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ABSTRACT

Effective workforce scheduling is crucial in human resource management across

various industries. It offers potential improvements in cost savings, operational efficiency,

employee well-being, and retention. This dissertation is dedicated to advancing the field

of workforce scheduling by introducing innovative mathematical models and analytical so-

lutions tailored for both the manufacturing industry and the healthcare sector, emphasizing

worker well-being, safety, and job satisfaction.

For industrial applications, our research focuses on the multifaceted benefits of

job rotation in enhancing worker safety, promoting cross-training, and increasing job sat-

isfaction. Two novel noise-safe job rotation scheduling models are introduced. The first

model aims to ensure noise safety while optimizing production performance, considering

worker-task skill matching within demand-driven manufacturing operations. This model

can enhance a noise-safe work environment while maintaining promising operational perfor-

mance. The second model incorporates skill development and personal attributes, including

learning-forgetting rates and job boredom. This model addresses the complexities of balanc-

ing worker safety, skill development, and monotony-induced boredom. Such crucial aspects

have a direct impact on production performance. Experiments showcase its capability to

simultaneously achieve worker safety, multi-skill development, and reduced job monotony.
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In healthcare applications, this dissertation highlights the vital role of nurses’ job

satisfaction in addressing the nursing shortage faced by hospitals worldwide. Two novel

satisfaction-enhanced nurse scheduling models are presented. The first model seeks to ac-

commodate individual nurse preferences for working slots and days off while ensuring eq-

uitable allocation of workload and preferred assignments. Building upon the first model, the

second model incorporates a cost-effectiveness dimension to enhance practical applicabil-

ity. Both models are validated using real-world data from hospitals in Thailand. The results

highlight their effectiveness in generating more satisfactory and equitable work schedules

within significantly reduced time compared to manually created schedules, with the second

model offering cost-saving alternative scheduling plans.

This dissertation offers up-to-date workforce scheduling approaches for industrial

and healthcare sectors, emphasizing the significance of workforce scheduling in driving

positive changes in working conditions. The workforce scheduling models introduced in

this dissertation can serve as valuable decision-support tools to enhance safety, job satis-

faction, and operational performance in practice. Furthermore, this dissertation contributes

significantly to the fields of occupational safety, industrial human resource management, and

healthcare personnel management, providing guidelines for future research aiming to bridge

the theoretical and practical gaps in workforce scheduling research.

Keywords: Workforce Scheduling Problem, Nurse Scheduling Problem, Job Rotation,

Occupational safety, Job satisfaction
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CHAPTER 1
INTRODUCTION

This chapter introduces the workforce scheduling problem (WSP) and its signifi-

cance. It begins by defining the WSP, its goals, and challenges in Section 1.1. Section

1.2 discusses the general solution approaches to the WSP. Section 1.3 defines the specific

applications of WSP within this dissertation. The scope of the dissertation, along with its

objectives and significance, is outlined in Section 1.4 and Section 1.5, respectively. Finally,

Section 1.6 offers an overview of this dissertation report.

1.1 The workforce scheduling problem

The workforce scheduling problem (WSP) involves assigning workers to shifts or

tasks across a planning horizon while adhering to operational goals and constraints. These

constraints usually encompass factors such as coverage requirements, worker skill limita-

tions, legal work hours, and demand fulfillment. The objective is to optimize workforce

utilization, skills, and worker well-being, thereby contributing to improved efficiency of hu-

man resources management. Effective workforce scheduling is substantial for organizations

leveraging hourly human resources, such as manufacturers, retailers, airlines, and medical

service providers.

WSP has gained significant attention in operations research due to its complexity

and wide-ranging applications, including airline crew scheduling, retail staffing, healthcare

staffing, manufacturing, and logistics. Although the core principles of WSP remain con-

sistent, specific parameters, objectives, and constraints may vary by context. Common ob-

jectives found in the WSP literature include optimizing total labor costs, production per-

formance, or service levels, enhancing workers’ job satisfaction by accommodating their

preferences, and identifying the optimal workforce size.

Effective workforce scheduling should address both organizational and worker per-

spectives. From an organizational standpoint, it aims to enhance productivity and service

levels. Simultaneously, from a worker perspective, it seeks to meet individual preferences,

ensuring job satisfaction and safety. Balancing these objectives, which are often conflict-

ing, is a crucial challenge in WSP. Successful scheduling approaches provide proper alloca-

tion of workloads and rest allowances, enabling workers to perform tasks during preferred

time slots. At the same time, the schedules should also meet operational requirements such
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as production or economic performance. Such desirable work conditions are essential for

enhancing worker well-being, safety, job satisfaction, and long-term workforce retention,

reducing costs associated with hiring and training new staff.

The complexity of WSP arises from the need to consider multiple stakeholders’ per-

spectives and essential scheduling factors. Additionally, WSP is often a combinatorial and

NP-hard problem, making it more challenging as the problem size increases. Consequently,

selecting appropriate solution approaches for each problem nature is crucial. The following

section outlines standard solution approaches applied to address WSP.

1.2 Solution approaches to the workforce scheduling problem

Solution approaches to WSP include a range of mathematical optimization and ap-

proximation techniques. The choice of method depends on the problem’s characteristics,

including the number of objectives, constraints, and nature of inputs.

For conventional WSP models with deterministic parameters, several mathematical

optimization techniques are commonly employed. These include linear programming (LP),

integer programming (IP), mixed-integer linear programming (MILP), and, in cases with

non-linear conditions, non-linear programming (NLP). Multi-objective WSP models can be

addressed using specialized methods like weighted-sum, lexicographic optimization, or goal

programming (GP). For highly constrained WSP scenarios, constraint programming (CP)

can find feasible solutions, even if they are not necessarily optimal. When dealing with

uncertain or fuzzy parameters, techniques such as fuzzy optimization or stochastic program-

ming (SP) can be applied to handle inherent uncertainty. While optimization techniques

guarantee the best possible solution, they may take a substantial amount of time, depending

on the complexity and the nature of the problem. Approximation techniques can be more

beneficial for highly complex problems involving multiple quadratic equations or systems

that cannot be mathematically represented.

