges cv j
1 and cv j

p for all j ∈ {1, 2, . . . , q}.
For any integers p ≥ 3 and q ≥ 1, let qCp have the vertex set V(qCp) =

{v j
i : 1 ≤ i ≤ p, 1 ≤ j ≤ q} and the edge set E(qCp) = {v j

i v
j
i+1 : 1 ≤ i ≤ p − 1, 1 ≤ j ≤

q} ∪ {v j
1v

j
p : 1 ≤ j ≤ q}.

The Dutch star windmill graph SDp,q is obtained from qCp by adding the

vertex c and the edge cv j
1 for all j ∈ {1, 2, . . . , q}.
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The Dutch complete windmill graph KDp,q is obtained from qCp by adding

the edge v
j
1v

j ′

1 for all j , j′.

The Dutch cycle windmill graph CDp,q is obtained from qCp by adding the

edges v11v
q
1 and v

j
1v

j+1
1 for all j ∈ {1, 2, . . . , q − 1}.

We illustrate the Dutch windmill graph D4,4 and the Dutch star windmill

graph SD5,4 in Figure 3.19, and the Dutch complete windmill graph KD5,4 and the Dutch

cycle windmill graph CD5,4 in Figure 3.20.
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Figure 3.19 The Dutch windmill graph D4,4 (left) and the Dutch star windmill graph
SD5,4 (right)
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Figure 3.20 The Dutch complete windmill graph KD5,4 (left) and the Dutch cycle wind-
mill graph CD5,4 (right)

We roughly say that Dutch star windmill graphs, Dutch complete windmill

graphs, and Dutch cycle windmill graphs are obtained by replacing the shared vertex c

of Dutch windmill graphs with a star, a complete graph, and a cycle, respectively.
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We first determine the total and the paired domination numbers of Dp,q for

all p, q ≥ 1.

Theorem 3.5.5. Let p and q be positive integers. Then

γt(Dp,q) =


2q⌈ p−2

4 ⌉ + 1 if p ≡ 0 (mod 4);

2q⌈ p−2
4 ⌉ + 2 if p ≡ 1, 2 (mod 4);

2q⌈ p−2
4 ⌉ + 1 − q if p ≡ 3 (mod 4);

and

γpr(Dp,q) =

2q⌈ p−2

4 ⌉ + 2 if p ≡ 0, 1, 2 (mod 4);

2q⌈ p−2
4 ⌉ if p ≡ 3 (mod 4).

Proof. It is easy to verify that γt(Dp,q) = 2 = γpr(Dp,q) for p ∈ {1, 2}. Next, we let

p ≥ 3. We first construct a total dominating set of Dp,q containing the vertex c. Let

E = {c} ∪ {v j
i , v

j
i+1 : i ≡ 3 (mod 4), i , p, 1 ≤ j ≤ q}. If p ≡ 0 (mod 4), then we

can check that D = E is a total dominating set of Dp,q with |D | = 2q⌈ p−2
4 ⌉ + 1. If p ≡

1, 2 (mod 4), then D = E∪{v11} is a total dominating set of Dp,q with |D | = 2q⌈ p−2
4 ⌉+2.

If p ≡ 3 (mod 4), then D = E ∪ {v j
p : 1 ≤ j ≤ q} is a total dominating set of Dp,q with

|D | = 2q⌈ p−2
4 ⌉ + 1 − q.

Next, we show that D is a γt(Dp,q)-set. Suppose on the contrary that there is

a total dominating set D′ of Dp,q such that |D′| < |D |. By the construction of D, among

all total dominating sets of Dp,q containing the vertex c, D is minimum. We can conclude

that c < D′. Without loss of generality, we may assume that v11 ∈ D′ and v12 ∈ D′ to

dominate c and v11 , respectively. Let S = {v : v < N({v11, v12})}. Then the induced

subgraph Dp,q[S] contains Pp−3 and (q−1)Pp. Thus, |D′| ≥ 2+γt(Pp−3)+ (q−1)γt(Pp).
By Lemma 3.0.2, we get that |D′| ≥ 2 + (⌊ p−1

4 ⌋ + ⌊ p
4⌋) + (q − 1)(⌊ p+2

4 ⌋ + ⌊ p+3
4 ⌋). Then

we consider the following four cases.

Case 1: Let p = 4k, where k ≥ 1. Then |D′| ≥ 2 + (⌊ 4k−1
4 ⌋ + ⌊ 4k

4 ⌋) + (q −
1)(⌊ 4k+2

4 ⌋ + ⌊ 4k+3
4 ⌋) = 2qk + 1 = 2q⌈4k−2

4 ⌉ + 1 = 2q⌈ p−2
4 ⌉ + 1 = |D |.

Case 2: Let p = 4k + 1, where k ≥ 1. Then |D′| ≥ 2 + (⌊ 4k
4 ⌋ + ⌊ 4k+1

4 ⌋) +
(q− 1)(⌊ 4k+3

4 ⌋ + ⌊ 4k+4
4 ⌋) = 2qk + q+ 1 ≥ 2qk + 2 = 2q⌈4k−1

4 ⌉ + 2 = 2q⌈ p−2
4 ⌉ + 2 = |D |.

Case 3: Let p = 4k + 2, where k ≥ 1. Then |D′| ≥ 2+ (⌊ 4k+1
4 ⌋ + ⌊ 4k+2

4 ⌋)+
(q − 1)(⌊ 4k+4

4 ⌋ + ⌊ 4k+5
4 ⌋) = 2qk + 2q ≥ 2qk + 2 = 2q⌈4k

4 ⌉ + 2 = 2q⌈ p−2
4 ⌉ + 2 = |D |.
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Case 4: Let p = 4k+3, where k ≥ 0. Then |D′| ≥ 2+(⌊ 4k+2
4 ⌋+⌊ 4k+3

4 ⌋)+(q−
1)(⌊ 4k+5

4 ⌋+⌊ 4k+6
4 ⌋) = 2qk+2q ≥ 2qk+q+1 = 2q⌈4k+1

4 ⌉+1−q = 2q⌈ p−2
4 ⌉+1−q = |D |.

We can see that all cases contradict with the assumption |D′| < |D |, so D is

a γt(Dp,q)-set, and we then obtain the total domination numbers of Dp,q.

Consider the set E as defined above. We can check that E ∪ {v11} is a paired

dominating set of Dp,q if p ≡ 0, 1, 2 (mod 4), and E ∪ {v1p} ∪ {v j
p−1, v

j
p : 2 ≤ j ≤ q} is a

paired dominating set of Dp,q if p ≡ 3 (mod 4). Therefore, γpr(Dp,q) ≤ 2q⌈ p−2
4 ⌉ + 2 if

p ≡ 0, 1, 2 (mod 4), and γpr(Dp,q) ≤ 2q⌈ p−2
4 ⌉ if p ≡ 3 (mod 4). Note that γpr(Dp,q) ≥

γt(Dp,q) and γpr(Dp,q) is even, and thus γpr(Dp,q) = 2q⌈ p−2
4 ⌉+2 for p ≡ 0, 1, 2 (mod 4).

Finally, we show that γpr(Dp,q) ≥ 2q⌈ p−2
4 ⌉ if p ≡ 3 (mod 4). Let D be a

γpr(Dp,q)-set. If c ∈ D, then, without loss of generality, v11 ∈ D. Let S = {v : v <

N({c, v11})} and then the induced subgraph Dp,q[S] contains Pp−3 and (q − 1)Pp−2. By

Lemma 3.0.3, we obtain that |D | ≥ 2 + γpr(Pp−3) + (q − 1)γpr(Pp−2) = 2 + 2⌈ p−3
4 ⌉ +

2(q − 1)⌈ p−2
4 ⌉ = 2⌈ p+1

4 ⌉ + 2(q − 1)⌈ p−2
4 ⌉ ≥ 2⌈ p−2

4 ⌉ + 2(q − 1)⌈ p−2
4 ⌉ = 2q⌈ p−2

4 ⌉. We

next assume that c < D. Similar to the second paragraph in this proof, we get that

|D | ≥ 2+γpr(Pp−3)+ (q−1)γpr(Pp). Lemma 3.0.3 shows that |D | ≥ 2+2⌈ p−3
4 ⌉ +2(q−

1)⌈ p
4⌉ = 2⌈ p+1

4 ⌉ + 2(q − 1)⌈ p
4⌉ ≥ 2⌈ p−2

4 ⌉ + 2(q − 1)⌈ p−2
4 ⌉ = 2q⌈ p−2

4 ⌉. This completes

the proof. □

Next, we compute the total and the paired domination numbers of SDp,q. If

q = 1, then, in the following theorem, we prove that γt(SDp,q) = γt(Cp) and γpr(SDp,q) =
γpr(Cp). For any integer q ≥ 2, we provide the exact values of γt(SDp,q) and γpr(SDp,q)
in Theorem 3.5.7 (below).

Theorem 3.5.6. Let p ≥ 3 be an integer. Then γt(SDp,1) = ⌊ p+2
4 ⌋ + ⌊ p+3

4 ⌋ and

γpr(SDp,1) = 2⌈ p
4⌉.

Proof. Let D be a γt(SDp,1)-set. We show that |D | ≥ γt(Cp). Note that v11 ∈ D. If c < D,

then D is also a total dominating set of Cp, so |D | ≥ γt(Cp). Next, we assume that c ∈ D.

Then v12 < D; otherwise, D \ {c} is a total dominating set of SDp,1 with cardinality less

than D, a contradiction. Thus, D′ = (D \ {c}) ∪ {v12} is a total dominating set of SDp,1

with |D′| = |D |. Moreover, D′ is a total dominating set of Cp, so |D | = |D′| ≥ γt(Cp).
Hence, γt(SDp,1) = |D | ≥ γt(Cp) = ⌊ p+2

4 ⌋ + ⌊ p+3
4 ⌋ by Lemma 3.0.2. By using the
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similar technique of this proof, we can verify that γpr(SDp,1) ≥ γpr(Cp). Lemma 3.0.3

shows that γpr(SDp,1) ≥ 2⌈ p
4⌉.

To prove the upper bounds of γt(SDp,1) and γpr(SDp,1), let E = {v1i , v1i+1 :

i ≡ 1 (mod 4), i , p}. If p ≡ 0, 2, 3 (mod 4), then E is a paired dominating set of

SDp,1, and hence γt(SDp,1) ≤ γpr(SDp,1) ≤ 2⌈ p
4⌉ = ⌊ p+2

4 ⌋ + ⌊ p+3
4 ⌋. If p ≡ 1 (mod 4),

then E∪{v1p} is a total dominating set of SDp,1 and E∪{v1p−1, v1p} is a paired dominating

set of SDp,1. Hence, γt(SDp,1) ≤ 2⌈ p
4⌉ − 1 = ⌊ p+2

4 ⌋ + ⌊ p+3
4 ⌋ and γpr(SDp,1) ≤ 2⌈ p

4⌉.
The theorem follows. □

Theorem 3.5.7. Let p ≥ 3 and q ≥ 2 be integers. Then

γt(SDp,q) =


pq
2 if p ≡ 0 (mod 4);

2q⌈ p−1
4 ⌉ + 2 if p ≡ 1 (mod 4);

2q⌈ p−1
4 ⌉ + 1 − q if p ≡ 2, 3 (mod 4);

and

γpr(SDp,q) =


pq
2 if p ≡ 0 (mod 4);

2q⌈ p−1
4 ⌉ + 2 if p ≡ 1 (mod 4);

2q⌈ p−1
4 ⌉ if p ≡ 2, 3 (mod 4).

Proof. If p ≡ 0 (mod 4), then {v1i , v1i+1 : i ≡ 1 (mod 4)} ∪ {v j
i , v

j
i+1 : i ≡ 2 (mod

4), 2 ≤ j ≤ q} is both an efficient total dominating set and an efficient paired dominating

set of SDp,q with cardinality pq
2 . By Lemma 3.0.4, we conclude that γt(SDp,q) = pq

2 =

γpr(SDp,q).
Let p = 4k + 1 for some k ≥ 1. Then D = {c, v11} ∪ {v j

i , v
j
i+1 : i ≡

3 (mod 4), 1 ≤ j ≤ q} is a total dominating set of SDp,q with |D | = (p−1)q
2 + 2 =

2q⌈ p−1
4 ⌉ + 2. We claim that among all total dominating sets containing the vertex c,

D is minimum. Let D′ be any total dominating set containing c. To dominate c, D′

contains l ≥ 1 vertices from {v11, v21, . . . , v
q
1}. If v j

1 ∈ D′ for j ∈ {1, 2, . . . , q}, then,

by Lemma 3.0.2, D′ contains at least ⌊ p−1
4 ⌋ + ⌊ p

4⌋ vertices to dominate v
j
3, v

j
4, . . . , v

j
p−1;

otherwise, D′ contains at least ⌊ p+1
4 ⌋ + ⌊ p+2

4 ⌋ vertices to dominate v j
2, v

j
3, . . . , v

j
p. Hence,

|D′| ≥ 1+ l + l(⌊ p−1
4 ⌋ + ⌊ p

4⌋)+ (q − l)(⌊ p+1
4 ⌋ + ⌊ p+2

4 ⌋) = 1+ l + l(⌊ 4k
4 ⌋ + ⌊ 4k+1

4 ⌋)+ (q −
l)(⌊ 4k+2

4 ⌋ + ⌊ 4k+3
4 ⌋) = 2qk + l + 1 ≥ 2qk + 2 = 2q⌈ p−1

4 ⌉ + 2 = |D | since p = 4k + 1 and

l ≥ 1, so the claim holds. We next show that D is a γt(SDp,q)-set. Assume that D′′ is a
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total dominating set with |D′′| < |D |. The previous claim implies that c < D′′. Without

loss of generality, v11, v
1
2 ∈ D′′. Then the induced subgraph SDp,q[{v : v < N({v11, v12})}]

contains Pp−4 and (q − 1)Cp. We can check that |D′′| ≥ 2 + γt(Pp−4) + (q − 1)γt(Cp) =
2+ (⌊ p−2

4 ⌋+ ⌊ p−1
4 ⌋)+ (q−1)(⌊ p+2

4 ⌋+ ⌊ p+3
4 ⌋) = 2qk+q ≥ 2qk+2 = 2q⌈ p−1

4 ⌉+2 = |D |, a

contradiction. Hence, γt(SDp,q) = 2q⌈ p−1
4 ⌉ + 2 and γpr(SDp,q) ≥ 2q⌈ p−1

4 ⌉ + 2. Since D

(defined above) is also a paired dominating set of SDp,q, we conclude that γpr(SDp,q) =
2q⌈ p−1

4 ⌉ + 2.

Let p ≡ 2, 3 (mod 4). Then D = {c} ∪ {v j
1 : 1 ≤ j ≤ q} ∪ {v j

i , v
j
i+1 : i ≡

0 (mod 4), 1 ≤ j ≤ q} is a total dominating set of SDp,q with |D | = 2q⌈ p−1
4 ⌉ + 1 − q.

We show that among all total dominating sets containing the vertex c, D is minimum.

Suppose that D′ is a total dominating set containing c. Then D′ contains l ≤ q vertices

from {v11, v21, . . . , v
q
1}. Thus, |D′| ≥ 1 + l + l(⌊ p−1

4 ⌋ + ⌊ p
4⌋) + (q − l)(⌊ p+1

4 ⌋ + ⌊ p+2
4 ⌋) ≥

2q⌈ p−1
4 ⌉ + 1 − q = |D |. Next, we prove that D is a γt(SDp,q)-set. If D′′ is a total

dominating set with |D′′| < |D |, then c < D′′. It is easy to verify that |D′′| ≥ 2 +

γt(Pp−4)+(q−1)γt(Cp) = 2+(⌊ p−2
4 ⌋+⌊ p−1

4 ⌋)+(q−1)(⌊ p+2
4 ⌋+⌊ p+3

4 ⌋) > 2q⌈ p−1
4 ⌉+1−q =

|D |, a contradiction. Therefore, γt(SDp,q) = 2q⌈ p−1
4 ⌉ + 1 − q. We can check that

D ∪ {v j
2 : 2 ≤ j ≤ q} is a paired dominating set of SDp,q with cardinality 2q⌈ p−1

4 ⌉, and

thus γpr(SDp,q) ≤ 2q⌈ p−1
4 ⌉. Similar to the proof of Theorem 3.5.5 (last paragraph), we

can get that γpr(SDp,q) ≥ 2q⌈ p−1
4 ⌉. The theorem follows. □

If q = 1, then KDp,q � Cp for all p ≥ 3, so we obtain γt(KDp,1) = ⌊ p+2
4 ⌋ +

⌊ p+3
4 ⌋ and γpr(KDp,1) = 2⌈ p

4⌉ by Lemmas 3.0.2 and 3.0.3, respectively. In the following

theorem, we compute the exact values of γt(KDp,q) and γpr(KDp,q) for all p ≥ 3 and

q ≥ 2.

Theorem 3.5.8. Let p ≥ 3 and q ≥ 2 be integers. Then

γt(KDp,q) =


pq
2 if p ≡ 0 (mod 4);

2q⌈ p−1
4 ⌉ + 1 if p ≡ 1 (mod 4);

2q⌈ p−1
4 ⌉ − q if p ≡ 2, 3 (mod 4);
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and

γpr(KDp,q) =



pq
2 if p ≡ 0 (mod 4);

2q⌈ p−1
4 ⌉ + 2 if p ≡ 1 (mod 4);

2q⌈ p−1
4 ⌉ − q if p ≡ 2, 3 (mod 4) and q is even;

2q⌈ p−1
4 ⌉ − q + 1 if p ≡ 2, 3 (mod 4) and q is odd.

Proof. If p ≡ 0 (mod 4), then we get that {v j
i , v

j
i+1 : i ≡ 2 (mod 4), 1 ≤ j ≤ q} is both

an efficient total and an efficient paired dominating set of KDp,q, and thus γt(KDp,q) =
pq
2 = γpr(KDp,q).

Let p ≡ 1 (mod 4) and D = {v1i , v1i+1 : i ≡ 1 (mod 4), i , p} ∪ {v1p} ∪
{v j

i , v
j
i+1 : i ≡ 3 (mod 4), 2 ≤ j ≤ q}. Then D is a total dominating set of KDp,q

with |D | = 2q⌈ p−1
4 ⌉ + 1. We show that D is a γt(KDp,q)-set. Suppose that D′ is a total

dominating set with |D′| < |D |. Note that among all total dominating sets containing

precisely one vertex of {v11, v21, . . . , v
q
1}, D is minimum. Thus, either |{v11, v21, . . . , v

q
1} ∩

D′| = 0 or |{v11, v21, . . . , v
q
1} ∩ D′| ≥ 2. If |{v11, v21, . . . , v

q
1} ∩ D′| = 0, then we have D′

contains, without loss of generality, v j
2 and v

j
3 for all j ∈ {1, 2, . . . , q}. Thus, |D′| ≥

2q + qγt(Pp−4) = 2q + q(⌊ p−2
4 ⌋ + ⌊ p−1

4 ⌋) > 2q⌈ p−1
4 ⌉ + 1 = |D | since p ≡ 1 (mod 4)

and q ≥ 2, a contradiction. If D′ contains l ≥ 2 vertices from {v11, v21, . . . , v
q
1}, then

|D′| ≥ l + lγt(Pp−3) + (q − l)γt(Pp−1) = l + l(⌊ p−1
4 ⌋ + ⌊ p

4⌋) + (q − l)(⌊ p+1
4 ⌋ + ⌊ p+2

4 ⌋) >
2q⌈ p−1

4 ⌉+1 = |D |, a contradiction again. Hence, γt(KDp,q) = 2q⌈ p−1
4 ⌉+1, and we then

also get that γpr(KDp,q) ≥ 2q⌈ p−1
4 ⌉ + 2. Since D ∪ {v1p−1} is a paired dominating set of

KDp,q with cardinality 2q⌈ p−1
4 ⌉ + 2, we get that γpr(KDp,q) = 2q⌈ p−1

4 ⌉ + 2.