Another category of WSP solution approaches involves approximation techniques,

employing heuristic and metaheuristic algorithms to find near-optimal solutions, especially

for large-scale and complex problems. Heuristic algorithms offer intuitive search strate-

gies, delivering near-optimal solutions within reasonable computational time. However,

they may not be suitable for highly complex problems and may not guarantee global op-

timality. Without careful design, heuristic algorithms can get trapped in local optima. They

are also problem-specific and may not be adaptable to different problem types. Nonetheless,

heuristic algorithms can be employed to obtain high-quality initial solutions, which can sub-

sequently expedite the search for near-optimal solutions when combined with metaheuristic
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algorithms. Additionally, heuristic algorithms can be useful in real-time scheduling, where

computational time takes precedence over optimality.

Metaheuristic algorithms are designed to tackle complex problems that heuristic al-

gorithms alone cannot efficiently solve. These algorithms, characterized by diversification

and intensification, generate diverse solutions and then intensify the search in local regions

to exploit the best solutions. This iterative process converges towards optimality over time.

Commonly used metaheuristic algorithms in WSP research include the ant colony optimiza-

tion algorithm (ACO), artificial bee colony algorithm (ABC), genetic algorithm (GA), and

simulated annealing (SA). GA is inspired by Darwinian evolution, involving reproduction,

mutation, recombination, and selection processes. Due to its simplicity and efficiency, it

is frequently applied in various optimization problems, including WSP. However, due to

many genetic processes and parameter tuning involved, GA may get stuck in local optima

if not carefully tuned. Therefore, GA is often enhanced with specialized diversification

mechanisms or hybridized with exploitation-based metaheuristics, such as SA to improve

performance. Refer to Chapter 2.2 for a detailed description of these approaches.

1.3 Applications of focus to the workforce scheduling problem

WSP is a versatile tool that finds applications in various industries, such as industrial,

healthcare, transportation, and service sectors. However, this dissertation concentrates solely

on the uses of WSP in industrial and healthcare systems. The primary focus of this disser-

tation is the development of workforce scheduling approaches that aim to improve workers’

well-being and job satisfaction in both these domains.

Within industrial applications, WSP encompasses various sub-topics, including worker-

to-task and job rotation scheduling. In worker-to-task scheduling, workers are assigned to

specific tasks within a workday or for a period of time, with potentially different task as-

signments across the planning horizon. This class of problem aims to determine efficient

production planning that optimally utilizes the workforce to meet operational cost or pro-

duction efficiency performance. Another subtopic is job rotation scheduling, where workers

are periodically rotated between multiple jobs within a workday. This scheduling strategy is

primarily employed when occupational safety is of concern. Since this dissertation focuses

on workers’ well-being and job satisfaction, innovative approaches to job rotation scheduling

are introduced, emphasizing mitigating occupational noise hazards, one of the most common

occupational risks. Nevertheless, the proposed models can be adapted to address other haz-

ards as needed. Henceforth, the WSP models proposed for industrial applications in this

dissertation are called ’noise-safe job rotation scheduling.’
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In healthcare applications, WSP offers several variants depending on the healthcare

personnel involved, such as doctors, physicians, and nurses. This dissertation, however,

primarily focuses on nursing staff. The reason is that nurses are extensively engaged in

direct patient interactions, encompassing tasks such as preliminary screenings, patient care,

and discharge preparations. The increasing demand for healthcare services has resulted in

a shortage of nurses, leading to higher turnover rates due to the demanding workload and

intricate shift patterns. Consequently, this dissertation aims to develop systematic nurse

scheduling approaches to enhance nurses’ well-being and job satisfaction. The proposed

nurse scheduling models consider factors like nurses’ skill levels, individual preferences,

and scheduling fairness to distribute workload effectively, accommodate shift and day-off

preferences, and ensure fair scheduling outcomes. The term’ satisfaction-enhanced nurse

scheduling’ is used in this dissertation to refer to the proposed WSP model for healthcare

applications. The proposed models can be adapted to accommodate other medical personnel

having similar work patterns to nurses.

The subsequent subsections provide detailed explanations of noise-safe scheduling

and satisfaction-enhanced scheduling, including their definitions, benefits, and challenges.

1.3.1 Industrial application (noise-safe job rotation scheduling)

This dissertation is centered around developing WSP solutions for industrial appli-

cations, focusing on improving occupational safety by mitigating noise hazards in the work-

place. The proposed models are called ’noise-safe job rotation scheduling’ models.

Workers in industries like metal, steel, and wood manufacturing often face excessive

occupational noise levels due to their proximity to noisy machinery. This prolonged expo-

sure can result in permanent noise-induced hearing loss (K.-H. Chen et al., 2020; Lie et al.,

2016), elevated blood pressure (Gan & Mannino, 2018), cardiovascular problems (Li et al.,

2019), psychological stress, communication challenges, reduced concentration (Themann et

al., 2013), all of which adversely impact worker well-being, productivity, and increase the

risk of accidents.

The National Institute for Occupational Safety and Health (NIOSH) recommends

that workers should not be exposed to noise levels exceeding 85 decibels averaged over

an 8-hour time-weighted average (TWA) (National Institute for Occupational Safety and

Health, 2019). Workplaces with excessive noise levels should strictly follow the NIOSH

hazard control guidelines as illustrated in Figure 1.1. While the ideal approach to mitigate

noise hazards includes eliminating or substituting noisy machinery, these may not always

be feasible or cost-effective. In such cases, administrative controls, such as job rotation
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scheduling, become a valuable supplementary measure to reduce hazard exposure. However,

it is essential to note that employees should not rely solely on personal protective equipment

as it is considered ineffective and burdensome for workers (Themann et al., 2013).

Figure 1.1 Hierarchy of occupational hazard controls adapted from National Institute for
Occupational Safety and Health (2022).