Let p ≡ 2, 3 (mod 4) and D = {v j
1 : 1 ≤ j ≤ q} ∪ {v j

i , v
j
i+1 : i ≡ 0 (mod

4), 1 ≤ j ≤ q}. Then D is a total dominating set of KDp,q with |D | = 2q⌈ p−1
4 ⌉ −

q. We show that D is a γt(KDp,q)-set. Suppose that D′ is a total dominating set with

|D′| < |D |. Among all total dominating sets containing all vertices v11, v
2
1, . . . , v

q
1 , the

set D is minimum. Then D′ contains l ≤ q − 1 vertices from {v11, v21, . . . , v
q
1}, and thus

|D′| ≥ l + lγt(Pp−3) + (q − l)γt(Pp−1) = l + l(⌊ p−1
4 ⌋ + ⌊ p

4⌋) + (q − l)(⌊ p+1
4 ⌋ + ⌊ p+2

4 ⌋) ≥
2q⌈ p−1

4 ⌉ − q = |D |, a contradiction. Hence, γt(KDp,q) = 2q⌈ p−1
4 ⌉ − q. We also get that

γpr(KDp,q) ≥ 2q⌈ p−1
4 ⌉ − q if q is even, and γpr(KDp,q) ≥ 2q⌈ p−1

4 ⌉ − q + 1 if q is odd.

If q is even, then D is a paired dominating set of KDp,q. If q is odd, then D ∪ {v12} is a

paired dominating set of KDp,q. The theorem follows. □
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Note that CDp,1 � Cp for all p ≥ 3. Lemmas 3.0.2 and 3.0.3 provide

γt(CDp,1) and γpr(CDp,1), respectively. For any integer q ≥ 2, we examine the exact

values of γt(CDp,q) and γpr(CDp,q) in the next theorem. For each j ∈ {1, 2, . . . , q}, let

C j = {v j
i ∈ V(CDp,q) : 1 ≤ i ≤ p}.

Theorem 3.5.9. Let p ≥ 3 and q ≥ 2 be integers. Then

γt(CDp,q) =


pq
2 if p ≡ 0 (mod 4);

2q⌈ p−1
4 ⌉ + ⌈ q

3⌉ if p ≡ 1 (mod 4);

2q⌈ p−1
4 ⌉ − q if p ≡ 2, 3 (mod 4);

and

γpr(CDp,q) =



pq
2 if p ≡ 0 (mod 4);

2q⌈ p−1
4 ⌉ + 2⌈ q

4⌉ if p ≡ 1 (mod 4);

2q⌈ p−1
4 ⌉ − q if p ≡ 2, 3 (mod 4) and q is even;

2q⌈ p−1
4 ⌉ − q + 1 if p ≡ 2, 3 (mod 4) and q is odd.

Proof. If p ≡ 0 (mod 4), then {v j
i , v

j
i+1 : i ≡ 2 (mod 4), 1 ≤ j ≤ q} is both an efficient

total and an efficient paired dominating set of CDp,q, so we obtain that γt(CDp,q) = pq
2 =

γpr(CDp,q).
Let p = 4k + 1 for some k ≥ 1 and D be a γt(CDp,q)-set. Let q = 2. If

v11, v
2
1 ∈ D, then |{v12, v13, . . . , v1p} ∩ D | = |{v22, v23, . . . , v2p} ∩ D | ≥ 2k. If v11, v

2
1 < D, then

|{v12, v13, . . . , v1p} ∩ D | = |{v22, v23, . . . , v2p} ∩ D | ≥ 2k + 1. In both cases, |D | ≥ 4k + 2.

We observe that {v11} ∪ {v14l+2, v
1
4l+3 : 0 ≤ l ≤ k − 1} ∪ {v24l+3, v

2
4l+4 : 0 ≤ l ≤ k − 1} is a

total dominating set having cardinality 4k+1 < 4k+2 ≤ |D |, a contradiction. It implies

that D contains only one vertex of v11 and v21 . Without loss of generality, let v11, v
1
2 ∈ D.

We can check that D contains at least 2k − 1 vertices to dominate v14, v
1
5, . . . , v

1
p−1 and at

least 2k vertices to dominate v22, v
2
3, . . . , v

2
p. Hence, |D | ≥ 2 + (2k − 1) + 2k = 4k + 1 =

2q⌈ p−1
4 ⌉ + ⌈ q

3⌉. Next, we let q ≥ 3. If v j−1
1 , v

j
1, v

j+1
1 < D for some j ∈ {1, 2, . . . , q},

then |{v j
2, v

j
3, . . . , v

j
p} ∩ D | = 2k + 1 and D′ = (D \ C j) ∪ {v j

1} ∪ {v j
4l+2, v

j
4l+3 : 0 ≤ l ≤

k − 1} is a total dominating set of CDp,q with |D′| = |D |, so we can assume that, for

any three consecutive vertices of {v11, v21, . . . , v
q
1}, D contains at least one vertex. This

implies that D contains at least ⌈ q
3⌉ vertices from {v11, v21, . . . , v

q
1}. If v j

1 ∈ D for some

j ∈ {1, 2, . . . , q}, then |{v j
2, v

j
3, . . . , v

j
p} ∩ D | ≥ 2k. If v j

1 < D for some j ∈ {1, 2, . . . , q},
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then it is dominated by v
j−1
1 or v j+1

1 , so |{v j
2, v

j
3, . . . , v

j
p} ∩ D | ≥ 2k. Therefore, |D | ≥

⌈ q
3⌉ + q(2k) = 2q⌈4k

4 ⌉ + ⌈ q
3⌉ = 2q⌈ p−1

4 ⌉ + ⌈ q
3⌉. It is easy to verify that {v j

1 : j ≡ 1

(mod 3)} ∪ {v j
i , v

j
i+1 : i ≡ 2 (mod 4), j ≡ 1 (mod 3)} ∪ {v j

i , v
j
i+1 : i ≡ 3 (mod 4), j ≡

0, 2 (mod 3)} is a total dominating set of CDp,q with cardinality 2q⌈ p−1
4 ⌉ + ⌈ q

3⌉.
Next, we determine γpr(CDp,q) for p = 4k + 1. If q = 2, then γpr(CDp,q) ≥

2q⌈ p−1
4 ⌉ + ⌈ q

3⌉ + 1 = 2q⌈ p−1
4 ⌉ + 2⌈ q

4⌉ since γpr(CDp,q) ≥ γt(CDp,q) and γpr(CDp,q)
is even. Let q ≥ 3 and D be a γpr(CDp,q)-set. If v

j
1 is not dominated by v

j−1
1 and

v
j+1
1 for some j ∈ {1, 2, . . . , q}, then |C j ∩ D | = 2k + 2. Then D′ = (D \ C j) ∪
{v j

1, v
j+1
1 } ∪ {v j

4l+3, v
j
4l+4 : 0 ≤ l ≤ k − 1} is a paired dominating set with |D′| = |D|,

so we can assume that every vertex of {v11, v21, . . . , v
q
1} is dominated by some vertex in

the same set. If v j
1 ∈ D is paired with either v j

2 or v j
p for some j ∈ {1, 2, . . . , q}, then

|{v j
2, v

j
3, . . . , v

j
p} ∩ D | = 2k + 1. The vertices v j−1

1 and v
j+1
1 are not in D; otherwise, (D \

C j)∪{v j
4l+3, v

j
4l+4 : 0 ≤ l ≤ k−1} is a paired dominating set with cardinality less than D,

a contradiction. Hence, D′ = (D\{v j
2, v

j
3, . . . , v

j
p})∪{v j+1

1 }∪{v j
4l+3, v

j
4l+4 : 0 ≤ l ≤ k−1}

is a paired dominating set with |D′| = |D|, so we can also assume that the vertices in

{v11, v21, . . . , v
q
1}∩D are paired. Note that any two adjacent vertices of {v11, v21, . . . , v

q
1}∩D

can dominate at most four vertices in {v11, v21, . . . , v
q
1}, so |{v11, v21, . . . , v

q
1}∩D | ≥ 2⌈ q

4⌉. If

v
j
1 and v

j+1
1 are paired in D, then |{v j

2, v
j
3, . . . , v

j
p} ∩ D | = |{v j+1

2 , v
j+1
3 , . . . , v

j+1
p } ∩ D | ≥

2k. If v j
1 < D, then |{v j

2, v
j
3, . . . , v

j
p} ∩ D | ≥ 2k. Therefore, |D | ≥ 2⌈ q

4⌉ + q(2k) =
2q⌈ p−1

4 ⌉ + 2⌈ q
4⌉. Let E = {v j

1 : j ≡ 1, 2 (mod 4)} ∪ {v j
i , v

j
i+1 : i ≡ 3 (mod 4), 1 ≤

j ≤ q}. Then E is a paired dominating set of CDp,q with cardinality 2q⌈ p−1
4 ⌉ + 2⌈ q

4⌉ If

q ≡ 0, 2, 3 (mod 4), and E ∪{vq−1
1 } is a paired dominating set of CDp,q with cardinality

2q⌈ p−1
4 ⌉ + 2⌈ q

4⌉ if q ≡ 1 (mod 4), so we are done.

Let p ≡ 2, 3 (mod 4) and D = {v j
1 : 1 ≤ j ≤ q} ∪ {v j

i , v
j
i+1 : i ≡ 0 (mod

4), 1 ≤ j ≤ q}. Then D is a total dominating set of CDp,q, so γt(CDp,q) ≤ 2q⌈ p−1
4 ⌉ − q.

If q is even, then D is a paired dominating set of CDp,q. If q is odd, then D ∪ {v12} is

a paired dominating set of CDp,q. Thus, γpr(CDp,q) ≤ 2q⌈ p−1
4 ⌉ − q if q is even, and

γpr(CDp,q) ≤ 2q⌈ p−1
4 ⌉ − q+ 1 if q is odd. Note that every total dominating set of CDp,q

is a total dominating set of KDp,q, yielding that γt(CDp,q) ≥ γt(KDp,q). Similarly,

γpr(CDp,q) ≥ γpr(KDp,q). We obtain the lower bounds of γt(CDp,q) and γpr(CDp,q) by

Theorem 3.5.8. This completes the proof. □
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3.6 Lollipop Graphs, Umbrella Graphs, and Coconut Graphs

In this section, we begin by defining lollipop graphs, umbrella graphs, and

coconut graphs. Then we calculate the total and the paired domination numbers of these

three classes of graphs.

Let p and q be both positive integers. A lollipop graph Lp,q is obtained by

appending an endpoint of a path Pp to a vertex of a complete graph Kq. Throughout this

dissertation, we refer to the vertices of Lp,q as depicted in Figure 3.21.

u1

u2 u3

uq−1uq

v1 v2 v3 vp−1 vp

Figure 3.21 The lollipop graph Lp,q

An umbrella graph Up,q is obtained by appending an endpoint of a path

Pp to the central vertex of a fan graph K1 ∨ Pq−1. A coconut graph Cp,q is obtained

by appending an endpoint of a path Pp to the support vertex of a complete bipartite

graph K1,q−1. We let the vertices of Up,q and Cp,q be shown in Figures 3.22 and 3.23,

respectively.

u2
u3
u4

uq−1
uq

v1 v2 v3 vp−1 vp u1

Figure 3.22 The umbrella graph Up,q

Note that Lp,1 � Up,1 � Cp,1 � Pp+1 for all p ≥ 1. By Lemmas 3.0.2

and 3.0.3, we have γt(Lp,1) = γt(Up,1) = γt(Cp,1) = ⌊ p+3
4 ⌋ + ⌊ p+4

4 ⌋ and γpr(Lp,q) =
γpr(Up,q) = γpr(Cp,q) = 2⌈ p+1

4 ⌉, respectively. For any integer q ≥ 2, we obtain the

following theorem.
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u2
u3
u4

uq−1
uq

v1 v2 v3 vp−1 vp u1

Figure 3.23 The coconut graph Cp,q

Theorem 3.6.1. Let p ≥ 1 and q ≥ 2 be integers. Then

1. γt(Lp,q) = γt(Up,q) = γt(Cp,q) = ⌊ p+4
4 ⌋ + ⌊ p+5

4 ⌋ and

2. γpr(Lp,q) = γpr(Up,q) = γpr(Cp,q) = 2⌈ p+2
4 ⌉.

Proof. If q = 2, then Lp,q � Pp+2, so we get γt(Lp,2) = γt(Pp+2) = ⌊ p+4
4 ⌋ + ⌊ p+5

4 ⌋
by Lemma 3.0.2. Let q ≥ 3 and P′ be the graph obtained from Lp,q by deleting the

vertices u3, u4, . . . , uq. Clearly, P′ � Pp+2 and then γt(P′) = ⌊ p+4
4 ⌋ + ⌊ p+5

4 ⌋. Let D be

a γt(Lp,q)-set. We next show that |D | ≥ γt(P′). If u1 ∈ D, then, to dominate u1, D

contains either vp or, without loss of generality, u2. In both cases, the set D is a total

dominating set of P′, and thus |D | ≥ γt(P′). Next, we assume that u1 < D. Since D

is a γt(Lp,q)-set, D contains exactly two vertices, without loss of generality, u2 and u3

from {u2, u3, . . . , uq}. Then D′ = (D \ {u3}) ∪ {u1} is a total dominating set of P′, and

hence |D | = |D′| ≥ γt(P′). Therefore, γt(Lp,q) = |D | ≥ γt(P′). Note that Up,q and

Cp,q are spanning subgraphs of Lp,q, so γt(Up,q) ≥ γt(Lp,q) and γt(Cp,q) ≥ γt(Lp,q). We

observe that E = {vi, vi+1 : i ≡ 2 (mod 4), i < p} ∪ {vp, u1} is a total dominating set of

Lp,q,Up,q, and Cp,q with |E | = ⌊ p+4
4 ⌋ + ⌊ p+5

4 ⌋, and hence we obtain the exact values of

γt(Lp,q), γt(Up,q), and γt(Cp,q).
We can easily check that γpr(Lp,q) ≥ γt(Lp,q) = ⌊ p+4

4 ⌋+ ⌊ p+5
4 ⌋ = 2⌈ p+2

4 ⌉ for

p ≡ 0, 1, 2 (mod 4). If p ≡ 3 (mod 4), then γpr(Lp,q) ≥ ⌊ p+4
4 ⌋ + ⌊ p+5

4 ⌋ + 1 = 2⌈ p+2
4 ⌉

since γpr(Lp,q) is even. Similarly, γpr(Up,q) ≥ 2⌈ p+2
4 ⌉ and γpr(Cp,q) ≥ 2⌈ p+2

4 ⌉. If

p ≡ 0, 1, 2 (mod 4) (respectively, p ≡ 3 (mod 4)), then E (respectively, E ∪ {vp−2})
is a paired dominating set of Lp,q,Up,q, and Cp,q with cardinality 2⌈ p+2

4 ⌉. The theorem

follows. □
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CHAPTER 4

γ-TOTAL AND γ-PAIRED DOMINATING GRAPHS

In this chapter, we first recall the definitions of γ-total dominating graphs,

which were defined by Wongsriya and Trakultraipruk [67], and γ-paired dominating

graphs, introduced by Eakawinrujee and Trakultraipruk [15]. We next determine the

γ-total and the γ-paired dominating graphs of double stars, complete graphs, complete

bipartite graphs, fan graphs, cycles, and some classes of graphs appearing in Chapter 3,

including wheel graphs, helm graphs, flower graphs, lollipop graphs, umbrella graphs,

and coconut graphs.

The γ-total dominating graph of a graph G, denoted by T Dγ(G), is the graph

whose vertices are γt(G)-sets, and two vertices D1 and D2 of T Dγ(G) are adjacent if

D2 = (D1 \ {u}) ∪ {v} for some u ∈ D1 and v < D1. The γ-paired dominating graph

PDγ(G) of G is defined analogously by using γpr(G)-sets as its vertices. Let Pp =

(1, 2, . . . , p) be the path with p vertices. It is easy to check that {2, 3} is the only γt(P4)-
set and the only γpr(P4)-set, so T Dγ(P4) � P1 � PDγ(P4). Figures 4.1 and 4.2 show

the γ-total dominating graphs and the γ-paired dominating graphs, respectively, of P5

and P10.

{2, 3, 4}

{1, 2, 4, 5, 8, 9} {1, 2, 5, 6, 8, 9} {1, 2, 5, 6, 9, 10}

{2, 3, 4, 5, 8, 9} {2, 3, 5, 6, 8, 9} {2, 3, 5, 6, 9, 10}

{2, 3, 4, 7, 8, 9} {2, 3, 6, 7, 8, 9} {2, 3, 6, 7, 9, 10}

Figure 4.1 The γ-total dominating graph of P5 (left) and P10 (right)

4.1 Double Stars, Complete Graphs, Complete Bipartite Graphs, and Fan Graphs

Note that the two support vertices of a double star Sp,q form the only γt(Sp,q)-
set and the only γpr(Sp,q)-set, so we get the following theorem immediately.
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{1, 2, 4, 5} {2, 3, 4, 5}

{1, 2, 3, 4}
{1, 2, 4, 5, 8, 9} {1, 2, 5, 6, 8, 9} {1, 2, 5, 6, 9, 10}

{2, 3, 4, 5, 8, 9} {2, 3, 5, 6, 8, 9} {2, 3, 5, 6, 9, 10}

{2, 3, 6, 7, 8, 9} {2, 3, 6, 7, 9, 10}

Figure 4.2 The γ-paired dominating graph of P5 (left) and P10 (right)

Theorem 4.1.1. Let p ≥ 1 and q ≥ 1 be integers. Then T Dγ(Sp,q) � K1 � PDγ(Sp,q).

The Johnson graph J(p, q) is the graph whose vertices correspond to the

q-element subsets of {1, 2, . . . , p}, where two vertices are adjacent when they meet in a

(q−1)-element set. Clearly, J(p, q) has
(p
q

)
vertices. In Figure 4.3, we show the Johnson

graph J(4, 2).

{1, 2} {1, 3}
{1, 4}

{2, 3}
{2, 4}

{3, 4}

Figure 4.3 The Johnson graph J(4, 2)

We recall that Kp is a complete graph with p vertices. Note that γt(Kp) =
2 = γpr(Kp) for all p ≥ 2. It follows from the definition that the γ-total and the γ-paired

dominating graphs of Kp are both precisely the Johnson graph J(p, 2), as stated in the

following theorem.

Theorem 4.1.2. Let p ≥ 2 be an integer. Then T Dγ(Kp) � J(p, 2) � PDγ(Kp).

We then provide the γ-total and the γ-paired dominating graphs of complete

bipartite graphs as follows.

Theorem 4.1.3. Let p ≥ 1 and q ≥ 1 be integers. Then T Dγ(Kp,q) � Kp□Kq �

PDγ(Kp,q).
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Proof. Let Kp,q be the complete bipartite graph with the partite sets X = {u1, u2, . . . , up}
and Y = {v1, v2, . . . , vq}. Note that γt(Kp,q) = 2 = γpr(Kp,q), and each γt(Kp,q)-set and

each γpr(Kp,q)-set must contain one vertex from X and another one from Y . Therefore,

all {ux, vy}’s with 1 ≤ x ≤ p and 1 ≤ y ≤ q are the only γt(Kp,q)-sets and the only

γpr(Kp,q)-sets, and they form the Cartesian product of Kp and Kq (see Figure 4.4). □

{u1, v1} {u1, v2} {u1, v3} {u1, vq}

{u2, v1} {u2, v2} {u2, v3} {u2, vq}

{u3, v1} {u3, v2} {u3, v3} {u3, vq}

{up, v1} {up, v3}{up, v2} {up, vq}

Figure 4.4 The γ-total and γ-paired dominating graphs of Kp,q

The fan graph Fp,q is the join Kp ∨ Pq, where V(Kp) = {u1, u2, . . . , up} and

V(Pq) = {v1, v2, . . . , vq}. If q = 1, then Fp,q � Kp,1. By Theorem 4.1.3, T Dγ(Fp,1) � Kp.

Let q ≥ 2 be an integer. Note that γt(Fp,q) = 2, so a γt(Fp,q)-set is one of the following

types:

(i) {ux, vy} for some x ∈ {1, 2, . . . , p} and y ∈ {1, 2, . . . , q};
(ii) {vy, vy′} for some distinct y, y′ ∈ {1, 2, . . . , q}.

Note that all γt(Fp,q)-sets of type (i) form a graph Kp□Kq. We consider a γt(Fp,q)-set

{ux, vy} in Kp□Kq as the entry in the row x and the column y.

If q = 2, then {v1, v2} is the only γt(Fp,q)-set of type (ii), and it is adjacent to

every set in Kp□K2. Thus, T Dγ(Fp,2) � (Kp□K2) ∨ K1. For q = 3, {v1, v2} and {v2, v3}
are the only γt(Fp,q)-sets of type (ii). Clearly, {v1, v2} is adjacent to every set in the first

two columns of Kp□K3, and {v2, v3} is adjacent to every set in the last two columns of

Kp□K3. If q = 4, then {v2, v3} is the only γt(Fp,q)-set of type (ii), and it is adjacent to

every set in the columns two and three of Kp□K4. If q ≥ 5, then there is no γt(Fp,q)-set

of type (ii), so T Dγ(Fp,q) � Kp□Kq (Theorem 4.1.4). It is easy to check that PDγ(Fp,q)
is the same as T Dγ(Fp,q) for all p, q ≥ 1.

Theorem 4.1.4. Let p ≥ 1 and q ≥ 5 be integers. Then T Dγ(Fp,q) � Kp□Kq �

PDγ(Fp,q).
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4.2 Wheel Graphs, Helm Graphs, and Flower Graphs

If p ∈ {3, 4}, then the γ-total and the γ-paired dominating graphs of a wheel

graph Wp are shown in Figure 4.5. For p ≥ 5, it is clear that {c, u1}, {c, u2}, . . . , {c, up}
are the only γt(Wp)-sets and the only γpr(Wp)-sets, and they form a complete graph with

p vertices, so we get the result in Theorem 4.2.1.

{u1, u3} {u1, u2}

{u2, u3}

{u1, c}

{u3, c} {u2, c}

{u4, c} {u1, c}

{u2, c}{u3, c}

{u1, u4}

{u1, u2}

{u2, u3}

{u3, u4}

Figure 4.5 The γ-total and γ-paired dominating graphs of W3 (left) and W4 (right)

Theorem 4.2.1. Let p ≥ 5 be an integer. Then T Dγ(Wp) � Kp � PDγ(Wp).

Theorem 4.2.2. Let p ≥ 3 be an integer. Then

T Dγ(Hp) � K1

and

PDγ(Hp) �


K1 if p is even;

Kp+1 if p is odd.

Proof. Clearly, the support vertices of Hp form the only one γt(Hp)-set, and they also

form the only one γpr(Hp)-set if p is even. Hence, T Dγ(Hp) � K1, and if p is even, then

PDγ(Hp) � K1. Let p be odd. Then a γpr(Hp)-set must contain all p support vertices

and one vertex from {c, v1, v2, . . . , vp}. Thus, there are exactly k + 1 γpr(Hp)-sets and

they are all adjacent, so PDγ(Hp) � Kp+1. □

We observe that γt(Flp) = 2 = γpr(Flp), and each γt(Flp)-set and each

γpr(Flp)-set must contain the vertex c and another vertex from {u1, . . . , up, v1, . . . , vp},
so we get the following theorem.

Theorem 4.2.3. Let p ≥ 3 be an integer. Then T Dγ(Flp) � K2p � PDγ(Flp).
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4.3 Paths and Cycles

We first review the results on the γ-total dominating graphs of paths and

cycles, as well as the γ-paired dominating graphs of paths and their properties. In this

section, we mainly determine the γ-paired dominating graphs of cycles.

Wongsriya and Trakultraipruk [67] studied the γ-total dominating graphs of

paths and cycles, of which results are provided below.

Theorem 4.3.1 ([67]). Let k ≥ 1 be an integer. Then T Dγ(P4k) � P1.

Theorem 4.3.2 ([67]). Let k ≥ 1 be an integer. Then T Dγ(P4k−1) � Pk+1.

Theorem 4.3.3 ([67]). Let k ≥ 1 be an integer. Then T Dγ(P4k−2) � Pk□Pk .

Theorem 4.3.4 ([67]). Let k ≥ 2 be an integer. Then T Dγ(P4k−3) � Pk−1.

Theorem 4.3.5 ([67]). Let k ≥ 1 be an integer. Then T Dγ(C4k) �


C4 if k = 1;

4P1 if k ≥ 2.

Theorem 4.3.6 ([67]). Let k ≥ 1 be an integer. Then T Dγ(C4k−1) � C4k−1.

Theorem 4.3.7 ([67]). Let k ≥ 2 be an integer. Then T Dγ(C4k−2) � C2k−1□C2k−1.

Theorem 4.3.8 ([67]). Let k ≥ 2 be an integer. Then T Dγ(C4k−3) � C4k−3.

Let Pp = (u1, u2, . . . , up) and Pq = (v1, v2, . . . , vq) be two paths with p and q

vertices, respectively. Fricke et al. [19] defined a stepgrid SGp,q to be the subgraph of

Pp□Pq induced by {(ux, vy) ∈ V(Pp□Pq) : x − y ≤ 1}. We call the vertex (ux, vy) in the

stepgrid as the vertex at the position (x, y). For example, the stepgrids SG1,1, SG2,2, and

SG4,3 are shown in Figure 4.6.

Let Pp = (u1, u2, . . . , up), Pq = (v1, v2, . . . , vq), and Pr = (w1,w2, . . . ,wr)
be three paths with p, q, and r vertices, respectively. In [15], a stepgrid SGp,q,r is the

graph satisfying the following two conditions:

• It is the subgraph of Pp□Pq□Pr induced by {(ux, vy,wz) ∈ V(Pp□Pq□Pr) : x ≤
y, z ≤ y, x − z ≤ 1}.

• It has additional edges (ux, vx,wx)(ux+1, vx+1,wx) for all x ∈ {1, 2, . . . , p − 1}.
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(u1, v1) (u1, v1)(u1, v2)

(u2, v1)(u2, v2)

(u1, v1) (u1, v2) (u1, v3)

(u2, v1) (u2, v2)(u2, v3)

(u3, v2)(u3, v3)

(u4, v3)

Figure 4.6 The stepgrids SG1,1 (left), SG2,2 (middle), and SG4,3 (right)

The vertex (ux, vy,wz) is called the vertex at the position (x, y, z) in SG(p, q, r). For

example, the stepgrids SG2,2,1 and SG3,3,2 are shown in Figure 4.7, and the stepgrid

SG4,4,3 is shown in Figure 4.8, where we write (x, y, z) for (ux, vy,wz).

(1,1,1) (1,2,1)

(2,2,1)

(1,2,2)

(2,2,2)
(1,3,1)

(1,3,2)

(2,3,1)

(2,3,2)

(3,3,2)

(1,1,1) (1,2,1)

(2,2,1)

Figure 4.7 The stepgrids SG2,2,1 (left) and SG3,3,2 (right)

(1,1,1) (1,2,1)

(2,2,1)

(1,2,2)

(2,2,2)
(1,3,1)

(1,3,2)

(2,3,1)

(2,3,2)

(3,3,2)

(1,4,1)

(1,4,2)

(1,3,3)
(1,4,3)

(2,4,1)

(2,4,2)

(2,4,3)(2,3,3)

(3,3,3)

(3,4,2)

(3,4,3)

(4,4,3)

Figure 4.8 The stepgrid SG4,4,3

Let Pp = (v1, v2, . . . , vp) be the path with p vertices. In [15], the authors

determined the γ-paired dominating graphs of paths and gave the following results.
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Lemma 4.3.9 ([15]). Let k ≥ 1 be an integer. Then there is only one γpr(P4k−1)-set
containing the pair {v4k−2, v4k−1}, and there is only one γpr(P4k−1)-set containing the

pair {v1, v2}.

Lemma 4.3.10 ([15]). Let k ≥ 2 be an integer. Then all γpr(P4k−2)-sets containing the

pair {v4k−3, v4k−2} form a path with k vertices, say A1, A2, . . . , Ak , in PDγ(P4k−2) as an
induced subgraph, where A1 and Ak are of degree two, the others are of degree three,

and Ak has a neighbor of degree two. Moreover, Ak contains the pair {v4k−6, v4k−5},
and the others contain the pair {v4k−7, v4k−6}. The similar results also hold for the

γpr(P4k−2)-sets containing the pair {v1, v2}.

Lemma 4.3.11 ([15]). Let k ≥ 3 be an integer. Then all γpr(P4k−3)-sets containing the

pair {v4k−4, v4k−3} form a stepgrid SGk,k−1 (see Figure 4.9) in PDγ(P4k−3) as an in-

duced subgraph, where B1,1, B2,1, B1,k−1 are of degree three, B2,k−1, B3,k−1, . . . , Bk−1,k−1

are of degree four, and Bk,k−1 is of degree two. Moreover, B1,k−1, B2,k−1, . . . , Bk−1,k−1

contain the pair {v4k−7, v4k−6}, and Bk,k−1 contains the pair {v4k−6, v4k−5}. The similar
results also hold for the γpr(P4k−3)-sets containing the pair {v1, v2}.

B1,1 B1,2 B1,k−2
B1,k−1

B2,1

B2,k−1

B3,k−1

Bk−1,k−1

Bk,k−1

Figure 4.9 The stepgrid SGk,k−1

Theorem 4.3.12 ([15]). Let k ≥ 1 be an integer. Then PDγ(P4k) � P1.

Theorem 4.3.13 ([15]). Let k ≥ 1 be an integer. Then PDγ(P4k−1) � Pk+1.

Theorem 4.3.14 ([15]). Let k ≥ 1 be an integer. Then PDγ(P4k−2) � SGk,k .

Theorem 4.3.15 ([15]). Let k ≥ 2 be an integer. Then PDγ(P4k−3) � SGk,k,k−1.
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From the proofs of Lemma 4.3.10 and Theorem 4.3.14, we can derive the

following result.

Corollary 4.3.16. Let k ≥ 2 be an integer and Ax,y the γpr(P4k−2)-set at the position
(x, y) in PDγ(P4k−2) � SGk,k (see Figure 4.10) for all x, y ∈ {1, 2, . . . , k} with x−y ≤ 1.

If Ax,k contains the pair {v4k−3, v4k−2}, then we get the following properties.

(A1) If y = k, then Ax,y contains the pair {v4k−3, v4k−2}; otherwise, it contains the pair
{v4k−4, v4k−3}.

(A1.1) Ax,k contains the pairs {v4k−7, v4k−6}, {v4k−3, v4k−2} for all x ∈ {1, 2, . . . , k−
1}, and Ak,k contains the pairs {v4k−6, v4k−5}, {v4k−3, v4k−2}.

(A2) If x = 1, then Ax,y contains the pair {v1, v2}; otherwise, it contains the pair

{v2, v3}.

(A2.1) A1,1 contains the pairs {v1, v2}, {v4, v5}, and A1,y contains the pairs {v1, v2},
{v5, v6} for all y ∈ {2, 3, . . . , k}.

A1,1 A1,2 A1,k−1 A1,k

A2,k

Ak−1,k

Ak,k

Figure 4.10 The stepgrid SGk,k

The following result can be obtained from the proofs of Lemma 4.3.11 and

Theorem 4.3.15.

Corollary 4.3.17. Let k ≥ 3 be an integer and Bx,y,z the γpr(P4k−3)-set at the position
(x, y, z) in PDγ(P4k−3) � SGk,k,k−1 (see Figure 4.11) for all x, y ∈ {1, 2, . . . , k}, z ∈
{1, 2, . . . , k − 1} with x ≤ y, z ≤ y, x − z ≤ 1. If Bx,k,z contains the pair {v4k−4, v4k−3},
then we get the following properties.
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(B1) If y = k, then Bx,y,z contains the pair {v4k−4, v4k−3}; otherwise, it contains the
pair {v4k−5, v4k−4}.

(B1.1) Bx,k,k−1 contains the pairs {v4k−7, v4k−6}, {v4k−4, v4k−3} for all x ∈ {1, 2, . . . , k−
1}, and Bk,k,k−1 contains the pairs {v4k−6, v4k−5}, {v4k−4, v4k−3}.

(B1.2) Bx,k,z contains the pairs {v4k−8, v4k−7}, {v4k−4, v4k−3} for all z , k − 1.

(B2) If x = 1, then Bx,y,z contains the pair {v1, v2}; otherwise, it contains the pair

{v2, v3}.

(B2.1) B1,1,1 contains the pairs {v1, v2}, {v3, v4}, and B1,y,1 contains the pairs {v1, v2},
{v4, v5} for all y ∈ {2, 3, . . . , k}.

(B2.2) B1,y,z contains the pairs {v1, v2}, {v5, v6} for all z , 1.

B1,1,1 B1,2,1

B2,2,1

B1,3,1

B2,3,1

B1,k,1

B2,k,1

B1,2,2 B1,3,2

B1,k,2

B1,k−1,k−1
B1,k−1,k−2

B1,k,k−2

B1,k,k−1

B2,k,2

B2,k,k−2

B2,k,k−1

Bk−2,k,k−2

Bk−2,k,k−1

Bk−1,k,k−2

Bk−1,k,k−1

Bk,k,k−1

Figure 4.11 The stepgrid SGk,k,k−1

We now present the γ-paired dominating graphs of cycles. Throughout this

section, we let Cp = (v0, v1, . . . , vp−1) to be the cycle with p vertices. We first consider

the γ-paired dominating graph of C4k , as provided in the following theorem.

Theorem 4.3.18. Let k ≥ 1 be an integer. Then

PDγ(C4k) �


C4 if k = 1;

4P1 if k ≥ 2.
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Proof. Obviously, {v0, v1}, {v1, v2}, {v2, v3}, {v3, v0} are the only γpr(C4)-sets, and thus

PDγ(C4) � C4. Let k ≥ 2. By Lemma 3.0.3, we have γpr(C4k) = 2k. It is easy to check

that {v4i, v4i+1 : 0 ≤ i ≤ k − 1}, {v4i+1, v4i+2 : 0 ≤ i ≤ k − 1}, {v4i+2, v4i+3 : 0 ≤
i ≤ k − 1}, {v4i+3, v4i+4 : 0 ≤ i ≤ k − 1} are the only γpr(C4k)-sets, and they are not

adjacent. Thus, PDγ(C4k) � 4P1. □

Before proving the γ-paired dominating graph of a cycle with 4k+3 vertices,

we need the following lemma.

Lemma 4.3.19. Let k ≥ 0 be an integer and D a γpr(C4k+3)-set. Then there is exaclty

one vertex not in D dominated by two vertices of D.

Proof. We can easily get that the lemma holds for k = 0. Let k ≥ 1. Note that |D | = 2k+

2, so we can write D =
∪k+1

x=1 Dx , where Dx’s are pairwise disjoint sets of paired vertices.

Clearly, |N[Dx]| = 4 for all x ∈ {1, 2, 3, . . . , k + 1}, and V(C4k+3) =
∪k+1

x=1 N[Dx]. If

N[Dx]’s are pairwise disjoint sets, then 4k +3 = |V(C4k+3)| =
∑k+1

x=1 |N[Dx]| = 4k +4, a

contradiction. Therefore, there are exactly two disjoint sets, without loss of generality,

D1 and D2 such that |N[D1] ∩ N[D2]| = 1. Thus, this common vertex is the only vertex

not in D dominated by two vertices of D. □

Theorem 4.3.20. Let k ≥ 0 be an integer. Then PDγ(C4k+3) � C4k+3.

Proof. For convenience, we omit the modulo 4k + 3 in the subscript of each vertex; for

example, we write vx+1 instead of v(x+1) (mod 4k+3). For each x ∈ {0, 1, . . . , 4k + 2}, let

Dx = {vx+4i+1, vx+4i+2 : 0 ≤ i ≤ k} as shown in Figure 4.12, where Dx contains the

black vertices. It is easy to check that Dx is a γpr(C4k+3)-set such that vx < Dx is the

only vertex dominated by two vertices of Dx . Hence, D0,D1, . . . ,D4k+2 are all distinct.

Similarly, we omit the modulo 4k + 3 in the subscript of each γpr(C4k+3)-set.

We claim that D0,D1, . . . ,D4k+2 are the only γpr(C4k+3)-sets. Let D be

any γpr(C4k+3)-set. By Lemma 4.3.19, there is a unique vertex vx < D, for some x ∈
{0, 1, . . . , 4k + 2}, dominated by two vertices of D, so D = Dx .

Let x ∈ {0, 1, . . . , 4k + 2}. To find all neighbors of Dx in PDγ(C4k+3),
we can only substitute vx+1 with vx+3, or vx−1 with vx−3 since vx is the only vertex

dominated by vx+1 and vx−1 of Dx . Thus, (Dx \ {vx+1}) ∪ {vx+3} and (Dx \ {vx−1}) ∪
{vx−3} are the only two neighbors of Dx in PDγ(C4k+3). Note that (Dx \ {vx+1}) ∪
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vx vx+1

vx+2

vx+3

vx+4

vx+5

vx+6vx+4k−3 = vx−6

vx+4k−2 = vx−5

vx+4k−1 = vx−4

vx+4k = vx−3

vx+4k+1 = vx−2

vx+4k+2 = vx−1

Figure 4.12 The γpr(C4k+3)-set Dx

{vx+3} = Dx+4 since vx+4 is the only vertex dominated by two dominating vertices.

Similarly, (Dx \ {vx−1}) ∪ {vx−3} = Dx−4. Therefore, D0, D4, . . . ,D4k−4, D4k , D1,

D5, . . . ,D4k−3,D4k+1,D2,D6, . . . , D4k−2, D4k+2, D3, D7, . . . ,D4k−1,D0 form a cycle

with 4k + 3 vertices. This completes the proof. □

Before we determine the γ-paired dominating graph of a cycle with 4k + 2

vertices, we define some notations and a new graph called a loopgrid.

Let p and q be positive integers such that p < q, and i be a nonnegative

integer. Let Pp(vi : vi+p−1) be the subgraph of the cycle Cq induced by the vertices

vi mod q, v(i+1) mod q, . . . , v(i+p−1) mod q. Then Pp(vi : vi+p−1) is the path with p vertices.

Let G1 = (u1, u2, . . . , u2k−1) and G2 = (v1, v2, . . . , v3k−1) be two paths with

2k − 1 and 3k − 1 vertices, respectively, where k is a positive integer. We define a

loopgrid of size k, denoted by LGk , as the graph satisfying the following conditions:

• It is the subgraph of G1□G2 induced by {(ux, vy) ∈ V(G1□G2) : 0 ≤ y − x ≤ k}.

• It has additional edges (u1, vy)(u2k−1, vy+2k−1) for all y ∈ {1, 2, . . . , k}.

Figure 4.13 illustrates the loopgrids LG1 and LG2, where we use (x, y) as (ux, vy).