Job rotation scheduling involves periodically assigning workers to tasks with varying

hazard levels, ensuring that daily exposure to hazards remains within safe limits. This pro-

cess is illustrated in Figure 1.2. While it offers benefits in mitigating hazard exposure, it also

presents practical challenges. Determining the most appropriate assignments that maintain

adequate system productivity requires careful consideration of worker and task skill levels.

In addition, when workers are rotated multiple times during a workday, production can be

lost due to relocation, skill deficiency, or setup times required for workers to adjust to new

tasks. Additionally, in manufacturing facilities operating with minimal staff, workers are of-

ten required to work overtime during peak demand periods, posing additional challenges for

job rotation in achieving worker safety during extended workdays and meeting the demand.

Job rotation also provides multifaceted benefits, including multi-skill learning, the

reduction of job monotony, and improved job satisfaction. Rotating workers between tasks

enables them to explore and acquire skills across multiple job roles, fostering personal de-

velopment and opening up career opportunities. Simultaneously, rotation can help reduce

the boredom from job monotony and boost motivation as workers engage in various tasks

throughout the workday (Fernando & Dissanayake, 2019).

Determining the optimal rotation assignments, duration, and frequency is crucial,

especially in a harsh work environment where safety is the priority. Frequent rotation is

necessary to ensure worker safety, but it may disrupt the process of learning new skills.
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Figure 1.2 Example of job rotation for noise mitigation in manufacturing.

On the other hand, infrequent rotation may be preferred to maintain productivity, but it can

hinder skill acquisition and lead to worker boredom. Moreover, extended periods away from

certain tasks may result in skill forgetting. Finding the right balance between these factors

remains a significant challenge in the job rotation scheduling domain, aiming for efficient

outcomes that align with both management and worker needs.

In summary, job rotation offers valuable benefits besides worker safety, such as

worker cross-training, reduced job monotony, and enhanced job satisfaction. Neverthe-

less, achieving these advantages while maintaining production and economic efficiency can

pose challenges, as they often conflict with worker well-being objectives. To address these

challenges, this dissertation introduces two noise-safe scheduling models that consider key

scheduling factors such as worker skills, task requirements, demand fulfillment, and learning-

forgetting-boredom patterns. Further details are provided in the subsequent chapters.

1.3.2 Healthcare application (satisfaction-enhanced nurse scheduling)

Hospitals typically require medical personnel, such as doctors, nurses, and physi-

cians, to work irregular and extended hours due to their 24/7 operation. Shift work in health-

care involves factors like shift rotation, long hours, involuntary overtime, and insufficient

rest due to consecutive workdays (Min et al., 2022). These conditions contribute to height-

ened risks of excessive fatigue (Min et al., 2021), circadian rhythm disorders (Ferri et al.,
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2016), job stress (Soewardi & Kusuma, 2019), and work-life imbalance (Navajas-Romero

et al., 2020), which, in turn, lead to job dissatisfaction and turnover intentions among nurses

(Lee & Jang, 2020).

Hospitals have been facing job dissatisfaction and high nurse turnover rates for decades.

Studies have shown that poor work conditions, job stress, and burnout are strongly linked to

nurses’ intentions to leave their profession. For instance, in the United States, about 44,802

nurses (approximately 21%) have considered leaving their jobs due to heavy workloads and

staffing issues (Koehler & Olds, 2022). Similarly, only 0.4% of nurses in China reported

job satisfaction, with 70.7% considering resignation (Zhang et al., 2021). This trend is not

unique to these countries, and it is also present in Thailand (Phuekphan et al., 2021). The

nursing shortage persists despite the growing demand for medical services, necessitating

hospital management to devise strategies to improve nurses’ well-being, working conditions,

and job satisfaction.

A well-designed work schedule is pivotal in enhancing nurses’ job satisfaction and

well-being, thereby reducing turnover rates. Research by Rizany et al. (2020) highlights a

significant positive correlation between work schedule quality and nurses’ job satisfaction.

This can be achieved by maintaining proper nurse-to-patient ratios, ensuring an appropriate

skill mix, and fair workload allocation. They also underscored that despite these research-

supported findings, many practical work schedules still fall short in these aspects. Besides

nurse-to-patient ratios and skill mixes, schedule quality can be further improved by con-

sidering nurses’ preferences and ensuring scheduling fairness. Surveys indicate that nurses

appreciate having some control over their work schedules, allowing them to specify pre-

ferred working slots (Cajulis et al., 2007). As suggested by Rizany et al. (2019), fairness in

scheduling encompasses equitable workload distribution and preferred assignments.

In response to the challenging work conditions and the pressing nursing shortage,

significant research efforts have focused on addressing solutions to the nurse scheduling

problem (NSP), a branch of WSP within the healthcare sector. NSP aims to determine suit-

able nurse shift assignments while adhering to hospital and legal regulations regarding work

hours, nurse requirements, and skill levels. An example of a weekly nurse schedule is pro-

vided in Figure 1.3, illustrating a three-shift rotation system with double-shift assignments

on certain days.

Ref. code: 25666122300103FZD



8

Figure 1.3 An example of a weekly nurse schedule.

Nurse scheduling is a complex, time-consuming task typically overseen by the head

nurse. It requires compliance with various hospital requirements, including adequate cover-

age, nurse competency, skill mix, and accommodating personal requests. Manual schedul-

ing struggles to meet operational conditions and may overlook preferences and fairness.

Optimization-based nurse scheduling models serve as valuable decision-support tools, ad-

dressing various objectives, such as cost minimization, quality improvement, and staffing

optimization.

This dissertation primarily focuses on the development of satisfaction-enhanced nurse

scheduling models. These models prioritize individual nurse preferences and scheduling

fairness, aiming to create work schedules that enhance nurses’ well-being and job satisfac-

tion, thereby mitigating turnover intention. Challenges persist in comprehensively consid-

ering factors such as individual preferences for shifts and days off and ensuring fairness

in workload and preferred assignments. Additionally, the economic impact of satisfaction-

enhanced scheduling still requires further exploration.