Lemma 4.3.21. Let k ≥ 2 be an integer.

1. Each γpr(C4k+2)-set cannot contain any six or more consecutive vertices.

2. For any fixed four consecutive vertices in C4k+2, there is exactly one γpr(C4k+2)-
set containing them.
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LG1 � P2 : LG2 :
(1, 1) (1, 2)

(1, 1) (1, 2) (1, 3)

(2, 2) (2, 3) (2, 4)

(3, 3) (3, 4) (3, 5)

(1, 1) (1, 2) (1, 3)

Figure 4.13 The loopgrids LG1 (left) and LG2 (right)

Proof. We prove the first claim by a contradiction. Suppose that there is a γpr(C4k+2)-
set D containing l ≥ 6 consecutive vertices of C4k+2. Without loss of generality, we

may assume that these l vertices are v1, v2, . . . , vl . Let D′ be the set obtained from D

by deleting any two consecutive vertices from {v3, v4, . . . , vl−2}. Then D′ is a paired

dominating set with |D′| < |D |, a contradiction.

For the second claim, without loss of generality, we assume the four vertices

are v1, v2, v3, v4. We find all γpr(C4k+2)-sets containing them. By the first claim, all such

γpr(C4k+2)-sets cannot contain v0 and v5. The vertices v1, v2, v3, v4 dominate six vertices

in C4k+2. Note that γpr(C4k+2) = 2k + 2, so the other 2k − 2 vertices must dominate all

vertices in P4k−4(v6 : v4k+1). Since γpr(P4k−4(v6 : v4k+1)) = 2k−2, these 2k−2 vertices

form a γpr(P4k−4(v6 : v4k+1))-set. Thus, each γpr(C4k+2)-set containing v1, v2, v3, v4 is

a union of a γpr(P4k−4(v6 : v4k+1))-set and {v1, v2, v3, v4}. By Theorem 4.3.12, there is

a unique γpr(P4k−4(v6 : v4k+1))-set. The claim follows. □

Theorem 4.3.22. Let k ≥ 1 be an integer. Then

PDγ(C4k+2) �


C3□C3 if k = 1;

LGk+1 if k ≥ 2.

Proof. Figure 4.14 shows that PDγ(C6) � C3□C3. Let k ≥ 2. Since each γpr(C4k+2)-set

must dominate the vertex v0, we get it contains either the pair {v4k, v4k+1}, {v4k+1, v0},
{v0, v1}, or {v1, v2}. We first find all γpr(C4k+2)-sets containing the pair {v4k, v4k+1}.
By Lemma 4.3.21(1), such a γpr(C4k+2)-set must satisfy one of the following:

(i) it contains the pair {v4k, v4k+1} but not v4k−1, v0;

(ii) it contains the pairs {v4k−2, v4k−1} and {v4k, v4k+1};
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{v0, v1, v2, v3} {v0, v1, v3, v4} {v1, v2, v3, v4}

{v1, v2, v5, v0} {v0, v1, v4, v5} {v1, v2, v4, v5}

{v2, v3, v5, v0} {v3, v4, v5, v0} {v2, v3, v4, v5}

Figure 4.14 The γ-paired dominating graph of C6

(iii) it contains the pairs {v4k, v4k+1} and {v0, v1}.
Note that each γpr(C4k+2)-set containing the pair {v4k, v4k+1} but not v4k−1, v0 is a union

of a γpr(P4k−2(v1 : v4k−2))-set and {v4k, v4k+1}. By Theorem 4.3.14, PDγ(P4k−2(v1 :

v4k−2)) � SGk,k . For all x, y ∈ {1, 2, . . . , k} with x−y ≤ 1, let A(1)
x,y be the γpr(P4k−2(v1 :

v4k−2))-set at the position (x, y) in this stepgrid SGk,k , and let

D(1)
x,y = A(1)

x,y ∪ {v4k, v4k+1}.

Thus, D(1)
x,y’s are the only γpr(C4k+2)-sets containing the pair {v4k, v4k+1} but not v4k−1, v0,

and they form a stepgrid SGk,k in PDγ(C4k+2). By Lemma 4.3.10, we assume, without

loss of generality, that Ax,k contains the pair {v4k−3, v4k−2} for each x ∈ {1, 2, . . . , k}. By

Corollary 4.3.16(A1.1), we have A(1)
k,k contains the pairs {v4k−6, v4k−5}, {v4k−3, v4k−2}.

Let

D(1)
k+1,k = (D(1)

k,k \ {v4k−3}) ∪ {v4k−1}.

By Lemma 4.3.21(2), D(1)
k+1,k is the only γpr(C4k+2)-set containing the pairs {v4k−2, v4k−1}

and {v4k, v4k+1}. By Corollary 4.3.16(A2.1), A(1)
1,1 contains the pairs {v1, v2}, {v4, v5}.

Let

D(1)
1,0 = (D(1)

1,1 \ {v2}) ∪ {v0}.

By Lemma 4.3.21(2), D(1)
1,0 is the only γpr(C4k+2)-set containing the pairs {v4k, v4k+1}

and {v0, v1}. Therefore, all D(1)
x,y’s form the graph, named D(1), in PDγ(C4k+2) as shown

in Figure 4.15.

Similarly, we can construct all γpr(C4k+2)-sets as follows (the subscripts of

all vertices are modulo 4k + 2): for all x, y ∈ {1, 2, . . . , k} with x − y ≤ 0 and for each
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i ∈ {1, 2, 3, 4},

D(i)
x,y = A(i)

x,y ∪ {v4k−1+i, v4k+i}, where A(i)
x,y is a γpr(P4k−2(vi : v4k−3+i))-set,

D(i)
k+1,k = (D(i)

k,k \ {v4k−4+i}) ∪ {v4k−2+i}, and

D(i)
1,0 = (D(i)

1,1 \ {vi+1}) ∪ {vi−1}.

These D(i)
x,y’s are the only γpr(C4k+2)-sets containing the pair {v4k−1+i, v4k+i}, and they

form the graph D(i) in PDγ(C4k+2) (see Figure 4.15). By Lemma 4.3.10, without loss of

generality, we assume A(i)
x,k contains the pair {v4k−4+i, v4k−3+i}. For all x, y ∈ {1, 2, . . . , k}

with x − y ≤ 1, we get the following properties.

(A′1) If y = k, then D(i)
x,y contains the pairs {v4k−4+i, v4k−3+i}, {v4k−1+i, v4k+i}; other-

wise, it contains the pairs {v4k−5+i, v4k−4+i}, {v4k−1+i, v4k+i}.

(A′1.1) D(i)
x,k contains the pairs {v4k−8+i, v4k−7+i}, {v4k−4+i, v4k−3+i}, {v4k−1+i, v4k+i}

for all x ∈ {1, 2, . . . , k − 1}, and D(i)
k,k contains the pairs {v4k−7+i, v4k−6+i},

{v4k−4+i, v4k−3+i}, {v4k−1+i, v4k+i}.

(A′2) If x = 1, then D(i)
x,y contains the pairs {v4k−1+i, v4k+i}, {vi, vi+1}; otherwise, it

contains the pairs {v4k−1+i, v4k+i}, {vi+1, vi+2}.

(A′2.1) D(i)
1,1 contains the pairs {v4k−1+i, v4k+i}, {vi, vi+1}, {vi+3, vi+4}, and D(i)

1,y con-

tains the pairs {v4k−1+i, v4k+i}, {vi, vi+1}, {vi+4, vi+5} for all y ∈ {2, 3, . . . , k}.

(A′3) D(i)
k+1,k is the only γpr(C4k+2)-set in D(i) containing the pairs

{v4k−7+i, v4k−6+i}, {v4k−3+i, v4k−2+i}, {v4k−1+i, v4k+i}, {vi+1, vi+2}.

(A′4) D(i)
1,0 is the only γpr(C4k+2)-set in D(i) containing the pairs

{v4k−5+i, v4k−4+i}, {v4k−1+i, v4k+i}, {vi−1, vi}, {vi+3, vi+4}.

Note that D(1) and D(2) cannot have any common vertices in PDγ(C4k+2);
otherwise, there is a γpr(C4k+2)-set containing the pairs {v4k, v4k+1} and {v4k+1, v0},
which is impossible. Similarly, D(i) and D(i+1) do not share any vertices in PDγ(C4k+2)
for all i ∈ {2, 3}.

We then consider all γpr(C4k+2)-sets that are in both D(1) and D(3). Then

these sets must contain the pairs {v4k, v4k+1}, {v0, v1}. By (A′4) and (A′3), D(1)
1,0 and

D(3)
k+1,k are the only γpr(C4k+2)-sets in D(1) and D(3), respectively, containing the pairs
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D(1) :

: D(2)

D(3) :

: D(4)

D(1)
1,0 D(1)

1,1
D(1)
1,k−1 D(1)

1,k

D(2)
1,0

D(1)
2,k

D(1)
k,k

D(1)
k+1,k

D(2)
1,1

D(2)
1,k−1

D(2)
1,k

D(2)
2,k

D(2)
k,k

D(2)
k+1,k

D(3)
1,0 D(3)

1,1
D(3)
1,k−1 D(3)

1,k

D(3)
2,k

D(3)
k,k

D(3)
k+1,k

D(4)
1,0

D(4)
1,1

D(4)
1,k−1

D(4)
1,k

D(4)
2,k

D(4)
k,k

D(4)
k+1,k

Figure 4.15 The induced subgraphs D(1), D(2), D(3), and D(4) in PDγ(C4k+2)

{v4k, v4k+1}, {v0, v1}. By Lemma 4.3.21(2), we get D(1)
1,0 = D(3)

k+1,k . Similarly, D(2)
1,0 =

D(4)
k+1,k is the only γpr(C4k+2)-set that is in both D(2) and D(4).

We next consider all γpr(C4k+2)-sets which are in both D(1) and D(4). These

sets must contain the pairs {v4k, v4k+1}, {v1, v2}. By (A′2), D(1)
1,1,D

(1)
1,2, . . . ,D

(1)
1,k are the

only γpr(C4k+2)-sets in D(1) containing the pairs {v4k, v4k+1}, {v1, v2}, and they form a

path with k vertices. Then they also form a path in D(4). By (A′1), D(4)
1,k,D

(4)
2,k, . . . ,D

(4)
k,k

are the only γpr(C4k+2)-sets in D(4) containing the pairs {v4k, v4k+1}, {v1, v2}, and they

form a path with k vertices. To show that D(1)
1,y = D(4)

y,k for each y ∈ {1, 2, . . . , k}, it

suffices to show that D(1)
1,1 = D(4)

1,k . By (A′2.1), D(1)
1,1 contains the pairs {v4k, v4k+1},

{v1, v2}, {v4, v5}. By (A′1) and (A′2), D(4)
1,k is the only γpr(C4k+2)-set in D(4) containing

these three pairs, and hence D(1)
1,1 = D(4)

1,k .

Next, we consider all edges between a set in D(1) and a set in D(2). We first

show that D(1)
1,0 has no neighbors in D(2). By (A′4), D(1)

1,0 contains the pairs {v4k−4, v4k−3},
{v4k, v4k+1}, {v0, v1}, {v4, v5}. Since each set in D(2) contains the pair {v4k+1, v0}, the

set D(1)
1,0 is adjacent to some set in D(2) if and only if (D(1)

1,0 \ {v4k}) ∪ {v2} or (D(1)
1,0 \

{v1})∪{v4k−1} is a γpr(C4k+2)-set. It is easy to check that D(1)
1,0 is not adjacent to any sets
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in D(2). By (A′3), D(1)
k+1,k contains the pairs {v4k−6, v4k−5}, {v4k−2, v4k−1}, {v4k, v4k+1},

{v2, v3}, so D(1)
k+1,k is adjacent to some set in D(2) if and only if (D(1)

k+1,k \ {v4k}) ∪ {v0}
or (D(1)

k+1,k \ {v4k−2}) ∪ {v0} is a γpr(C4k+2)-set. We have (D(1)
k+1,k \ {v4k}) ∪ {v0} is a

γpr(C4k+2)-set, but (D(1)
k+1,k \ {v4k−2}) ∪ {v0} is not. We show that D(1)

k+1,k and D(2)
1,k are

adjacent, i.e., (D(2)
1,k \ {v0}) ∪ {v4k} = D(1)

k+1,k . By (A′1) and (A′2), D(2)
1,k contains the

pairs {v4k−2, v4k−1}, {v4k+1, v0}, {v2, v3}, so (D(2)
1,k \ {v0}) ∪ {v4k} is a γpr(C4k+2)-set

containing the pairs {v4k−2, v4k−1}, {v4k, v4k+1}. Since D(1)
k+1,k also contains these two

pairs, (D(2)
1,k \ {v0}) ∪ {v4k} = D(1)

k+1,k by Lemma 4.3.21(2).

We next find all neighbors in D(2) of the other γpr(C4k+2)-sets in D(1). We

show that D(1)
x,k is adjacent to D(2)

1,x−1 for all x ∈ {1, 2, . . . , k}. Recall that, for all x, y ∈
{1, 2, . . . , k} with x − y ≤ 1, D(1)

x,y contains the pair {v4k, v4k+1} but not v4k−1, v0. Note

that D(1)
x,y is adjacent to some set in D(2) if and only if (D(1)

x,y\{v4k})∪{v0} is a γpr(C4k+2)-
set. By (A′1), if y , k, then D(1)

x,y contains the pairs {v4k−4, v4k−3}, {v4k, v4k+1}, so

(D(1)
x,y \ {v4k}) ∪ {v0} is not a γpr(C4k+2)-set. By (A′1) and (A′2), the set D(1)

1,k contains

the pairs {v4k−3, v4k−2}, {v4k, v4k+1}, {v1, v2}, and D(1)
2,k,D

(1)
3,k, . . . ,D

(1)
k,k contain the pairs

{v4k−3, v4k−2}, {v4k, v4k+1}, {v2, v3}. For each x ∈ {1, 2, . . . , k}, let Dx = (D(1)
x,k\{v4k})∪

{v0}, so Dx is a γpr(C4k+2)-set, and these Dx’s form a path with k vertices in D(2).

Note that D1 contains the pairs {v4k−3, v4k−2}, {v4k+1, v0}, {v1, v2}, and D2,D3, . . . ,Dk

contain the pairs {v4k−3, v4k−2}, {v4k+1, v0}, {v2, v3}. By (A′4), the set D(2)
1,0 is the only

γpr(C4k+2)-set in D(2) containing the pairs {v4k−3, v4k−2}, {v4k+1, v0}, {v1, v2}, and by

(A′1) and (A′2), D(2)
1,1,D

(2)
1,2, . . . ,D

(2)
1,k−1 are the only γpr(C4k+2)-sets in D(2) containing

the pairs {v4k−3, v4k−2}, {v4k+1, v0}, {v2, v3}, and they also form a path with k vertices

in D(2). Then we conclude that, for all x ∈ {1, 2, . . . , k}, Dx = D(2)
1,x−1, implying that D(1)

x,k

is adjacent to D(2)
1,x−1. To sum up, D(1)

x,k is adjacent to D(2)
1,x−1 for all x ∈ {1, 2, . . . , k + 1}.

Likewise, for all i ∈ {2, 3}, we get D(i)
x,k is adjacent to D(i+1)

1,x−1 for all x ∈ {1, 2, . . . , k +1}.
Now, all γpr(C4k+2)-sets and edges form a loopgrid LGk+1 in PDγ(C4k+2).

Then we only need to show that there is no more edge in PDγ(C4k+2). We first consider

all edges between a set in D̂(1) = D(1) − D(1)
1,0 and a set in D̂(3) = D(3) − D(3)

k+1,k since

D(1)
1,0 = D(3)

k+1,k . Note that each set in D̂(1) contains either the pairs {v4k, v4k+1}, {v1, v2},
or the pairs {v4k, v4k+1}, {v2, v3}, while every set in D̂(3) contains the pair {v0, v1} but not

{v4k, v4k+1}. Hence, there is no edge between a set in D̂(1) and a set in D̂(3). Similarly,

there is no edge between a set in D(2) − D(2)
1,0 and a set in D(4) − D(4)

k+1,k . Recall that
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D(1)
1,y = D(4)

y,k for all y ∈ {1, 2, . . . , k}. Also, D(1)
1,0 = D(3)

k+1,k has a neighbor in D(4).

Thus, we consider all edges between a set in D̃(1) = D(1) − {D(1)
1,y : 0 ≤ y ≤ k}

and a set in D̃(4) = D(4) − {D(4)
y,k : 1 ≤ y ≤ k}. Note that each set in D̃(1) contains

the pairs {v4k, v4k+1}, {v2, v3}, while each set in D̃(4) contains the pair {v1, v2} but not

{v4k, v4k+1}. Hence, there is no edge between a set in D̃(1) and a set in D̃(4). This

completes the proof. □

For any positive integer k, let G1 = (u1, u2, . . . , u2k), G2 = (v1, v2, . . . , v2k),
and G3 = (w1,w2, . . . ,w2k+1) be three paths with 2k, 2k, and 2k + 1 vertices, respec-

tively. We next define a loopbox LBk of size k as the graph satisfying the following

conditions:

• It is the subgraph of G1□G2□G3 induced by {(ux, vy,wz) ∈ V(G1□G2□G3) : 0 ≤
y − x ≤ k,−1 ≤ y − z ≤ k − 1, 0 ≤ z − x ≤ k}.

• It has additional edges (u1, v1,w1)(uk+1, v2k,wk+1), (u1, vk,wk+1)(u2k, v2k,w2k+1),
(ux, vx+k−1,wx)(ux, vx+k,wx+1) for all x ∈ {1, 2, . . . , k},
(ux, vx+k,wx+k)(ux+1, vx+k,wx+k+1) for all x ∈ {1, 2, . . . , k},
(ux, vx,wx+1)(ux+1, vx+1,wx+1) for all x ∈ {1, 2, . . . , 2k − 1}, and

(u1, vy,wz)(uz+k, v2k,wy+k+1) for all −1 ≤ y − z ≤ k − 1.

For example, the loopboxes of size 1, 2 and 3 are shown in Figures 4.16, 4.17, and 4.18,

respectively, where we write (x, y, z) instead of (ux, vy,wz).

(1,1,1)

(1,1,2) (1,2,2)

(2,2,2)

(2,2,3)

Figure 4.16 The loopbox LB1 of size 1

Lemma 4.3.23. Let k ≥ 2 be an integer.