In summary, systematic nurse scheduling approaches help head nurses generate sat-

isfactory and fair work schedules while adhering to hospital regulations. These schedules are

crucial in improving nurses’ well-being and job satisfaction, addressing the ongoing nurs-

ing shortage crisis. To tackle these challenges, this dissertation proposes two satisfaction-

enhanced nurse scheduling models, aiming to provide balanced workloads and preferred

assignments while considering individual preferences and economic practicality. It also

addresses differences in nurses’ skill levels and investigates the economic performance of

satisfaction-enhanced scheduling for enhanced application value.

This section outlines the challenges of noise-safe job rotation scheduling and nurse

scheduling problems. Although these problems share similarities in coverage, skill require-

ments, and work hour regulations, they differ in the nature of assignments and shift work

systems.

In noise-safe scheduling, workers are assigned specific tasks and shifts. This involves
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determining worker assignments for each task, shift, and workday. Typically, in manufactur-

ing industries, a workday consists of a single 8-hour shift with overtime hours in some cases.

Workers have a common day off each week during weekends when the factory is commonly

closed. Therefore, shift and day-off preferences are less relevant, while task preferences can

still be considered.

In nurse scheduling, nurses are assigned to specific shifts within a 24-hour work-

day, which may consist of 8-hour or 12-hour shifts, depending on the hospital’s operational

requirements. Nurses typically follow a rotating pattern that includes day and night shifts.

They are also entitled to a certain number of days off each week, and this off-day pattern

can vary over the planning horizon. The scheduling should consider nurses’ preferences for

their shifts and days off. However, task preferences are not within this scheduling context.

Although some hospitals may assign nurses to specific roles and shifts independently, such

an assignment system is not within the scope of the healthcare applications discussed in the

dissertation. The following section will provide a detailed scope of this dissertation for each

application.

1.4 Scope of this dissertation

This dissertation introduces innovative workforce scheduling approaches emphasiz-

ing worker well-being and job satisfaction in both industrial and healthcare applications.

This section outlines the dissertation’s scope and considerations for each application to pro-

vide clarity.

1.4.1 Industrial application (noise-safe job rotation scheduling)

This dissertation addresses the use of job rotation scheduling as an administrative

hazard control measure and fostering multi-skill development among workers. Key aspects

and their scopes are considered as follows:

• Worker heterogeneity: The models developed in this dissertation consider worker

heterogeneity. Workers exhibit differences in skill levels, task efficiency, and task

preferences. It is assumed that skilled workers can efficiently perform tasks at better

production rates and handle a broader range of tasks. Additionally, worker variations

in learning, forgetting, and boredom rates are considered.

• Occupational noise hazard: Noise is prevalent in heavy manufacturing industries.

This dissertation focuses on noise as the main hazard, assuming uniform noise lev-

els across workdays and planning horizons. Workers’ perception of noise is uniform
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regardless of their demographic differences. Daily noise exposure level is calculated

using established formulas from NIOSH standards.

• Job satisfaction: Workers’ job satisfaction is influenced by various factors. This

dissertation highlights the significance of safety perception, motivation, and organiza-

tional support for personal development as key contributors to job satisfaction. The

positive impact of job rotation in reducing monotony-induced boredom, which is also

associated with job satisfaction, is also considered. Additionally, this dissertation ac-

counts for workers’ task preferences as another contributor that increases job satisfac-

tion and helps mitigate boredom from monotony.

• Planning horizon: The dissertation adopts a multi-workday planning horizon, allow-

ing for scheduling decisions over an extended period. Throughout this planning hori-

zon, the noise-safe scheduling models determine task assignments for each worker

across shifts and workdays. The length of the planning horizon is adaptable to meet

specific needs, whether on a weekly, bi-monthly, or monthly basis.

1.4.2 Healthcare application (satisfaction-enhanced nurse scheduling)

Within the healthcare system, this dissertation is dedicated to the development of

nurse scheduling models aimed at enhancing nurses’ job satisfaction. The key aspects and

scopes are detailed below:

• Nurse heterogeneity: Nurses exhibit variations in skill levels and individual prefer-

ences. Incorporating skill heterogeneity into the models is essential, as it ensures a

proper skill mix in each shift, a critical factor for maintaining operational quality. Ad-

ditionally, nurses have different preferences for working shifts and days off, influenced

by factors such as lifestyle, family dynamics, and personal choices. For instance,

nurses with families may prefer morning to night shifts to align with their family com-

mitments, while others may opt for afternoon and night shifts. Furthermore, some

nurses may prefer weekdays off, while others prefer weekends. Accounting for these

diverse preferences enables the creation of work schedules that effectively accommo-

date the individual needs and circumstances of nurses.

• Job satisfaction: In the context of satisfaction-enhanced nurse schedules, job satis-

faction is influenced by the extent to which the schedule aligns with nurses’ individual

preferences and the fairness of assignments. Nurses find satisfaction in schedules

that accommodate their shift and day-off preferences, aligning with their lifestyle
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needs. Furthermore, this dissertation acknowledges the significance of fairness in

work schedules. The proposed satisfaction-enhanced nurse scheduling models aim

to ensure both satisfactory and equitable work schedules, promoting job satisfaction

across all dimensions.

• Fairness: The proposed models encompass fairness in two dimensions: equitable

workload distribution (the number of assigned shifts) and preferred assignments. Fo-

cusing solely on one aspect of fairness, whether workload or preferred assignments,

may result in schedules that are perceived as unfair from an overall perspective. Nurses

may experience frustration and dissatisfaction if they receive equitable workloads

but substantial deviations in preferred assignments. To address this, our proposed

satisfaction-enhanced scheduling models incorporate considerations for fairness in

both workload distribution and preferred assignments, ensuring a comprehensive per-

spective of fairness.

• Planning horizon: This dissertation adopts a multi-workday planning horizon, divid-

ing workdays into multiple equal-length working shifts. For an entire planning period,

the models determine optimal nurses’ shift and day-off assignments, accommodating

their individual preferences and ensuring equitable assignments. The length of shifts

and the planning horizon are adaptable to accommodate the specific requirements of

each hospital setting.