1. Each γpr(C4k+1)-set cannot contain any six or more consecutive vertices.

2. For any fixed four consecutive vertices in C4k+1, there are k γpr(C4k+1)-sets that
contain them.
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(1,1,1) (1,2,1)

(1,1,2) (1,2,2)

(2,2,2)

(1,2,3)

(2,2,3)

(1,3,2)

(1,3,3)

(2,3,2)

(2,3,3)
(2,4,3)

(3,3,3) (3,4,3)

(2,4,4)(2,3,4)

(3,3,4)
(3,4,4)

(3,4,5)

(1,1,1)

(1,2,1)

(4,4,4) (1,1,2)

(4,4,5) (1,2,2)

(1,2,3)

(1,3,2)

(1,3,3)

Figure 4.17 The loopbox LB2 of size 2

(1,1,1)

(1,1,2)

(1,2,1)

(1,2,2)

(1,3,1)
(1,3,2)

(1,2,3) (1,3,3)
(1,3,4)

(2,2,2) (2,3,2)
(2,2,3)

(3,3,3)
(3,3,4)

(1,4,2)
(1,4,3)

(2,4,2)

(3,4,3)

(1,4,4)

(4,4,4)

(2,5,3)

(3,5,3)

(4,5,4)

(3,6,4)

(4,6,4)

(2,5,4)

(2,4,5) (2,5,5)

(4,4,5)

(3,6,5)

(4,6,5)

(3,5,6) (3,6,6)

(4,6,6)

(1,1,1)
(1,2,1)

(4,6,7)
(1,3,1)

(5,5,5) (5,6,5)
(1,1,2)

(5,5,6) (5,6,6) (1,2,2)
(5,6,7) (1,3,2)

(6,6,6) (1,2,3)
(6,6,7) (1,3,3)

(1,3,4)

(1,4,2)

(1,4,3)

(1,4,4)

Figure 4.18 The loopbox LB3 of size 3

Proof. Similar to Lemma 4.3.21(1), we can easily prove the first claim. Next, without

loss of generality, we assume the four vertices are v1, v2, v3, v4. Then these four vertices

dominate six vertices in C4k+1. Note that γpr(C4k+1) = 2k+2, so the other 2k−2 vertices

must dominate all vertices in P4k−5(v6 : v4k). Since γpr(P4k−5(v6 : v4k)) = 2k −2, these

2k − 2 vertices form a γpr(P4k−5(v6 : v4k))-set. Hence, each such γpr(C4k+1)-set is a

union of a γpr(P4k−5(v6 : v4k))-set and {v1, v2, v3, v4}. By Theorem 4.3.13, there are k

γpr(P4k−5(v6 : v4k))-sets, so the claim follows. □

Theorem 4.3.24. Let k ≥ 1 be an integer. Then PDγ(C4k+1) � LBk .

Proof. We can check that {v0, v1, v2, v3}, {v1, v2, v3, v4}, {v2, v3, v4, v0}, {v3, v4, v0, v1},
and {v4, v0, v1, v2} are the only γpr(C5)-sets and they are all adjacent, so PDγ(C5) �
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K5 � LB1. For k = 2, we have PDγ(C9) � LB2 (see Figure 4.17), where

(1, 1, 1) = {v0, v1, v2, v3, v5, v6}, (1, 2, 1) = {v0, v1, v2, v3, v6, v7},
(1, 1, 2) = {v0, v1, v3, v4, v5, v6}, (1, 2, 2) = {v0, v1, v3, v4, v6, v7},
(1, 2, 3) = {v0, v1, v3, v4, v7, v8}, (2, 2, 2) = {v0, v1, v4, v5, v6, v7},
(2, 2, 3) = {v0, v1, v4, v5, v7, v8}, (1, 3, 2) = {v1, v2, v3, v4, v6, v7},
(1, 3, 3) = {v1, v2, v3, v4, v7, v8}, (2, 3, 2) = {v1, v2, v4, v5, v6, v7},
(2, 3, 3) = {v1, v2, v4, v5, v7, v8}, (3, 3, 3) = {v1, v2, v4, v5, v8, v0},
(2, 4, 3) = {v1, v2, v5, v6, v7, v8}, (3, 4, 3) = {v1, v2, v5, v6, v8, v0},
(2, 3, 4) = {v2, v3, v4, v5, v7, v8}, (3, 3, 4) = {v2, v3, v4, v5, v8, v0},
(2, 4, 4) = {v2, v3, v5, v6, v7, v8}, (3, 4, 4) = {v2, v3, v5, v6, v8, v0},
(3, 4, 5) = {v2, v3, v6, v7, v8, v0}, (4, 4, 4) = {v3, v4, v5, v6, v8, v0},
(4, 4, 5) = {v3, v4, v6, v7, v8, v0}.
Let k ≥ 3. Since each γpr(C4k+1)-set must dominate the vertex v0, it

contains either the pair {v4k−1, v4k}, {v4k, v0}, {v0, v1}, or {v1, v2}. We first find all

γpr(C4k+1)-sets containing the pair {v4k−1, v4k}. By Lemma 4.3.23(1), we get that such

a γpr(C4k+1)-set must satisfy one of the following:

(i) it contains the pair {v4k−1, v4k} but not v4k−2, v0;

(ii) it contains the pairs {v4k−3, v4k−2} and {v4k−1, v4k};
(iii) it contains the pairs {v4k−1, v4k} and {v0, v1}.

Note that each γpr(C4k+1)-set containing the pair {v4k−1, v4k} but not v4k−2, v0 is a union

of a γpr(P4k−3(v1 : v4k−3))-set and {v4k−1, v4k}. By Theorem 4.3.15, PDγ(P4k−3(v1 :

v4k−3)) � SGk,k,k−1. For all x, y ∈ {1, 2, . . . , k} and z ∈ {1, 2, . . . , k − 1} with x ≤ y,

z ≤ y, x − z ≤ 1, let B(1)
x,y,z be the γpr(P4k−3(v1 : v4k−3))-set at the position (x, y, z) in

SGk,k,k−1, and let

D(1)
x,y,z = B(1)

x,y,z ∪ {v4k−1, v4k}.

Therefore, D(1)
x,y,z’s are the only γpr(C4k+1)-sets containing the pair {v4k−1, v4k} but not

v4k−2, v0, and they also form a stepgrid SGk,k,k−1 in PDγ(C4k+1). By Lemma 4.3.11,

without loss of generality, we may assume that B(1)
x,k,z contains the pair {v4k−4, v4k−3}. By

Corollary 4.3.17(B1.1), the set B(1)
x,k,k−1 contains the pairs {v4k−7, v4k−6}, {v4k−4, v4k−3}

for all x ∈ {1, 2, . . . , k−1}, and B(1)
k,k,k−1 contains the pairs {v4k−6, v4k−5}, {v4k−4, v4k−3}.

For each x ∈ {1, 2, . . . , k}, let

D(1)
x,k,k = (D(1)

x,k,k−1 \ {v4k−4}) ∪ {v4k−2}.
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By Lemma 4.3.23(2), these D(1)
x,k,k’s are the only γpr(C4k+1)-sets containing the pairs

{v4k−3, v4k−2}, {v4k−1, v4k}. By Corollary 4.3.17(B2.1), the set B(1)
1,1,1 contains the pairs

{v1, v2}, {v3, v4}, and B(1)
1,y,1 contains the pairs {v1, v2}, {v4, v5} for all y ∈ {2, 3, . . . , k}.

For each y ∈ {1, 2, . . . , k}, let

D(1)
1,y,0 = (D(1)

1,y,1 \ {v2}) ∪ {v0}.

By Lemma 4.3.23(2), these D(1)
1,y,0’s are the only γpr(C4k+1)-sets containing the pairs

{v4k−1, v4k}, {v0, v1}. Therefore, all D(1)
x,y,z’s form the graph, named D(1), in PDγ(C4k+1)

as shown in Figure 4.19.

Similarly, we can construct all γpr(C4k+1)-sets as follows (the subscripts of

all vertices are modulo 4k + 1): for all x, y ∈ {1, 2, . . . , k} and z ∈ {1, 2, . . . , k − 1} with

x ≤ y, z ≤ y, x − z ≤ 1 and for each i ∈ {1, 2, 3, 4},

D(i)
x,y,z = B(i)

x,y,z ∪ {v4k−2+i, v4k−1+i}, where B(i)
x,y,z is a γpr(P4k−3(vi : v4k−4+i))-set,

D(i)
x,k,k = (D(i)

x,k,k−1 \ {v4k−5+i}) ∪ {v4k−3+i}, and

D(i)
1,y,0 = (D(i)

1,y,1 \ {vi+1}) ∪ {vi−1}.

These D(i)
x,y,z’s are the only γpr(C4k+1)-sets containing the pair {v4k−2+i, v4k−1+i}, and

they form the graph D(i) (see Figure 4.19) in PDγ(C4k+1). By Lemma 4.3.11, without

loss of generality, we may assume that B(i)
x,k,z contains the pair {v4k−5+i, v4k−4+i} and then

we get the following properties.

(B′1) Let x ∈ {1, 2, . . . , k} and z ∈ {0, 1, . . . , k − 1} with x − z ≤ 1. If y = k, then D(i)
x,y,z

contains the pairs {v4k−5+i, v4k−4+i}, {v4k−2+i, v4k−1+i}; otherwise, it contains the

pairs {v4k−6+i, v4k−5+i}, {v4k−2+i, v4k−1+i}.

(B′1.1) D(i)
x,k,k−1 contains the pairs {v4k−8+i, v4k−7+i}, {v4k−5+i, v4k−4+i}, {v4k−2+i, v4k−1+i}

for all x ∈ {1, 2, . . . , k−1}, and D(i)
k,k,k−1 contains the pairs {v4k−7+i, v4k−6+i},

{v4k−5+i, v4k−4+i}, {v4k−2+i, v4k−1+i}.

(B′1.2) If z , k−1, then D(i)
x,k,z contains the pairs {v4k−9+i, v4k−8+i}, {v4k−5+i, v4k−4+i},

{v4k−2+i, v4k−1+i}.

(B′2) Let y ∈ {1, 2, . . . , k} and z ∈ {1, 2, . . . , k} with z ≤ y. If x = 1, then D(i)
x,y,z

contains the pairs {v4k−2+i, v4k−1+i}, {vi, vi+1}; otherwise, it contains the pairs

{v4k−2+i, v4k−1+i}, {vi+1, vi+2}.
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(B′2.1) D(i)
1,1,1 contains the pairs {v4k−2+i, v4k−1+i}, {vi, vi+1}, {vi+2, vi+3}, D(i)

1,y,1 con-

tains the pairs {v4k−2+i, v4k−1+i}, {vi, vi+1}, {vi+3, vi+4} for all y ∈ {2, 3, . . . , k}.

(B′2.2) If z , 1, then D(i)
1,y,z contains the pairs {v4k−2+i, v4k−1+i}, {vi, vi+1}, {vi+4, vi+5}.

(B′3) D(i)
1,k,k,D

(i)
2,k,k, . . . ,D

(i)
k,k,k are the only γpr(C4k+1)-sets in D(i) containing the pairs

{v4k−4+i, v4k−3+i}, {v4k−2+i, v4k−1+i}.

(B′3.1) D(i)
1,k,k contains the pair {vi, vi+1} and the others contain the pair {vi+1, vi+2}.

(B′3.2) D(i)
k,k,k contains the pair {v4k−7+i, v4k−6+i} and the others contain the pair

{v4k−8+i, v4k−7+i}.

(B′4) D(i)
1,1,0,D

(i)
1,2,0, . . . ,D

(i)
1,k,0 are the only γpr(C4k+1)-sets in D(i) containing the pairs

{v4k−2+i, v4k−1+i}, {vi−1, vi}.

(B′4.1) D(i)
1,1,0 contains the pair {vi+2, vi+3} and the others contain the pair {vi+3, vi+4}.

(B′4.2) D(i)
1,k,0 contains the pair {v4k−5+i, v4k−4+i} and the others contain the pair

{v4k−6+i, v4k−5+i}.

Note that D(1) and D(2) cannot have any common vertices in PDγ(C4k+1);
otherwise, there is a γpr(C4k+1)-set containing the pairs {v4k−1, v4k} and {v4k, v0}, which

is impossible. Similarly, D(i) and D(i+1) do not share any vertices in PDγ(C4k+1) for all

i ∈ {2, 3}.
We next consider all γpr(C4k+1)-sets that are in both D(1) and D(3). Then

these sets must contain the pairs {v4k−1, v4k}, {v0, v1}. By (B′4) and (B′4.2), we get

that D(1)
1,1,0,D

(1)
1,2,0, . . . ,D

(1)
1,k,0 are the only γpr(C4k+1)-sets in D(1) containing the pairs

{v4k−1, v4k}, {v0, v1}, and particularly D(1)
1,k,0 contains the pair {v4k−4, v4k−3}. By (B′3)

and (B′3.2), we have that D(3)
1,k,k,D

(3)
2,k,k, . . . ,D

(3)
k,k,k are the only γpr(C4k+1)-sets in D(3)

that contain the pairs {v4k−1, v4k}, {v0, v1}, and particularly D(3)
k,k,k contains the pair

{v4k−4, v4k−3}. The proof of Lemma 4.3.23(2) implies that, for each y ∈ {1, 2, . . . , k},
D(1)
1,y,0 and D(3)

y,k,k are unions of γpr(P4k−5(v3 : v4k−3))-set and {v4k−1, v4k, v0, v1}, that is,

D(1)
1,y,0 = T (1)

1,y,0 ∪ {v4k−1, v4k, v0, v1},where T (1)
1,y,0 is a γpr(P4k−5(v3 : v4k−3))-set

and

D(3)
y,k,k = T (3)

y,k,k ∪ {v4k−1, v4k, v0, v1},where T (3)
y,k,k is a γpr(P4k−5(v3 : v4k−3))-set.
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We know that D(1)
1,k,0 and D(3)

k,k,k contain the pair {v4k−4, v4k−3}, so do T (1)
1,k,0 and T (3)

k,k,k . By

Lemma 4.3.9, we get that T (1)
1,k,0 = T (3)

k,k,k . By Theorem 4.3.13, for each y ∈ {1, 2, . . . , k},
we have T (1)

1,y,0 = T (3)
y,k,k , and hence D(1)

1,y,0 = D(3)
y,k,k . Similarly, we get D(2)

1,y,0 = D(4)
y,k,k for

all y ∈ {1, 2, . . . , k}.
We next consider all γpr(C4k+1)-sets which are in both D(1) and D(4). These

sets must contain the pairs {v4k−1, v4k}, {v1, v2}. By (B′2), for all y, z ∈ {1, 2, . . . , k}
with z ≤ y, we get that all D(1)

1,y,z’s are the only γpr(C4k+1)-sets in D(1) containing the

pairs {v4k−1, v4k}, {v1, v2}, and they form the graph in Figure 4.20 (left). By (B′1), for

all x ∈ {1, 2, . . . , k} and z ∈ {0, 1, . . . , k − 1} with x − z ≤ 1, all D(4)
x,k,z’s are the only

γpr(C4k+1)-sets in D(4) containing the pairs {v4k−1, v4k}, {v1, v2}, and they form the

graph in Figure 4.20 (right). To show that D(1)
1,y,z = D(4)

z,k,y−1 for all y, z ∈ {1, 2, . . . , k}
with z ≤ y, it suffices to show that D(1)

1,k,k = D(4)
k,k,k−1. By (B′3.1), we have D(1)

1,k,k

contains the pairs {v4k−3, v4k−2}, {v4k−1, v4k}, {v1, v2}. By (B′1.1), D(4)
k,k,k−1 contains

these three pairs as well. The proof of Lemma 4.3.23(2) implies that D(1)
1,k,k = T (1)

1,k,k ∪
{v4k−3, v4k−2, v4k−1, v4k} and D(4)

k,k,k−1 = T (4)
k,k,k−1 ∪ {v4k−3, v4k−2, v4k−1, v4k}, where T (1)

1,k,k

and T (4)
k,k,k−1 are γpr(P4k−5(v1 : v4k−5))-sets containing the pair {v1, v2}. By Lemma 4.3.9,

we get T (1)
1,k,k = T (4)

k,k,k−1, and thus D(1)
1,k,k = D(4)

k,k,k−1.

D(4)
1,k,0

D(4)
1,k,1

D(4)
1,k,k−2

D(4)
1,k,k−1

D(4)
2,k,1

D(4)
2,k,k−1

D(4)
k−1,k,k−2

D(4)
k−1,k,k−1

D(4)
k,k,k−1

D(1)
1,1,1 D(1)

1,2,1
D(1)
1,k−1,1 D(1)

1,k,1

D(1)
1,2,2

D(1)
1,k,2

D(1)
1,k−1,k−1

D(1)
1,k,k−1

D(1)
1,k,k

Figure 4.20 The subgraph of D(1) induced by D(1)
1,y,z’s for all y, z ∈ {1, 2, . . . , k} with

z ≤ y (left) and the subgraph of D(4) induced by D(4)
x,k,z’s for all x ∈ {1, 2, . . . , k} and

z ∈ {0, 1, . . . , k − 1} with x − z ≤ 1 (right)

Next, we consider all edges between a set in D(1) and a set in D(2). We

first find all neighbors of D(1)
1,y,0 in D(2) for each y ∈ {1, 2, . . . , k}. We show that D(1)

1,1,0

is adjacent to D(2)
k,k,k , and D(1)

1,k,0 is adjacent to D(2)
1,1,0. By (B′4), (B′4.1), (B′4.2), D(1)

1,1,0

contains the pairs {v4k−5, v4k−4}, {v4k−1, v4k}, {v0, v1}, {v3, v4}, the set D(1)
1,y,0 contains
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the pairs {v4k−5, v4k−4}, {v4k−1, v4k}, {v0, v1}, {v4, v5} for each y ∈ {2, 3, . . . , k−1}, and

D(1)
1,k,0 contains the pairs {v4k−4, v4k−3}, {v4k−1, v4k}, {v0, v1}, {v4, v5}. Since each set in

D(2) contains the pair {v4k, v0}, the set D(1)
1,y,0 is adjacent to some set in D(2) if and only if

(D(1)
1,y,0 \ {v1})∪{v4k−2} or (D(1)

1,y,0 \ {v4k−1})∪{v2} is a γpr(C4k+1)-set. We have (D(1)
1,1,0 \

{v1}) ∪ {v4k−2} is a γpr(C4k+1)-set, but (D(1)
1,y,0 \ {v1}) ∪ {v4k−2} is not if y , 1. Note

that (D(1)
1,1,0 \ {v1}) ∪ {v4k−2} contains the pairs {v4k−5, v4k−4}, {v4k−2, v4k−1}, {v4k, v0}.

By (B′3.2), D(2)
k,k,k also contains these three pairs. By Lemmas 4.3.23(2) and 4.3.9, we

get (D(1)
1,1,0 \ {v1}) ∪ {v4k−2} and D(2)

k,k,k are unions of {v4k−2, v4k−1, v4k, v0} and a unique

γpr(P4k−5(v2 : v4k−4))-set containing the pair {v4k−5, v4k−4}. Hence, (D(1)
1,1,0 \ {v1}) ∪

{v4k−2} = D(2)
k,k,k , that is, D(1)

1,1,0 is adjacent to D(2)
k,k,k . Moreover, (D(1)

1,k,0\{v4k−1})∪{v2} is

a γpr(C4k+1)-set, but (D(1)
1,y,0\{v4k−1})∪{v2} is not if y , k. Note that (D(1)

1,k,0\{v4k−1})∪
{v2} contains the pairs {v4k, v0}, {v1, v2}, {v4, v5}. By (B′4), D(2)

1,1,0 also contains these

three pairs. By Lemmas 4.3.23(2) and 4.3.9, we have (D(1)
1,k,0 \ {v4k−1}) ∪ {v2} = D(2)

1,1,0,

that is, D(1)
1,k,0 is adjacent to D(2)

1,1,0.

We next find all neighbors of D(1)
x,k,k in D(2) for each x ∈ {1, 2, . . . , k} by

proving that D(1)
x,k,k is adjacent to D(2)

1,k,x−1 for each x ∈ {1, 2, . . . , k}, and D(1)
k,k,k is ad-

jacent to D(2)
1,k,k . By (B′3), (B′3.1), and (B′3.2), D(1)

1,k,k contains the pairs {v4k−7, v4k−6},
{v4k−3, v4k−2}, {v4k−1, v4k}, {v1, v2}, the set D(1)

x,k,k contains the pairs {v4k−7, v4k−6},
{v4k−3, v4k−2}, {v4k−1, v4k}, {v2, v3} for each x ∈ {2, 3, . . . , k − 1}, and D(1)

k,k,k contains

the pairs {v4k−6, v4k−5}, {v4k−3, v4k−2}, {v4k−1, v4k}, {v2, v3}. Note that D(1)
x,k,k is adja-

cent to some set in D(2) if and only if (D(1)
x,k,k \ {v4k−1}) ∪ {v0} or (D(1)

x,k,k \ {v4k−3}) ∪
{v0} is a γpr(C4k+1)-set. We have (D(1)

x,k,k \ {v4k−1}) ∪ {v0} is a γpr(C4k+1)-set for

each x ∈ {1, 2, . . . , k}, and then we let Nx = (D(1)
x,k,k \ {v4k−1}) ∪ {v0}. We note

that N1 contains the pairs {v4k−3, v4k−2}, {v4k, v0}, {v1, v2}, and N2, N3, . . . , Nk con-

tain the pairs {v4k−3, v4k−2}, {v4k, v0}, {v2, v3}, and they form a path with k vertices

in D(2). By (B′4.2), we have D(2)
1,k,0 is the only γpr(C4k+1)-set in D(2) containing the pairs

{v4k−3, v4k−2}, {v4k, v0}, {v1, v2}. By (B′1) and (B′2), we have D(2)
1,k,1,D

(2)
1,k,2, . . . ,D

(2)
1,k,k−1

are the only γpr(C4k+1)-sets in D(2) containing the pairs {v4k−3, v4k−2}, {v4k, v0}, {v2, v3},
and they form a path with k vertices in D(2). Then we can conclude that, for each x ∈
{1, 2, . . . , k}, Nx = D(2)

1,k,x−1, which means that D(1)
x,k,k is adjacent to D(2)

1,k,x−1. Moreover,

(D(1)
k,k,k \ {v4k−3}) ∪ {v0} is a γpr(C4k+1)-set, but (D(1)

x,k,k \ {v4k−3}) ∪ {v0} is not if x , k.

Note that (D(1)
k,k,k \ {v4k−3}) ∪ {v0} contains the pairs {v4k−2, v4k−1}, {v4k, v0}, {v2, v3}.
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By (B′3.1), D(2)
1,k,k also contains these three pairs. By Lemmas 4.3.23(2) and 4.3.9, we

get (D(1)
k,k,k \ {v4k−3}) ∪ {v0} = D(2)

1,k,k , that is, D(1)
k,k,k is adjacent to D(2)

1,k,k .

Last but not least, we find all neighbors in D(2) of the other γpr(C4k+1)-
sets in D(1). We prove that D(1)

x,k,z is adjacent to D(2)
1,z,x−1 for all x ∈ {1, 2, . . . , k} and

z ∈ {1, 2, . . . , k − 1} with x − z ≤ 1. Recall that, for all x, y ∈ {1, 2, . . . , k} and

z ∈ {1, 2, . . . , k − 1}, D(1)
x,y,z contains the pair {v4k−1, v4k} but not v4k−2, v0. Then D(1)

x,y,z

is adjacent to some set in D(2) if and only if (D(1)
x,y,z \ {v4k−1}) ∪ {v0} is a γpr(C4k+1)-set.

By (B′1), D(1)
x,y,z contains the pairs {v4k−5, v4k−4}, {v4k−1, v4k} for all y , k, so (D(1)

x,y,z \
{v4k−1})∪{v0} is not a γpr(C4k+1)-set. By (B′1) and (B′2), for all z ∈ {1, 2, . . . , k−1}, we

have D(1)
1,k,z contains the pairs {v4k−4, v4k−3}, {v4k−1, v4k}, {v1, v2}, and D(1)

x,k,z contains

the pairs {v4k−4, v4k−3}, {v4k−1, v4k}, {v2, v3} for all x , 1. For all x ∈ {1, 2, . . . , k}
and z ∈ {1, 2, . . . , k − 1} with x − z ≤ 1, let Dx,z = (D(1)

x,k,z \ {v4k−1}) ∪ {v0}, so Dx,z

is a γpr(C4k+1)-set in D(2), and these Dx,z’s form the graph in Figure 4.21. Note that,

for all z ∈ {1, 2, . . . , k − 1}, D1,z contains the pairs {v4k−4, v4k−3}, {v4k, v0}, {v1, v2},
and Dx,z contains the pairs {v4k−4, v4k−3}, {v4k, v0}, {v2, v3} for all x , 1. By (B′4)

and (B′4.2), D(2)
1,1,0,D

(2)
1,2,0, . . . ,D

(2)
1,k−1,0 are the only γpr(C4k+1)-sets in D(2) containing the

pairs {v4k−4, v4k−3}, {v4k, v0}, {v1, v2}, and by (B′1) and (B′2), for all y, z ∈ {1, 2, . . . , k−
1} with z ≤ y, we have D(2)

1,y,z’s are the only γpr(C4k+1)-sets in D(2) containing the pairs

{v4k−4, v4k−3}, {v4k, v0}, {v2, v3}, and they form the graph in Figure 4.22. Then the

graphs in Figures 4.21 and 4.22 are the same, so we can conclude that, for all x ∈
{1, 2, . . . , k} and z ∈ {1, 2, . . . , k − 1} with x − z ≤ 1, Dx,z = D(2)

1,z,x−1, that is, D(1)
x,k,z is

adjacent to D(2)
1,z,x−1.

The results about the edges between a set in D(i) and a set in D(i+1) for all

i ∈ {2, 3} are the same as the edges between a set in D(1) and a set in D(2). Since D(1)
1,1,0 =

D(3)
1,k,k , the edges D(1)

1,1,0D(2)
k,k,k and D(2)

k,k,k D(3)
1,k,k are the same. Similarly, D(1)

1,k,0D(2)
1,1,0 =

D(2)
1,1,0D(3)

k,k,k and D(2)
1,k,0D(3)

1,1,0 = D(3)
1,1,0D(4)

k,k,k . Now, all γpr(C4k+1)-sets and edges form a

loopbox LBk in PDγ(C4k+1). Then we only need to show that there is no more edge in

PDγ(C4k+1). Recall that D(1)
1,y,0 = D(3)

y,k,k for all y ∈ {1, 2, . . . , k}, so we consider all edges

between a set in D̂(1) = D(1)−{D(1)
1,y,0 : 1 ≤ y ≤ k} and a set in D̂(3) = D(3)−{D(3)

y,k,k : 1 ≤
y ≤ k}. Note that a set in D̂(1) contains either the pairs {v4k−1, v4k}, {v1, v2} or the pairs

{v4k−1, v4k}, {v2, v3}, while a set in D̂(3) contains the pair {v0, v1} but not {v4k−1, v4k}.
Thus, there is no edge between a set in D̂(1) and a set in D̂(3). Similarly, there is no edge
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D1,1

D2,1

D1,2

D1,k−2

D1,k−1

D2,k−1

Dk−2,k−1

Dk−1,k−2

Dk−1,k−1

Dk,k−1

D(1)
1,k,1

D(1)
2,k,1

D(1)
1,k,2

D(1)
1,k,k−2

D(1)
1,k,k−1

D(1)
2,k,k−1

D(1)
k−2,k,k−1

D(1)
k−1,k,k−2

D(1)
k−1,k,k−1

D(1)
k,k,k−1

Figure 4.21 The subgraph of D(2) induced by Dx,z’s for all x ∈ {1, 2, . . . , k} and z ∈
{1, 2, . . . , k − 1} with x − z ≤ 1

D(2)
1,1,0

D(2)
1,2,0

D(2)
1,k−2,0

D(2)
1,k−1,0

D(2)
1,1,1

D(2)
1,k−1,1

D(2)
1,k−1,k−3

D(2)
1,k−2,k−2

D(2)
1,k−1,k−2

D(2)
1,k−1,k−1

Figure 4.22 The subgraph of D(2) induced by D(2)
1,y,z’s for all y, z ∈ {1, 2, . . . , k − 1} with

z ≤ y

between a set in D(2) − {D(2)
1,y,0 : 1 ≤ y ≤ k} and a set in D(4) − {D(4)

y,k,k : 1 ≤ y ≤ k}.
Recall that D(1)

1,y,z = D(4)
z,k,y−1 for all y, z ∈ {1, 2, . . . , k}. Also, for all y ∈ {1, 2, . . . , k},

D(1)
1,y,0 = D(3)

y,k,k has a neighbor in D(4). Hence, we consider all edges between a set in

D̃(1) = D(1) − {D(1)
1,y,z,D

(1)
1,y,0 : 1 ≤ y, z ≤ k} and a set in D̃(4) = D(4) − {D(4)

z,k,y−1 : 1 ≤
y, z ≤ k}. Note that a set in D̃(1) contains the pairs {v4k−1, v4k}, {v2, v3}, while a set in

D̃(4) contains the pair {v1, v2} but not {v4k−1, v4k}. Thus, there is no edge between a set

in D̃(1) and a set in D̃(4). This completes the proof. □
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4.4 Lollipop Graphs

In this section, we determine the γ-total and the γ-paired dominating graphs

of lollipop graphs, which are defined in Section 3.6. We refer to the vertices of a lollipop

graph as shown in Figure 3.21.

4.4.1 γ-Total Dominating Graphs of Lollipop Graphs

Before proceeding to determine the γ-total dominating graphs of lollipop

graphs, we recall some useful results related to the γ-total dominating graphs of paths.

We assume that the vertices of the path Pp are labelled as Pp = (v1, v2, . . . , vp). From the

proofs of Theorems 4.3.2, 4.3.3, and 4.3.4, we can get Corollaries 4.4.1, 4.4.2, and 4.4.3,

respectively.

Corollary 4.4.1. Let k ≥ 0 be an integer and the vertices of the pathT Dγ(P4k+3) � Pk+2

be D1,D2, . . . ,Dk+2, where Dx is a γt(P4k+3)-set for all x ∈ {1, 2, . . . , k + 2}.

(1) If v4k+3 ∈ Dx , then either x = 1 or x = k + 2.

(2) If Dk+2 contains the vertex v4k+3, then Dk+2 = (Dk+1 \ {v4k+1}) ∪ {v4k+3}.

In the next result, we think of the γt(P4k+2)-sets in T Dγ(P4k+2) � Pk+1□Pk+1

as the entries in a matrix.

Corollary 4.4.2. Let k ≥ 0 be an integer and Dx,y the γt(P4k+2)-set at the position (x, y)
(row x and column y) of T Dγ(P4k+2) � Pk+1□Pk+1 for all x, y ∈ {1, 2, . . . , k + 1}.

(1) If v4k+2 ∈ Dx,y, then either x = 1, x = k + 1, y = 1, or y = k + 1.

(2) If Dx,k+1 contains the vertex v4k+2, then

(2.1) Dx,k+1 = (Dx,k \ {v4k}) ∪ {v4k+2} for each x ∈ {1, 2, . . . , k + 1},

(2.2) Dk+1,k+1 = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {v4k+1, v4k+2}, and

(2.3) Dx,y does not contain the vertex v4k−1 for all x , k + 1.

Corollary 4.4.3. Let k ≥ 1 be an integer. Then each γt(P4k+1)-set does not contain the
vertex v4k+1.
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We now study the γ-total dominating graph of a lollipop graph Lp,q, where

p and q are both positive integers. If q = 1, then Lp,q � Pp+1, so we get the results on

T Dγ(Lp,q) by Theorems 4.3.1 - 4.3.4. For q ≥ 2, we divide the values of p into four

cases. We first consider the case when p = 4k + 2 and then get the following theorem.

Theorem 4.4.4. Let k ≥ 0 and q ≥ 2 be integers. Then T Dγ(L4k+2,q) � P1.

Proof. By Theorem 3.6.1(1), we get γt(L4k+2,q) = 2k + 2. Then there is exactly one

γt(L4k+2,q)-set, which is D = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {v4k+2, u1}. □

We next provide the property involving the γt(L4k+1,q)-sets and we then

determine the γ-total dominating graph of L4k+1,q.

Lemma 4.4.5. Let k ≥ 0 and q ≥ 2 be integers. Then each γt(L4k+1,q)-set contains the
vertex u1.

Proof. If q = 2, then u1 is a support vertex of L4k+1,2 � P4k+3, so this lemma follows

by Observation 3.0.1. Let q ≥ 3. Suppose, contrary to the statement, that there exists a

γt(L4k+1,q)-set D that does not contain u1. Thus, D contains exactly two vertices ui and

u j from {u2, u3, . . . , uq}. Let S = {v : v < N({ui, u j})}, and then the induced subgraph

L4k+1,q[S] is P4k+1. By Theorem 3.6.1(1), |D | = 2k + 2, and thus the 2k remaining

vertices of D must dominate all vertices in L4k+1,q[S], which is impossible. □

Theorem 4.4.6. Let k ≥ 0 and q ≥ 2 be integers. Then T Dγ(L4k+1,q) � Lk,q.

Proof. Let Pi be the subgraph of L4k+1,q induced by {v1, v2, . . . , v4k+1, u1, ui} for each

i ∈ {2, 3, . . . , q}, and then Pi � P4k+3. By Theorem 4.3.2, for each i ∈ {2, 3, . . . , q},
T Dγ(Pi) � Pk+2, say this path as Di

1,D
i
2, . . . ,D

i
k+2, where Di

x is a γt(Pi)-set for each x ∈
{1, 2, . . . , k +2}. By Observation 3.0.1, we get that u1 ∈ Di

x for all x ∈ {1, 2, . . . , k +2}.
By Corollary 4.4.1(1), without loss of generality, we may assume that Di

k+2 contains ui,

and Di
x does not contain ui for all x , k + 2. Note that if x , k + 2, then Di

x = D j
x

for all i, j ∈ {2, 3, . . . , q}, so we let Dx = Di
x . Next, we claim that Di

k+2 and D j
k+2 are

adjacent for all i , j. By Corollary 4.4.1(2), we get Di
k+2 = (Dk+1 \ {v4k+1}) ∪ {ui} =

[(Dk+1 \ {v4k+1}) ∪ {u j}] \ {u j} ∪ {ui} = (D j
k+2 \ {u j}) ∪ {ui}, so the claim holds.

By Lemma 3.0.2 and Theorem 3.6.1(1), γt(Pi) = 2k + 2 = γt(L4k+1,q). We

also note that every γt(Pi)-set is also a γt(L4k+1,q)-set for each i ∈ {2, 3, . . . , q}. Hence,
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D1, . . . ,Dk+1,D2
k+2, . . . ,D

q
k+2 are γt(L4k+1,q)-sets containing u1. By Lemma 4.4.5, each

γt(L4k+1,q)-set contains u1, so it is a γt(Pi)-set for some i ∈ {2, 3, . . . , q}. Therefore,

D1, . . . ,Dk+1,D2
k+2, . . . ,D

q
k+2 are the only γt(L4k+1,q)-sets, and they also form a lollipop

graph Lk,q (see Figure 4.23). □

Dk+1

D2
k+2

D3
k+2

Dq−1
k+2

Dq
k+2

D1 D2 D3 Dk−1 Dk

Figure 4.23 The γ-total dominating graph of L4k+1,q

Let Lr
p,q = Lp,q□Pr , where the vertices of Lr

p,q are labeled in Figure 4.24. For

convenience, we write q − 1 vertices vr,p+2, vr,p+3, . . . , vr,p+q of Lr
p,q for u1, u2, . . . , uq−1,

respectively. Let JLq
p,r denote the graph obtained from Lr

p,q by adding the vertices

uq, uq+1, . . . , u(q2 ) such that u1, u2, . . . , uq−1, uq, uq+1, . . . , u(q2 ) form the Johnson graph

J(q, 2). We illustrate the graph JL4
5,4 in Figure 4.25.

v1,1 v1,2 v1,3 v1,p v1,p+1 v1,p+2 v1,p+q

v2,1 v2,2 v2,3 v2,p v2,p+1 v2,p+2 v2,p+q

vr,1 vr,2 vr,3 vr,p vr,p+1 vr,p+2 vr,p+q
q
u1

q
uq−1

Figure 4.24 The graph Lr
p,q

Theorem 4.4.7. Let k ≥ 1 and q ≥ 2 be integers. Then T Dγ(L4k,q) � JLk+1
k−1,q.

Proof. Let Pi be the subgraph of L4k,q induced by {v1, v2, . . . , v4k, u1, ui} for each i ∈
{2, 3, . . . , q}, so T Dγ(Pi) � T Dγ(P4k+2) � Pk+1□Pk+1 by Theorem 4.3.1. For each

i ∈ {2, 3, . . . , q} and x, y ∈ {1, 2, . . . , k + 1}, let Di
x,y be the γt(Pi)-set at the position
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v1,1 v1,2 v1,3 v1,4 v1,5 v1,6 v1,7 v1,8 v1,9

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6 v2,7 v2,8 v2,9

v3,1 v3,2 v3,3 v3,4 v3,5 v3,6 v3,7 v3,8 v3,9

v4,1 v4,2 v4,3 v4,4 v4,5 v4,6 u1 u2 u3

u4 u5

u6

Figure 4.25 The graph JL4
5,4

(x, y) of T Dγ(Pi). By Corollary 4.4.2(1), without loss of generality, we may assume that

Di
x,k+1 contains ui. If y , k + 1, then Di

x,y = D j
x,y for all i, j ∈ {2, 3, . . . , q}. Hence, for

all x ∈ {1, 2, . . . , k+1}, let Dx,y = Di
x,y if y , k+1; otherwise, let Di

x,k+1 = Dx,k+i−1 for

all i ∈ {2, 3, . . . , q}. Note that Dx,k is adjacent to Dx,k+i−1 for all i ∈ {2, 3, . . . , q}. We

next show that Dx,k+i−1 and Dx,k+ j−1 are adjacent for all i , j. By Corollary 4.4.2(2.1),

for each x ∈ {1, 2, . . . , k + 1}, we get Dx,k+i−1 = Di
x,k+1 = (Dx,k \ {v4k}) ∪ {ui} =

[(Dx,k \ {v4k}) ∪ {u j}] \ {u j} ∪ {ui} = (D j
x,k+1 \ {u j}) ∪ {ui} = (Dx,k+ j−1 \ {u j}) ∪ {ui},

as desired.

Note that γt(Pi) = 2k + 2 = γt(L4k,q), and a γt(Pi)-set is a γt(L4k,q)-set

containing u1 and vice versa. Thus, all Dx,y’s with 1 ≤ x ≤ k + 1 and 1 ≤ y ≤ k + q − 1

are the only γt(L4k,q)-sets containing u1, and they form a graph Lk+1
k−1,q in T Dγ(L4k,q)

(see Figure 4.26).

Finally, we find all γt(L4k,q)-sets that do not contain u1. Then such a set

contains 2k vertices from {v1, v2, . . . , v4k} and two vertices from {u2, u3, . . . , uq}. Thus,

it is a union of D = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} and {ui, u j} for some distinct

i, j ∈ {2, 3, . . . , q}. By Corollary 4.4.2(2.2), for each i ∈ {2, 3, . . . , q}, Dk+1,k+i−1 =

Di
k+1,k+1 = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {u1, ui} = D ∪ {u1, ui}. For all 1 ≤

i < j ≤ q, let Di, j = D ∪ {ui, u j}. Theorem 4.4.7 implies that all Di, j’s form the

Johnson graph J(q, 2) in T Dγ(L4k,q) (see Figure 4.26). Moreover, for all 2 ≤ i < j ≤ q,

Di, j is not adjacent to Dx,y for all y ≤ k, which does not contain u2, u3, . . . , uq. By

Corollary 4.4.2(2.3), for each x , k + 1 and y ∈ {2, 3, . . . , q}, Dx,k+y−1 = Dy

x,k+1
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D1,1 D1,k−1 D1,k D1,k+q−1

D2,1 D2,k−1 D2,k D2,k+q−1

Dk+1,1 Dk+1,k−1 Dk+1,k Dk+1,k+q−1 = D1,q

D2,3 D2,4 D2,q

D3,4 D3,q

Dq−1,q

Lk+1
k−1,q

J(q, 2)

Figure 4.26 The γ-total dominating graph of L4k,q

contains u1 and uy but not v4k−1, so (Dx,k+y−1 \ {u1})∪ {u j} is not a total dominating set

for all j < {1, y} since v4k is not dominated. This means that Dx,k+y−1 with x , k + 1 is

not adjacent to Di, j for all 2 ≤ i < j ≤ q. This completes the proof. □

We finally determine the γ-total dominating graph of L4k−1,q, where k ≥ 1

and q ≥ 2 are both integers. To complete the result, we need the following lemma.