1.5 Dissertation objectives and significance

This dissertation has a twofold objective: to develop workforce scheduling approaches

for both industrial and healthcare applications while emphasizing the enhancement of work-

ers’ well-being and job satisfaction. The key objectives and significance of each application

are detailed below.

1.5.1 Industrial application (noise-safe job rotation scheduling)

1. Development of noise-safe job rotation scheduling model: The primary objective is

to create a multiperiod noise-safe job rotation scheduling model that prioritizes worker

safety and production performance. This model takes into account critical scheduling

factors, including workers’ skills, task skill requirements, production demand, and

overtime assignments. The objective function is to minimize the total labor cost asso-

ciated with workforce scheduling in harsh working environments.
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2. Development of noise-safe job rotation scheduling model considering learning-

forgetting-boredom effects: Another key objective is to develop non-linear multi-

workday noise-safe job rotation scheduling models that consider the benefits of worker

cross-training and motivation associated with job rotation. This model aims to mini-

mize production delays arising from skill deficiencies and job dissatisfaction induced

by the monotony of repetitive tasks. It also incorporates the impact of learning, for-

getting, and boredom on worker productivity and job satisfaction.

The proposed models demonstrate the effectiveness of job rotation as an admin-

istrative hazard control measure. These models provide a solid foundation and practical

demonstration of how organizations can enhance worker safety, job satisfaction, and overall

well-being through the strategic use of job rotation. Additionally, they enable organizations

to maintain satisfactory production performance and foster multi-skill development among

workers, which contributes to increased worker flexibility and improved industrial workforce

management in the long term.

1.5.2 Healthcare application (satisfaction-enhanced nurse scheduling)

1. Development of satisfaction-enhanced nurse scheduling model: This dissertation

develops a multi-workday satisfaction-enhanced nurse scheduling model that priori-

tizes nurses’ shift and day-off preferences while maintaining a balance between work-

load and preferred assignments. The goal programming technique is employed to

handle multi-objectives associated with nurses’ preferences and fairness aspects.

2. Development of cost-effective and satisfaction-enhanced nurse scheduling model:

Another objective is to develop multi-workday nurse scheduling models that address

multiple dimensions, including minimizing staffing costs, maximizing the fulfillment

of shift and day-off preferences, and balancing workload and preferred assignments.

The lexicographic optimization technique is employed to solve the model.

The proposed models offer practical and efficient decision-support tools for hospital

nursing management. They facilitate nurse scheduling approaches to achieve improved shift

work conditions for nurses that accommodate their personal needs, leading to enhanced job

satisfaction and retention capabilities. A cost-effective variation to satisfaction-enhanced

scheduling is also provided. These proposed models can mitigate the limitations associ-

ated with manual scheduling, saving time and effort for head nurses while generating more

effective schedules.
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1.6 Organization of the dissertation

This dissertation is structured into five chapters, each contributing to the understand-

ing and development of workforce scheduling problems and solutions. The organization of

the chapters is as follows:

• Chapter 1 serves as an introduction to the concepts of WSP and outlines the specific

applications emphasized in this dissertation. It provides an overview of the disserta-

tion’s scope, objectives, and significance and concludes by presenting the layout of the

subsequent chapters.

• Chapter 2 outlines the background of WSP and its variations as found in the existing

literature. It reviews the range of solution approaches used to tackle WSP. The chap-

ter also offers insights into existing noise-safe job rotation and satisfaction-enhanced

scheduling approaches found in the literature, as well as highlights research gaps ad-

dressed in this dissertation.

• Chapter 3 provides methods for the measurement and evaluation of occupational

noise levels. It subsequently presents the development of two noise-safe job rotation

mathematical models. Throughout the chapter, numerical examples, model validation

procedures, and experimental results are presented to illustrate the application and

efficacy of the models.

• Chapter 4 describes the development processes of two satisfaction-enhanced nurse

scheduling models. It outlines the utilization of hospital case data and offers a thor-

ough analysis of experimental results, providing valuable insights into the application

of these models in healthcare settings.

• Chapter 5 serves as the conclusion of the research presented in this dissertation. It

summarizes the key findings and contributions to both academia and practical appli-

cations. Additionally, this chapter acknowledges the limitations of the research and

suggests potential directions for future research endeavors.
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CHAPTER 2
LITERATURE REVIEW

This chapter reviews related literature on workforce scheduling and its real-world ap-

plications in Section 2.1. Section 2.2 discusses quantitative approaches to solving workforce

scheduling problems, including exact and approximation techniques. Section 2.3 and 2.4

provide a literature review on noise-safe job rotation scheduling and satisfaction-enhanced

nurse scheduling, respectively. Research challenges and gaps associated with each applica-

tion are also presented.

2.1 Workforce scheduling problem and its variants

The Workforce Scheduling Problem (WSP) is a crucial research area focusing on

efficiently allocating human resources to tasks. WSP aims to optimize worker assignments

across shifts and days within a defined planning horizon while adhering to a set of con-

straints. These constraints may include skill requirements, allowable work hours, and safety

regulations. The foundation of WSP is similar, with some objectives, parameters, or con-

straints that can differ based on the application domain. This section explores the diverse

landscape of WSP applications and their significance within different industries.

Industrial applications

In industrial settings, WSP is often referred to as a labor scheduling problem, where

the primary objective is to minimize workforce utilization while ensuring adequate staffing

levels (Hung, 1994; Nanthavanij & Yenradee, 1999). Beyond cost minimization, this field

has expanded to include objectives such as cost optimization (Castillo et al., 2009; Thomp-

son & Goodale, 2006) and productivity enhancement (Moussavi et al., 2016; Nanthavanij et

al., 2010). Recent research in industrial WSP increasingly focuses on worker-centric goals,

emphasizing job satisfaction and preference-based assignments. Noteworthy efforts include

models formulated to maximize workers’ job satisfaction based on their preferred job and

shift assignments (M. Akbari et al., 2013; M. Liu & Liu, 2019).

Healthcare applications

Within the healthcare sector, WSP is known as medical staff scheduling, encompass-

ing various areas such as physician or nurse scheduling. These applications deal with com-
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plex scheduling requirements for different hospital departments, striving to balance work-

load, fulfill shift preferences, and adhere to legislative constraints such as work hour limita-

tions. Like the other applications, healthcare WSP is typically developed to determine the

minimum number of staff (P. S. Chen et al., 2016) and minimize the total staffing cost (Oth-

man et al., 2015). Another objective commonly found in the emergency department is to

minimize the patients’ waiting time to maintain patients’ satisfaction (Rashwan et al., 2018).

Transportation applications

Transportation systems tackle WSP for various industries, including airlines, rail-

ways, buses, trucks, and freight companies. Airline crew scheduling (ACS) is a prominent

field within transportation, with two main components: Crew Pairing Problems (CPP) and

Crew Rostering Problems (CRP). CPP optimizes crew utilization (Kornilakis & Stamatopou-

los, 2002; Quesnel et al., 2017), while CRP focuses on preference-based scheduling, work-

load balance, and cost considerations (Quesnel et al., 2019; Zhou et al., 2020). Integrating

these two sub-problems is essential for effective airline crew scheduling (Gomes & Gualda,

2015; Zeighami et al., 2020).

Service industry applications

The service industry extensively employs WSP in areas such as restaurants, retail,

gas stations, and call centers. Objectives often include minimizing staffing costs, main-

taining service quality, balancing full-time and part-time employees, and accommodating

worker preferences. Noteworthy examples include retail worker scheduling models that

aim to maximize profit while minimizing employee job dissatisfaction (Mac-Vicar et al.,

2017). Similarly, gas station employee scheduling involves a two-stage approach, with the

first stage allocating employees to stations and the second stage assigning shifts and days

off while also considering worker preferences (Al-Yakoob & Sherali, 2007). Call center

operations also utilize WSP to optimize agent scheduling (Dietz, 2011; Gans et al., 2015).

Recent advancements in WSP have increasingly focused on worker-centric objec-

tives, emphasizing safety and job satisfaction. By integrating safety regulations and worker

preferences, WSP can yield schedules that not only enhance employee well-being but also

contribute to improved performance and higher retention rates, as highlighted by Krekel et al.

(2019). However, it is important to acknowledge that WSPs are inherently complex and NP-

hard problems due to their constraints and expansive solution space. The need to consider

multiple aspects of WSP has made it even more challenging. While advanced optimiza-

tion techniques can efficiently tackle WSP even in large-scale scenarios, highly complex
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problems may require approximation algorithms to yield practical solutions. The subse-

quent section offers an insightful overview of the existing quantitative solution approaches

designed to address the multifaceted challenges posed by WSP.

2.2 Quantitative approaches to the workforce scheduling problem

WSP is a complex combinatorial problem that has been receiving extensive research

attention due to its practical significance and human benefits. There are many approaches

to solving the WSP, and the choice depends on the nature of the problems and inputs. This

section categorizes solution approaches into optimization and approximation techniques.

2.2.1 Optimization approach

The optimization approach, often referred to as the exact technique, has its roots in

LP, a concept introduced by Dantzig (1963). It involves formulating real-world problems as

mathematical models that consist of crucial elements, including input parameters, objective

functions, and constraints. In essence, optimization searches for combinations of variables

that yield the best possible objective value while adhering to a set of constraints. Optimiza-

tion is a powerful decision-support tool that has a wide range of applications in businesses

and research, including economics, finance, logistics, and workforce scheduling.

LP and its extensions, such as binary integer programming (BIP) and MILP, have

been effectively employed in addressing WSP. Numerous studies have demonstrated their

utility in various contexts (Al-Rawi & Mukherjee, 2019; S. Y. Ang et al., 2019; Lorenzo-

Espejo et al., 2021; Razali et al., 2018). WSP often involves multiple objectives, ranging

from cost minimization to productivity improvement, safety enhancement, and worker sat-

isfaction mirroring real-world scheduling processes. Several techniques have been proposed

to tackle such multi-objective problems.

One straightforward approach is to optimize all objectives simultaneously, assuming

equal importance. However, this method can be computationally expensive, especially when

objectives conflict with each other. A more effective approach is the Pareto frontier, which

identifies non-dominated solutions, allowing decision-makers to choose solutions aligned

with their specific needs (Khorram et al., 2014). For example, Safaei et al. (2009) developed

an approach to schedule maintenance workforce in a steel company to minimize job flow

time and staffing requirements. Decision-makers can choose the Pareto solution depend-

ing on the allowable degree where job flow time can be sacrificed to limit the workforce

employed. M. Liu and Liu (2019) proposed a workforce scheduling model to maximize

the number of on-time jobs and workforce satisfaction level. Their findings suggest mul-
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tiple solutions for decision-makers to select a suitable degree of trade-off between the two

objectives.

Weighted-sum optimization is another technique where multiple objectives are trans-

formed into a single objective function, with user-assigned weights representing their prior-

ities. While this method is relatively straightforward, it can encounter incommensurability

issues when objectives have different units, necessitating normalization. A similar concept,

known as goal programming (GP), sets target values for each objective, aiming to minimize

deviations from these targets. GP is known for its efficiency and practicality and has been

widely used in WSP literature, such as Hasan et al. (2019), Kaçmaz et al. (2019), and Shuib

and Kamarudin (2019).

Variations of GP include weighted-sum GP (WGP) and lexicographic GP (LGP),

which allow decision-makers to specify objective values and priorities. For instance, Ighravwe

et al. (2017) developed a WGP model for shift allocations in a process industry, where stake-

holders assigned different weights to goals related to budgets, worker distribution, quality

of work, and hiring-firing costs. Sundari and Mardiyati (2017) proposed an LGP model for

nurse scheduling, prioritizing goals related to shift patterns, day-offs, and workload distribu-

tion. It is important to note that GP approaches may not produce Pareto-efficient solutions

and may require normalization for objectives with different units (Jadidi et al., 2014).