Lemma 4.4.8. Let k ≥ 1 and q ≥ 2 be integers. Then each γt(L4k−1,q)-set does not
contain the vertex ui for all i ∈ {2, 3, . . . , q}.

Proof. Assume on contrary that there exists a γt(L4k−1,q)-set D containing ui for some

i ∈ {2, 3, . . . , q}. To dominate ui, we need at least one vertex u j ∈ D for some j ∈
{1, 2, . . . , q} with j , i. Let S = {v : v < N({ui, u j})}. If j = 1, then the induced

subgraph L4k−1,q[S] � P4k−2; otherwise, L4k−1,q[S] � P4k−1. Note that |D | = 2k + 1,

so Lemma 3.0.2 implies that the 2k − 1 remaining vertices of D cannot dominate all

vertices in L4k−1,q[S], a contradiction. □

Theorem 4.4.9. Let k ≥ 1 and q ≥ 2 be integers. Then T Dγ(L4k−1,q) � Pk .

Proof. Let Pi be the subgraph of L4k−1,q induced by {v1, v2, . . . , v4k−1, u1, ui} for each

i ∈ {2, 3, . . . , q}, and then by Theorem 4.3.4, T Dγ(Pi) � Pk , say Di
1,D

i
2, . . . ,D

i
k , where

Di
x is a γt(Pi)-set for all x ∈ {1, 2, . . . , k}. By Corollary 4.4.3, Di

1,D
i
2, . . . ,D

i
k do not

contain ui for each i ∈ {2, 3, . . . , q}. Without loss of generality, we may assume that
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Di
x = D j

x for all i, j ∈ {2, 3, . . . , q}, and we let Dx = Di
x . Since γt(Pi) = 2k + 1 =

γt(L4k−1,q) and every γt(Pi)-set is a γt(L4k−1,q)-set for all i ∈ {2, 3, . . . , q}, we get

D1,D2, . . . ,Dk are γt(L4k−1,q)-sets. Lemma 4.4.8 implies that each γt(L4k−1,q)-set is

also a γt(Pi)-set for some i ∈ {2, 3, . . . , q}. Therefore, D1,D2, . . . ,Dk are the only

γt(L4k−1,q)-sets, and they form a path with k vertices in T Dγ(L4k−1,q). □

4.4.2 γ-Paired Dominating Graphs of Lollipop Graphs

We now determine the γ-paired dominating graphs of lollipop graphs. To

do so, we need some useful results involving the γ-paired dominating graphs of paths.

Corollary 4.4.10 (respectively, Corollaries 4.4.11 and 4.4.12) can be obtained from the

proofs of Lemma 4.3.9 (respectively, Lemmas 4.3.10 and 4.3.11) and Theorem 4.3.13

(respectively, Theorems 4.3.14 and 4.3.15).

Corollary 4.4.10. Let k ≥ 0 be an integer and the vertices of the path PDγ(P4k+3) �
Pk+2 be D1,D2, . . . ,Dk+2, where Dx is a γpr(P4k+3)-set for all x ∈ {1, 2, . . . , k + 2}.

(1) If v4k+3 ∈ Dx , then either x = 1 or x = k + 2.

(2) If Dk+2 contains the vertex v4k+3, then

(2.1) Dk+2 = (Dk+1 \ {v4k+1}) ∪ {v4k+3} and

(2.2) Dx = Sx∪{v4k+1, v4k+2}, where Sx is a γpr(P4k−1)-set for all x ∈ {1, 2, . . . , k+
1} and particularly Sk+1 contains the pair {v4k−2, v4k−1}, and Dk+2 = Sk+1∪
{v4k+2, v4k+3}.

Corollary 4.4.11. Let k ≥ 0 be an integer and Dx,y the γpr(P4k+2)-set at the position
(x, y) of PDγ(P4k+2) � SGk+1,k+1 for all x, y ∈ {1, 2, . . . , k + 1} with x − y ≤ 1.

(1) If v4k+2 ∈ Dx,y, then either x = 1 or y = k + 1.

(2) If Dx,k+1 contains the vertex v4k+2, then

(2.1) Dx,k+1 = (Dx,k \ {v4k}) ∪ {v4k+2} for each x ∈ {1, 2, . . . , k + 1},

(2.2) Dk+1,k+1 = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {v4k+1, v4k+2}, and

(2.3) Dx,y does not contain the vertex v4k−1 for all x , k + 1.
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Corollary 4.4.12. Let k ≥ 1 be an integer and Dx,y,z the γpr(P4k+1)-set at the position
(x, y, z) in PDγ(P4k+1) � SGk+1,k+1,k for all x, y ∈ {1, 2, . . . , k + 1}, z ∈ {1, 2, . . . , k}
with x − y ≤ 0, x − z ≤ 1, y − z ≥ 0.

(1) If v4k+1 ∈ Dx,y,z, then either x = 1 or y = k + 1.

(2) If Dx,k+1,z contains the vertex v4k+1, then

(2.1) Dx,k+1,z = (Dx,k,z \ {v4k−1}) ∪ {v4k+1} for all x, z ∈ {1, 2, . . . , k}, and
Dk+1,k+1,k = (Dk,k,k \ {v4k−3}) ∪ {v4k+1},

(2.2) Dx,k+1,k = Dx ∪ {v4k−3, v4k−2, v4k, v4k+1}, where Dx is a γpr(P4k−5)-set for
all x ∈ {1, 2, . . . , k}, Dk contains the pair {v4k−6, v4k−5}, and Dk+1,k+1,k =

Dk ∪ {v4k−2, v4k−1, v4k, v4k+1},

(2.3) Dx,k+1,z does not contain the vertex v4k−2 for all z < k.

We are now in a position to determine the γ-paired dominating graph of a

lollipop graph Lp,q. If q = 1, then we get the γ-paired dominating graph of Lp,q � Pp+1

by Theorems 4.3.12 - 4.3.15. For q ≥ 2, we consider the values of p into four cases. If

p = 4k + 2, then we obtain the following result.

Theorem 4.4.13. Let k ≥ 0 and q ≥ 2 be integers. Then PDγ(L4k+2,q) � P1.

Proof. By Theorem 3.6.1(2), we have γpr(L4k+2,q) = 2k + 2. It is easy to check that

D = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {v4k+2, u1} is the only γpr(L4k+2,q)-set, so the

theorem holds. □

We provide some properties in the next lemma before determining the γ-

paired dominating graph of L4k+1,q in Theorem 4.4.15.

Lemma 4.4.14. Let k ≥ 0 and q ≥ 2 be integers. Then each γpr(L4k+1,q)-set contains
the vertex u1.

Proof. If q = 2, then u1 is a support vertex of L4k+1,q, so by Observation 3.0.1, this

lemma holds. Let q ≥ 3 and suppose that D is a γpr(L4k+1,q)-set with u1 < D. Then D

must contain exactly two vertices from {u2, u3, . . . , uq}. Since |D | = 2k+2, the other 2k

vertices of D must dominate all vertices in L4k+1,q[{v1, v2, . . . , v4k+1}] � P4k+1, which

is impossible. □
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Theorem 4.4.15. Let k ≥ 0 and q ≥ 2 be integers. Then PDγ(L4k+1,q) � Lk,q.

Proof. Let Pi be the subgraph of L4k+1,q induced by {v1, v2, . . . , v4k+1, u1, ui} for each

i ∈ {2, 3, . . . , q}, and then Pi � P4k+3. By Theorem 4.3.13, for each i ∈ {2, 3, . . . , q},
PDγ(Pi) � Pk+2, say this path as Di

1,D
i
2, . . . ,D

i
k+2, where Di

x is a γpr(Pi)-set for each

x ∈ {1, 2, . . . , k + 2}, so u1 ∈ Di
x by Observation 3.0.1. By Corollary 4.4.10(1), without

loss of generality, we may assume that Di
k+2 contains ui. If x , k + 2, then Di

x = D j
x

for all i, j ∈ {2, 3, . . . , q}, so we let Dx = Di
x . Next, we show that Di

k+2 and D j
k+2 are

adjacent for all i , j. By Corollary 4.4.10(2.1), we obtain Di
k+2 = (Dk+1 \ {v4k+1}) ∪

{ui} = [(Dk+1 \ {v4k+1}) ∪ {u j}] \ {u j} ∪ {ui} = (D j
k+2 \ {u j}) ∪ {ui}, as needed.

Note that γpr(Pi) = 2k + 2 = γt(L4k+1,q), and every γpr(Pi)-set is also

a γpr(L4k+1,q)-set for each i ∈ {2, 3, . . . , q}. Thus, D1, . . . ,Dk+1,D2
k+2, . . . ,D

q
k+2 are

γpr(L4k+1,q)-sets containing u1. Lemma 4.4.14 implies that each γpr(L4k+1,q)-set is a

γpr(Pi)-set for some i ∈ {2, 3, . . . , q}. We conclude that D1, . . . ,Dk+1,D2
k+2, . . . ,D

q
k+2

are the only γpr(L4k+1,q)-sets, and they form a lollipop graph Lk,q. □

Let SLr
p,q (respectively, SJLr

p,q) denote the graph that is obtained from Lr
p,q

(respectively, JLr
p,q) by deleting the vertices vx,y for all x ∈ {1, 2, . . . , r} and y ∈

{1, 2, . . . , p} with x − y ≥ 2. Figure 4.27 exhibits the graphs SL3
1,3 and SL4

2,4, and

Figure 4.28 displays the graphs SJL3
1,3 and SJL4

2,4.

v1,1 v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4

v3,2 v3,3 v3,4

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6

v3,2 v3,3 v3,4 v3,5 v3,6

v4,3 v4,4 v4,5 v4,6

Figure 4.27 The graphs SL3
1,3 (left) and SL4

2,4 (right)

Theorem 4.4.16. Let k ≥ 1 and q ≥ 2 be integers. Then PDγ(L4k,q) � SJLk+1
k−1,q.

Proof. Let Pi be the subgraph of L4k,q induced by {v1, v2, . . . , v4k, u1, ui} for each i ∈
{2, 3, . . . , q}, so PDγ(Pi) � PDγ(P4k+2) � SGk+1,k+1 by Theorem 4.3.14. For each

i ∈ {2, 3, . . . , q} and x, y ∈ {1, 2, . . . , k + 1} with x − y ≤ 1, let Di
x,y be the γpr(Pi)-set
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v1,1 v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4

v3,2 u1 u2

u3

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6

v3,2 v3,3 v3,4 v3,5 v3,6

v4,3 u1 u2 u3

u4 u5

u6

Figure 4.28 The graphs SJL3
1,3 (left) and SJL4

2,4 (right)

at the position (x, y) of PDγ(Pi). By Corollary 4.4.11(1), without loss of generality,

we may assume that Di
x,k+1 contains ui. If y , k + 1, then Di

x,y = D j
x,y for all i, j ∈

{2, 3, . . . , q}. For all x ∈ {1, 2, . . . , k+1}, if y , k+1, we let Dx,y = Di
x,y; otherwise, let

Di
x,k+1 = Dx,k+i−1 for all i ∈ {2, 3, . . . , q}. It is obvious that Dx,k is adjacent to Dx,k+i−1

for all i ∈ {2, 3, . . . , q}. Next, we show that Dx,k+i−1 and Dx,k+ j−1 are adjacent for all

i , j. By Corollary 4.4.11(2.1), for each x ∈ {1, 2, . . . , k + 1}, we have Dx,k+i−1 =

Di
x,k+1 = (Dx,k \ {v4k})∪ {ui} = [(Dx,k \ {v4k})∪ {u j}] \ {u j} ∪ {ui} = (D j

x,k+1 \ {u j})∪
{ui} = (Dx,k+ j−1 \ {u j}) ∪ {ui}, as needed.

Observe that γpr(Pi) = 2k+2 = γpr(L4k,q), and a γpr(Pi)-set is a γpr(L4k,q)-
set containing u1 and vice versa. Hence, all Dx,y’s with 1 ≤ x ≤ k + 1 and 1 ≤ y ≤
k + q − 1 are the only γpr(L4k,q)-sets containing u1, and they form a graph SLk+1

k−1,q in

PDγ(L4k,q) (see Figure 4.29).

Finally, we find all γpr(L4k,q)-sets that do not contain u1. It is easy to check

that such a set is a union of D = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} and {ui, u j} for

some distinct i, j ∈ {2, 3, . . . , q}. By Corollary 4.4.11(2.2), for each i ∈ {2, 3, . . . , q},
Dk+1,k+i−1 = Di

k+1,k+1 = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {u1, ui} = D ∪ {u1, ui}. For

all 1 ≤ i < j ≤ q, let Di, j = D ∪ {ui, u j}. Theorem 4.1.2 implies that all Di, j’s form the

Johnson graph J(q, 2) in PDγ(L4k,q) (see Figure 4.29). Clearly, Di, j with 2 ≤ i < j ≤ q

is not adjacent to Dx,y for all y ≤ k, which does not contain the vertices u2, u3, . . . , uq.

By Corollary 4.4.11(2.3), for each x , k + 1 and y ∈ {2, 3, . . . , q}, Dx,k+y−1 = Dy

x,k+1

contains u1 and uy but not v4k−1, so (Dx,k+y−1 \ {u1}) ∪ {u j} is not a paired dominating
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D1,1 D1,2 D1,k D1,k+1 D1,k+2 D1,k+3 D1,k+q−1

D2,1 D2,2 D2,k D2,k+1 D2,k+2 D2,k+3 D2,k+q−1

D3,2 D3,k D3,k+1 D3,k+2 D3,k+3 D3,k+q−1

Dk+1,k Dk+1,k+q−1

D2,3 D2,4 D2,q

D3,4 D3,q

Dq−1,q

SLk+1
k−1,q

J(q, 2)

Figure 4.29 The γ-paired dominating graph of L4k,q

set for all j < {1, y}, implying that Dx,k+y−1 with x , k + 1 is not adjacent to Di, j for all

2 ≤ i < j ≤ q. This completes the proof. □

Let p, q and r be positive integers. We define Ap,q,r as the graph with the

vertex set V(Ap,q,r) = V(SGp,q,r) and the edge set

E(Ap,q,r) = E(SGp,q,r) ∪ {(ux, vy,wz)(ux, vy′,wz) : r + 2 ≤ y + 2 ≤ y′ ≤ q} ∪

{(ur, vr,wr)(ur+1, vy′,wr) : r + 2 ≤ y′ ≤ q}.

The graphs A4,5,3 and A3,5,2 are shown in Figures 4.30 and 4.31, respectively, where we

write (x, y, z) instead of (ux, vy,wz).

(1, 1, 1)

(1, 2, 1) (1, 3, 1) (1, 5, 1)

(1, 2, 2)
(1, 5, 2)

(1, 3, 3) (1, 4, 3)
(1, 5, 3)

(2, 2, 1) (2, 5, 1)
(2, 2, 2) (2, 5, 2)

(2, 5, 3)

(3, 3, 2) (3, 5, 2)
(3, 3, 3) (3, 5, 3)

(4, 4, 3) (4, 5, 3)

Figure 4.30 The graph A4,5,3
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(1, 1, 1)

(1, 2, 1) (1, 3, 1) (1, 4, 1) (1, 5, 1)

(1, 2, 2) (1, 3, 2) (1, 4, 2) (1, 5, 2)

(2, 2, 1) (2, 5, 1)
(2, 2, 2) (2, 5, 2)

(3, 3, 2) (3, 4, 2) (3, 5, 2)

Figure 4.31 The graph A3,5,2

Let Bp,q,r be the graph with the vertex set V(Bp,q,r) = V(Ap,q,r)∪{(ux, vy,wz) :
1 ≤ x ≤ p, r + 1 ≤ z < y ≤ q} and the edge set

E(Bp,q,r) = E(Ap,q,r) ∪ {(ux, vy,wz)(ux, vy,wz′) : r + 2 ≤ y ≤ q, r ≤ z < z′ ≤ y − 1} ∪

{(ux, vy,wz)(ux, vy′,wz) : r + 1 ≤ z ≤ q − 2, z + 1 ≤ y < y′ ≤ q} ∪

{(ux, vy,wz)(ux, vy′,wy) : r ≤ z < y < y′ ≤ q} ∪

{(ux, vy,wz)(ux+1, vy,wz) : r < z < q}.

The graphs B4,5,3 and B3,5,2 are shown in Figures 4.32 and 4.33, respectively, where we

write (x, y, z) for (ux, vy,wz). Note that if q = r or q = r + 1, then Bp,q,r � SGp,q,r .

(1, 1, 1)

(1, 2, 1) (1, 3, 1)

(1, 2, 2)
(1, 3, 3) (1, 4, 3)

(1, 5, 3)
(1, 5, 4)

(2, 2, 1)

(2, 5, 3)
(2, 5, 4)

(3, 3, 2)

(3, 5, 3)
(3, 5, 4)

(4, 4, 3) (4, 5, 3)

(4, 5, 4)

Figure 4.32 The graph B4,5,3

Theorem 4.4.17. Let k ≥ 1 and q ≥ 2 be integers. Then PDγ(L4k−1,q) � Bk+1,k+q−1,k .

Proof. If q = 2, then L4k−1,q � P4k+1, so PDγ(L4k−1,2) � SGk+1,k+1,k � Bk+1,k+1,k

by Theorem 4.3.15. Let q ≥ 3. We first find all γpr(L4k−1,q)-sets containing the

vertex u1. For each i ∈ {2, 3, . . . , q}, let Pi be the subgraph of L4k−1,q induced by
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(1, 1, 1)

(1, 2, 1)

(1, 2, 2) (1, 3, 2)
(1, 5, 2)

(1, 4, 3)
(1, 5, 3)

(1, 5, 4)

(2, 2, 1)

(2, 5, 2)
(2, 5, 3)

(2, 5, 4)

(3, 3, 2) (3, 4, 2) (3, 5, 2)
(3, 5, 3)

(3, 5, 4)

Figure 4.33 The graph B3,5,2

{v1, v2, . . . , v4k−1, u1, ui}, and then PDγ(Pi) � SGk+1,k+1,k by Theorem 4.3.15. For all

x, y ∈ {1, 2, . . . , k+1}, z ∈ {1, 2, . . . , k} with x− y ≤ 0, x− z ≤ 1, y− z ≥ 0 and for each

i ∈ {2, 3, . . . , q}, let Di
x,y,z be the γpr(Pi)-set at the position (x, y, z) in SGk+1,k+1,k . By

Corollary 4.4.12(1), without loss of generality, we may assume that Di
x,k+1,z contains ui

and Di
x,y,z does not contain ui for all y , k+1. Note that, for y , k+1, we have Di

x,y,z =

D j
x,y,z for all i, j ∈ {2, 3, . . . , q}. For all x ∈ {1, 2, . . . , k + 1} and z ∈ {1, 2, . . . , k}, let

Dx,y,z = Di
x,y,z if y , k +1; otherwise, let Dx,k+i−1,z = Di

x,k+1,z for each i ∈ {2, 3, . . . , q}.
We observe that Dx,k,z is adjacent to Dx,k+i−1,z for all i ∈ {2, 3, . . . , q}. Next, we

show that Dx,k+i−1,z is adjacent to Dx,k+ j−1,z for all i , j. By Corollary 4.4.12(2.1),

for x, z ∈ {1, 2, . . . , k}, Dx,k+i−1,z = Di
x,k+1,z = (Dx,k,z \ {v4k−1}) ∪ {ui} = [(Dx,k,z \

{v4k−1}) ∪ {u j}] \ {u j} ∪ {ui} = (D j
x,k+1,z \ {u j}) ∪ {ui} = (Dx,k+ j−1,z \ {u j}) ∪ {ui},

and Dk+1,k+i−1,k = Di
k+1,k+1,k = (Dk,k,k \ {v4k−3}) ∪ {ui} = [(Dk,k,k \ {v4k−3}) ∪

{u j}] \ {u j} ∪ {ui} = (D j
k+1,k+1,k \ {u j}) ∪ {ui} = (Dk+1,k+ j−1,k \ {u j}) ∪ {ui}. The

claim holds. Note that γpr(Pi) = 2k + 2 = γpr(L4k−1,q), and a γpr(Pi)-set is also a

γpr(L4k,q)-set containing u1 and vice versa. Therefore, all Dx,y,z’s with 1 ≤ x ≤ k + 1,

1 ≤ y ≤ k + q−1, 1 ≤ z ≤ k are the only γpr(L4k−1,q)-sets containing u1, and they form

a graph Ak+1,k+q−1,k in PDγ(L4k−1,q) (see Figure 4.30 for k = 3 and q = 2).