Another strategy for handling multi-objective problems is lexicographic optimiza-

tion (LO). In this approach, objectives are optimized iteratively, following their order of

importance. Each objective’s optimal value from one iteration serves as a boundary for

the subsequent iteration until all objectives are optimized. This strategy enables decision-

makers to focus on the most critical objective first, simplifying the problem and maintaining

a reasonable solution time. For example, Barrera et al. (2012) employed LO to tackle a

bi-objective crew scheduling problem, minimizing crew numbers first and then balancing

workload. Wongwien and Nanthavanij (2017a) applied this approach to optimize a multi-

objective ergonomic workforce scheduling problem, considering factors like the number of

workers, person-job-fit score, and total worker changeover in a predefined order. They also

extended their work to include worker job satisfaction as an additional objective, optimizing

the model based on priority hierarchy Wongwien and Nanthavanij (2017b). Recent studies

in the field have continued to utilize LO, as evidenced by works such as Bolsi et al. (2021),

Mansini et al. (2023), and Vanheusden et al. (2022).

The approaches mentioned above are generally for linear problems. However, real-

world problems often involve non-linear conditions that cannot be adequately represented

using linear equations. These include scenarios related to chemical equilibrium, fluid flows,
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and worker learning forgetting. To address such complex non-linear systems, non-linear

programming (NLP) techniques are employed. Solving NLPs is generally more compli-

cated than LPs due to the significantly larger solution space. While commercial optimization

tools supporting NLPs are available, practitioners often transform NLPs into LPs or resort

to approximation techniques to manage computational complexity. The literature show-

cases instances of NLP usage in solving WSP, although less frequently than LP. For exam-

ple, Abdel-Fattah Mansour (2011) proposed an NLP model to minimize workload variance

among maintenance workers. They linearized the variance function and applied a genetic

algorithm (GA) for problem resolution. Hewitt et al. (2015) addressed non-linear WSP

by maximizing the number of finished goods while considering worker production rates

with non-linear relationships to worker skill. Linearization techniques were employed to

ensure manageable solution times with exact methods. Similarly, Jin et al. (2018) reformu-

lated their workforce grouping and assignment models from NLP to MILP, reducing solution

time and problem complexity. While linearization can reduce the computational burden of

NLP, some accuracy might be lost due to linear approximations. Alternatively, researchers

have opted for approximation techniques to solve NLP-WSP problems. These approaches

include problem-specific heuristics (López B. & Nembhard, 2017), multi-objective parti-

cle swarm optimization (MOPSO), non-dominated sorting genetic algorithm II (NSGA-II)

(Akhavizadegan, F. and Jolai, F. Jolai and Ansarifar, and Tavakkoli-Moghaddam, R., 2015),

hybrid GA-SA (Azizi et al., 2010), Local Search (Ayough et al., 2021), and others.

In summary, the literature review showcases a variety of optimization techniques

employed for addressing WSP. Each technique is suited to different problem formulations

and specifications. Table 2.1 summarizes reviewed papers detailing their optimization-based

solution approaches and applications to WSP, sorted in the order they appear in the section.

The abovementioned techniques are primarily suited for handling deterministic problems

with constant inputs and bounds. For situations involving uncertainties, stochastic program-

ming or robust optimization may be more appropriate, although these topics are beyond the

scope of this dissertation. For readers interested in further details, additional information can

be found in references such as Ben-Tal et al. (2009) and Birge and Louveaux (2011). While

optimization techniques effectively tackle WSP, challenges may arise when dealing with

complex or exceptionally large problems. Some real-world problems may have conditions

that cannot be represented as mathematical equations, rendering mathematical optimization

unsuitable. Moreover, computational time can escalate significantly when applying opti-

mization techniques to quadratic problems due to the multitude of feasible solution options.
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Consequently, efforts have been made to develop approximation approaches to address such

problems efficiently. Subsequent subsections will delve into various existing approximation

approaches.

2.2.2 Approximation approach

The approximation approach is a trade-off between optimality, completeness, and

accuracy, offering satisfactory solutions within significantly reduced solving times compared

to optimization techniques. This approach can be broadly categorized into two main classes:

heuristic algorithms and metaheuristic algorithms.

Heuristic algorithms are designed as intuitive problem-solving sequences tailored

to specific problems, making them suitable for moderately complex tasks. While they are

relatively fast, they can sometimes get trapped in local optima and sub-optimal solutions.

In contrast, metaheuristic algorithms are problem-independent and equipped with complex

strategies to avoid local optima to some extent. Often, heuristics are employed in conjunc-

tion with metaheuristics to provide initial solutions, enabling metaheuristics to converge to

optimality more rapidly. Heuristic and metaheuristic approaches are flexible and capable of

solving problems without the need for mathematical expressions, making them particularly

well-suited for problems with conditions that cannot be mathematically expressed.

2.2.2.1 Heuristic algorithm

In the literature, heuristic algorithms have found extensive use in addressing WSP.

For instance, McGinnis et al. (1978) proposed a two-stage heuristic algorithm for solving

WSP under fluctuating workforce requirements, with the first stage determining shift alloca-

tion and the second stage performing shift assignments. Musliu (2006) developed heuristic

methods for rotating workforce schedules that satisfy the given set of constraints. Becker

(2020) proposed a decomposition heuristic algorithm for rotational workforce scheduling,

which decomposed the problem into master and sub-problems to streamline the solution

process. Nanthavanij et al. (2010) designed a heuristic approach for WSP with safety and

productivity objectives, showcasing the trade-off between these two aspects and achieving

compromising solutions. Additionally, Rodič and Baggia (2017) presented a heuristic al-

gorithm for crew scheduling of airport ground staff, which they combined with agent-based

simulation for validation and enhancement. Youssef and Senbel (2018) proposed a bi-level,

shift-swapping heuristics algorithm for nurse scheduling problems.