We next find all γpr(L4k−1,q)-sets that do not contain the vertex u1. Then

such a γpr(L4k−1,q)-set is a union of a γpr(P4k−1)-set and {ui, u j} for some distinct i, j ∈
{2, 3, . . . , q}. By Theorem 4.3.13, PDγ(P4k−1) � Pk+1, say D1,D2, . . . ,Dk+1, where

Dx is a γpr(P4k−1)-set for all x ∈ {1, 2, . . . , k + 1}. By Corollary 4.4.10(1), without loss

of generality, we may assume that Dk+1 contains v4k−1. For all x ∈ {1, 2, . . . , k + 1}
and 2 ≤ i < j ≤ q, let Di, j

x = Dx ∪ {ui, u j}. Thus, for each pair of i and j, the sets

Di, j
1 ,D

i, j
2 , . . . ,D

i, j
k+1 are the only γpr(L4k−1,q)-sets containing the pair {ui, u j}, and they
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form a path in PDγ(L4k−1,q). By Corollary 4.4.10(2.2), for all x ∈ {1, 2, . . . , k} and

2 ≤ i < j ≤ q,

Di, j
x = Dx ∪ {ui, u j} = Sx ∪ {v4k−3, v4k−2, ui, u j},

where Sx is a γpr(P4k−5)-set and particularly Sk contains the pair {v4k−6, v4k−5}, and

Di, j
k+1 = Dk+1 ∪ {ui, u j} = Sk ∪ {v4k−2, v4k−1, ui, u j}.

For all x ∈ {1, 2, . . . , k + 1} and i ∈ {2, 3, . . . , q}, let D1,i
x = Dx,k+i−1,k =

Di
x,k+1,k . By Corollary 4.4.12(2.2), for all x ∈ {1, 2, . . . , k} and i ∈ {2, 3, . . . , q},

D1,i
x = Di

x,k+1,k = S′x ∪ {v4k−3, v4k−2, u1, ui},

where S′x is a γpr(P4k−5)-set and particularly S′k contains the pair {v4k−6, v4k−5}, and

D1,i
k+1 = Di

k+1,k+1,k = S′k ∪ {v4k−2, v4k−1, u1, ui}.

By Lemma 4.3.9, we get Sk = S′k . Theorem 4.3.13 shows that Sx = S′x for all x ∈
{1, 2, . . . , k}. Therefore, for each x ∈ {1, 2, . . . , k + 1}, all Di, j

x ’s with 1 ≤ i < j ≤ q

form the Johnson graph J(q, 2) in PDγ(L4k−1,q) (see Figure 4.34).

Let D = {Di, j
x : 1 ≤ x ≤ k + 1, 2 ≤ i < j ≤ q}. Note that Dx,y,z

with y ≤ k does not contain u2, u3, . . . , uq, so it is not adjacent to any set in D. By

Corollary 4.4.12(2.3), for each i ∈ {2, 3, . . . , q}, Dx,k+i−1,z = Di
x,k+1,z with z < k does

not contain v4k−2, so (Dx,k+i−1,z \{u1})∪{u j} is not a paired dominating set for all j , 1.

This implies that Dx,k+i−1,z is not adjacent to any set in D. Hence, all γpr(L4k−1,q)-sets

form a graph Bk+1,k+q−1,k . □

D1,2
x D1,3

x D1,4
x D1,q

x

D2,3
x D2,q

x

D3,4
x D3,q

x

Dq−1,q
x

Figure 4.34 The Johnson graph J(q, 2) formed by Di, j
x ’s for all 1 ≤ i < j ≤ q
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4.5 Umbrella Graphs and Coconut Graphs

Umbrella graphs and coconut graphs are both defined in Section 3.6. We

also refer the vertices of umbrella graphs and coconut graphs as shown in Figures 3.22

and 3.23, respectively. The γ-total and the γ-paired dominating graphs of these two

graphs are studied in this section.

4.5.1 γ-Total Dominating Graphs of Umbrella and Coconut Graphs

Let p and q be positive integers. If q = 1, then Up,q � Pp+1 � Cp,q, and

thus T Dγ(Up,q) and T Dγ(Cp,q) can be obtained from Theorems 4.3.1 - 4.3.4. For q = 2,

we provide the results on T Dγ(Up,q) and T Dγ(Cp,q) in Theorem 4.5.1 by the following

discussions.

If p = 4k + 2 for some k ≥ 0, then we can verify that {v4i+2, v4i+3 : 0 ≤ i ≤
k − 1} ∪ {vp, u1} is the only γt(Up,q)-set and the only γt(Cp,q)-set, so T Dγ(Up,q) � P1 �

T Dγ(Cp,q).
Similar proof of Lemma 4.4.5 provides that u1 is in every γt(U4k+1,q)-set.

Observation 3.0.1 also tells that u1 is in every γt(C4k+1,q)-set. Then we follow the steps

in the proof of Theorem 4.4.6, so we get T Dγ(U4k+1,q) � Lk,q � T Dγ(C4k+1,q).
If q ∈ {2, 3}, then U4k,q � L4k,q, so we get that T Dγ(U4k,q) � JLk+1

k−1,q by

Theorem 4.4.7. We note that every γt(U4k,q)-set is a γt(L4k,q)-set, but the converse is not

necessarily true. From the proof of Theorem 4.4.7, we know that Di, j = {v4l+2, v4l+3 :

0 ≤ l ≤ k − 1} ∪ {ui, u j} is a γt(L4k,q)-set for 2 ≤ i < j ≤ q. If q = 4, then D2,4

is a γt(L4k,q)-set but not a γt(U4k,q)-set, and thus T Dγ(U4k,q) � T Dγ(L4k,q) − {D2,4}.
Similarly, for q = 5, T Dγ(U4k,q) � T Dγ(L4k,q)− {D2,3,D2,4,D2,5,D3,5,D4,5}. Note that

u1 is in every γt(U4k,q)-set for all q ≥ 6 and in every γt(C4k,q)-set for all q ≥ 2, so

T Dγ(U4k,q) � Lk+1
k−1,q for all q ≥ 6, and T Dγ(C4k,q) � Lk+1

k−1,q for all q ≥ 2 by following

the first two paragraphs in the proof of Theorem 4.4.7.

Similar to Lemma 4.4.8, each γt(U4k−1,q)-set and each γt(C4k−1,q)-set do not

contain the vertices ui for all i ∈ {2, 3, . . . , q}. Then we follow the steps in the proof of

Theorem 4.4.9, so T Dγ(U4k−1,q) � Pk � T Dγ(C4k−1,q).
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Theorem 4.5.1. Let p and q be positive integers. Then

T Dγ(Up,q) �



P1 if p = 4k + 2, q ≥ 2;

Lk,q if p = 4k + 1, q ≥ 2;

Lk+1
k−1,q if p = 4k, q ≥ 6;

Pk if p = 4k − 1, q ≥ 2;

and

T Dγ(Cp,q) �



P1 if p = 4k + 2, q ≥ 2;

Lk,q if p = 4k + 1, q ≥ 2;

Lk+1
k−1,q if p = 4k, q ≥ 2;

Pk if p = 4k − 1, q ≥ 2.

4.5.2 γ-Paired Dominating Graphs of Umbrella and Coconut Graphs

Let p and q be positive integers. If q = 1, then Theorems 4.3.12 - 4.3.15

give the results on PDγ(Up,q) and PDγ(Cp,q). If q ≥ 2, then PDγ(Up,q) and PDγ(Cp,q)
are determined in Theorem 4.5.2 by the following discussions.

It is easy to check that {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {v4k+2, u1} is the only

γpr(U4k+2,q)-set and the only γpr(C4k+2,q)-set, which means that PDγ(U4k+2,q) � P1 �

PDγ(C4k+2,q).
Similar to Lemma 4.4.14, we can prove that each γpr(U4k+1,q)-set contains

the vertex u1. Observation 3.0.1 gives that each γpr(C4k+1,q)-set contains the vertex u1.

We follow the steps in the proof of Theorem 4.4.15, and we then get that PDγ(U4k+1,q) �
Lk,q � PDγ(C4k+1,q).

If q ∈ {2, 3}, then U4k,q � L4k,q, and hence PDγ(U4k,q) � SJLk+1
k−1,q by

Theorem 4.4.16. Let q ≥ 4. Note that every γpr(U4k,q)-set is a γpr(L4k,q)-set, but the

converse need not be true for some γpr(L4k,q)-set that does not contain u1. From the

proof of Theorem 4.4.16, we get that a γpr(L4k,q)-set that does not contain u1 is of the

form Di, j = D ∪ {ui, u j}, where D is a γpr(P4k)-set and 2 ≤ i < j ≤ q. Similarly,

a γpr(U4k,q)-set that does not contain u1 is also of the form D ∪ {ui, u j} for some 2 ≤
i < j ≤ q. For q = 4, we have D2,4 is a γpr(L4k,q)-set but not a γpr(U4k,q)-set, so

PDγ(U4k,q) � PDγ(L4k,q) − {D2,4}. For q = 5, only D3,4 is a γpr(U4k,q)-set among all
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γpr(L4k,q)-sets containing the pair {ui, u j} where 2 ≤ i < j ≤ q, and thus PDγ(U4k,q) �
PDγ(L4k,q) − {D2,3,D2,4,D2,5,D3,5,D4,5}. If q ≥ 6, then it is easy to verify that u1

is in every γpr(U4k,q)-set, and we then follow the first two paragraphs of the proof in

Theorem 4.4.16 to get that PDγ(U4k,q) � SLk+1
k−1,q. Note that u1 is in every γpr(C4k,q)-set

for all q ≥ 2. Again, we follow the first two paragraphs of the proof in Theorem 4.4.16,

so PDγ(C4k,q) � SLk+1
k−1,q for all q ≥ 2.

If q ∈ {2, 3}, then we get that PDγ(U4k−1,q) � PDγ(L4k−1,q) � Bk+1,k+q−1,k

by Theorem 4.4.17. Now, we let q ≥ 4. In the proof of Theorem 4.4.17, we know that

Di, j
1 ,D

i, j
2 , . . . ,D

i, j
k+1 are the only γpr(L4k−1,q)-sets containing the pair {ui, u j} where 2 ≤

i < j ≤ q. Note that D2,4
1 ,D

2,4
2 , . . . ,D

2,4
k+1 are not γpr(U4k−1,4)-sets, so PDγ(U4k−1,4) �

PDγ(L4k−1,4) − {D2,4
x : 1 ≤ x ≤ k + 1}. Among all γpr(L4k−1,5)-sets containing the pair

{ui, u j} for 2 ≤ i < j ≤ 5, only D3,4
1 ,D

3,4
2 , . . . ,D

3,4
k+1 are γpr(U4k−1,5)-sets, so we get

that PDγ(U4k−1,5) � PDγ(L4k−1,5) − {D2,3
x ,D

2,4
x ,D

2,5
x ,D

3,5
x ,D

4,5
x : 1 ≤ x ≤ k + 1}. We

can easily check that u1 is contained in every γpr(U4k−1,q)-set for all q ≥ 6 as well as

every γpr(C4k−1,q)-set for all q ≥ 2. We obtain that PDγ(U4k−1,q) � Ak+1,k+q−1,k for all

q ≥ 6, and PDγ(C4k−1,q) � Ak+1,k+q−1,k for all q ≥ 2 by following the steps of proof in

Theorem 4.4.17 (first paragraph).

Theorem 4.5.2. Let p and q be positive integers. Then

PDγ(Up,q) �



P1 if p = 4k + 2, q ≥ 2;

Lk,q if p = 4k + 1, q ≥ 2;

SLk+1
k−1,q if p = 4k, q ≥ 6;

Ak+1,k+q−1,k if p = 4k − 1, q ≥ 6;

and

PDγ(Cp,q) �



P1 if p = 4k + 2, q ≥ 2;

Lk,q if p = 4k + 1, q ≥ 2;

SLk+1
k−1,q if p = 4k, q ≥ 2;

Ak+1,k+q−1,k if p = 4k − 1, q ≥ 2.
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CHAPTER 5

CONCLUSIONS

In this chapter, we provide a summary that arises from this dissertation and

propose some open problems for future consideration.

This dissertation presents the total and the paired domination numbers of

some families of graphs in Chapter 3. Section 3.1 specifically covers wheel graphs,

helm graphs, flower graphs, and sunflower graphs. In Section 3.2, we revise some values

of the total domination numbers of Jahangir graphs, which were originally provided by

Mtarneh et al. [48], and subsequently present the paired domination numbers of Jahangir

graphs. In Section 3.3, we provide the total and the paired domination numbers of Pp□Cq

for p ∈ {2, 3, 4} and q ≥ 5, which extend the results in [30] showing the case for p ≥ 2

and q ∈ {3, 4}. We also present some of their upper and lower bounds for the other

values of p and q. To find the exact values for the other cases, we propose the folowing

problem.

Problem 5.0.1. Determine the total and the paired domination numbers of Pp□Cq for

p, q ≥ 5.

Section 3.4 presents the total and the paired domination numbers of some

closed helm graphs and their upper bounds for the other cases. Additionally, we provide

the total and the paired domination numbers of some web graphs, along with their upper

bounds in the other cases. We next provide the problem aimed at determining lower

bounds and exact values for these two classes of graphs.

Problem 5.0.2. Determine lower bounds and exact values for the total and the paired

domination numbers of CHp,q for p, q ≥ 5 and Wp,q for p ≥ 7 and q ≥ 5.

Furthermore, we compute the total and the paired domination numbers for

windmill class of graphs in Section 3.5. We close Chapter 3 by providing the total and

the paired domination numbers of lollipop graphs, umbrella graphs, and coconut graphs

in Section 3.6. There is another graph that is similar in structure to the latter three graphs,

which is a tadpole graph Tp,q obtained by joining an endpoint of a path Pp to a vertex

of a cycle Cq. The following problem is an intriguing one to address.
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Problem 5.0.3. Determine the total and the paired domination numbers of tadpole

graphs.

In Chapter 4, we determine γ-total and γ-paired dominating graphs of some

classes of graphs. We start this chapter by considering double stars, complete graphs,

complete bipartite graphs, and fan graphs in Section 4.1. As stated above, the total and

paired domination numbers of wheel graphs, helm graphs, flower graphs, and sunflower

graphs are presented in Section 3.1. However, we only investigate the γ-total and the γ-

paired dominating graphs of the first three classes of graphs in Section 4.2, while leaving

the ones of sunflower graphs in the next problem.

Problem 5.0.4. Determine the γ-total and the γ-paired dominating graphs of sunflower

graphs.

Section 4.3 presents the γ-paired dominating graphs of cycles, which extend

the results of [15] and [67]. We then provide the γ-total and the γ-paired dominating

graphs of lollipop graphs in Section 4.4, and the ones of umbrella graphs and coconut

graphs in Section 4.5.

The answer of Problem 5.0.3 provides the total and the paired domination

numbers of tadpole graphs, which are useful to the next problem.

Problem 5.0.5. Determine the γ-total and the γ-paired dominating graphs of tadpole

graphs.

We can notice that Chapter 4 has not yet discussed the γ-total and the γ-

paired dominating graphs of Jahangir graphs, cylinders, closed helm graphs, web graphs,

and windmill class of graphs, which have been mentioned in Chapter 3. We let their

determination be a problem as follows.

Problem 5.0.6. Determine the γ-total and the γ-paired dominating graphs of Jahangir

graphs, cylinders, closed helm graphs, web graphs, and windmill class of graphs.

Finally, we propose three more fascinating questions. The first question is

to ask which graph has the property that its γ-total and γ-paired dominating graphs are

isomorphic. According to the results in Chapter 4, we obtain that

• T Dγ(Sp,q) � PDγ(Sp,q) when p, q ≥ 1;
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• T Dγ(Kp) � PDγ(Kp) when p ≥ 2;

• T Dγ(Kp,q) � PDγ(Kp,q) when p, q ≥ 1;

• T Dγ(Fp,q) � PDγ(Fp,q) when p, q ≥ 1;

• T Dγ(Wp) � PDγ(Wp) when p ≥ 3;

• T Dγ(Hp) � PDγ(Hp) when p ≥ 3 is even;

• T Dγ(Flp) � PDγ(Flp) when p ≥ 3;

• T Dγ(Pp) � PDγ(Pp) when p = 2, p = 6, or p ≡ 0, 3 (mod 4);

• T Dγ(Cp) � PDγ(Cp) when p = 6 or p ≡ 0, 3 (mod 4);

• T Dγ(Lp,q) � PDγ(Lp,q) when p = 4 and q ≥ 2, or p ≡ 1, 2 (mod 4) and q ≥ 1;

• T Dγ(Up,q) � PDγ(Up,q) when p = 4 and q ≥ 2, or p ≡ 1, 2 (mod 4) and q ≥ 1;

• T Dγ(Cp,q) � PDγ(Cp,q) when p = 4 and q ≥ 2, or p ≡ 1, 2 (mod 4) and q ≥ 1.

The first question leads us to propose the following problem.

Problem 5.0.7. Characterize the graph G for which T Dγ(G) � PDγ(G).

The second question is to ask which graph is isomorphic to its γ-total (γ-

paired) dominating graph. As appeared in Theorems 4.3.5, 4.3.6, and 4.3.8, we obtain

that T Dγ(Cp) � Cp when p = 4 or p ≡ 1, 3 (mod 4). Similarly, as mentioned in

Theorems 4.3.18 and 4.3.20, we know PDγ(Cp) � Cp when p = 4 or p ≡ 3 (mod 4).
We then provide two more problems as follows.

Problem 5.0.8. Characterize the graph G for which T Dγ(G) � G.

Problem 5.0.9. Characterize the graph G for which PDγ(G) � G.

For the last question, it asks which graph has the property that its γ-total

(γ-paired) dominating graph is connected or disconnected. Among all graphs that are

considered in this dissertation, by Theorems 4.3.5 and 4.3.18, there is only the cycle Cp

with p ≡ 0 (mod 4) and p ≥ 8 such that T Dγ(Cp) and PDγ(Cp) are disconnected. Thus,

the following problems are worth considering.
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Problem 5.0.10. Determine conditions on the graph G under which T Dγ(G) is con-
nected or disconnected.

Problem 5.0.11. Determine conditions on the graph G under which PDγ(G) is con-
nected or disconnected.
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