Heuristic algorithms can also be effectively combined with optimization techniques

to reduce solution space and help reach optimality more swiftly. For instance, Laesanklang
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Table 2.1 A summary of papers utilizing optimization approaches to WSP
Authors Approach Application Key points/ objectives
Al-Rawi and Mukherjee (2019) LP Construction - Optimize project completion time and

preferences and fairness.
S. Y. Ang et al. (2019) LP Security staff - Optimize preference satisfaction in shifts

and days off
Lorenzo-Espejo et al. (2021) MILP Maritime - Optimize & fairly allocate consecutive

days off and break time.
Razali et al. (2018) LP Retail - Optimize staffing cost and preferences

in shift and company policy.
Safaei et al. (2009) Pareto Industrial - Optimize jobs flow time and no. of workers

- Decision-makers can choose preferred
solutions from the Pareto front

M. Liu and Liu (2019) Pareto Industrial - Optimize worker job preferences
and number of on-time jobs.
- Decision-makers can choose preferred
solutions from the Pareto front

Hasan et al. (2019) GP Industrial - Optimize multiple operational goals
for annualized hour flexibility schedule.

Kaçmaz et al. (2019) GP Industrial - Optimize goals related to workload,
worker skills, and desired assignments.

Shuib and Kamarudin (2019) GP Power plant - Optimize preferred days off.
Ighravwe et al. (2017) WGP Industrial - Optimize goals related to staffing/hiring/

firing costs and worker utilization.
Sundari and Mardiyati (2017) LGP Healthcare - Optimize goals related to group preferences.
Barrera et al. (2012) LO Airline - Combine timetabling and crew scheduling.

- Optimize no. of crew and balance workload
in a preemptive order.

Wongwien and Nanthavanij (2017a) LO Industrial - Optimize cost, and productivity-based
objectives in a preemptive order.
- Consider worker hazard exposure level.

Wongwien and Nanthavanij (2017b) LO Industrial - Optimize cost, productivity & preference
objectives in a preemptive order.
- Consider worker hazard exposure level.

Bolsi et al. (2021) LO Industrial - Optimize production timeliness and cost
objectives in a lexicographic order.

Mansini et al. (2023) LO Healthcare - Optimize service level, employee idle time
customer waiting time preemptively.

Vanheusden et al. (2022) LO Warehouse - Optimize workload balancing objectives:
max, minimax, variance & Gini coefficient.

Abdel-Fattah Mansour (2011) NLP Industrial - Optimize man hours variance and cost.
- Linearize NLP and solve with GA.

Hewitt et al. (2015) NLP Industrial - Optimize production outputs.
- Consider worker’s learning-forgetting rates.
- Linearize NLP and solve with optimization.

Jin et al. (2018) NLP Industrial - Optimize system throughput.
- Consider worker learning-by-doing and
knowledge transfer in the assigned teams
- Linearize NLP and solve with optimization.
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and Landa-Silva (2017) developed a nurse scheduling solution for home healthcare that min-

imizes total monetary and penalty costs using MILP and introduced heuristics to decompose

the problem into manageable size of sub-problems. Meanwhile, Éles et al. (2018) employed

MILP for mobile workforce scheduling, minimizing total costs while maximizing task exe-

cution. The heuristic algorithm generated lists of potential tasks for each team, with MILP

finalizing task assignments to achieve the most economical schedule.

One limitation of heuristic algorithms is their problem-specific nature, restricting

their application to particular problems. In contrast, metaheuristic algorithms offer greater

generality and can tackle more complex problems. Therefore, substantial research efforts

have been invested in developing advanced metaheuristics.

2.2.2.2 Metaheuristic algorithm

Metaheuristic algorithms are problem-independent strategies for problem-solving

that offer flexibility and adaptability to a wide range of real-world optimization problems.

However, some degree of problem-specific modifications is required to achieve good per-

formance. Similar to heuristic algorithms, they cannot guarantee optimality, but they often

offer good enough solutions within a reasonable time. Most metaheuristic algorithms draw

inspiration from nature or physical phenomena. For instance, GA is based on biological

evolution, while SA is inspired by physics. In contrast, ACO and ABC are based on the

swarming behavior of animals.

Among these algorithms, GA stands out as the most frequently employed and well-

suited for solving variations of WSP. In the WSP literature, GA is demonstrated to be useful

in many application domains such as workforce scheduling (Asensio-Cuesta et al., 2012;

J. C. Chen et al., 2022; Turan et al., 2020), airline crew rostering and pairing (Demirel &

Deveci, 2017; Deveci & Demirel, 2018; Shafipour-Omrani et al., 2022), healthcare person-

nel scheduling (Apornak et al., 2021; Rurifandho et al., 2022), and service staff scheduling

(Ilk et al., 2018). Based on the principles of biological evolution, GA involves selection, re-

production (crossover), and mutation. The fitness of individuals is evaluated using a fitness

function representing objective value. Fitness-based selection ensures fitter individuals have

a higher chance of generating potentially fitter offspring. These offspring undergo mutation

to obtain diversity and are reinserted into the population. These genetic operations iteratively

repeat until the termination condition is met.

Since GA is a versatile problem-solving framework, many studies employ a heuris-

tic for generating an initial population encompassing some problem-specific attributes. A

well-designed initialization heuristic can enhance efficiency and accelerate the search for
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optimal solutions. However, GA has a tendency for premature convergence (Pandey et al.,

2014). It also cannot always generate offspring that outperform their parents, resulting in

sub-optimal solutions. To mitigate this, genetic operators and parameters can be fine-tuned,

and hybridization with other metaheuristics is employed to improve solution quality. The

combination of GA and SA, known as GA-SA, is particularly effective, as SA’s ability to

escape local optima complements GA’s strengths.

SA is a metaheuristic that mimics the annealing process in metallurgy. In SA, a

random solution close to the current one is selected, and then it chooses to accept or discard

the random solution based on the acceptance probability. By probabilistically accepting

worse solutions, SA can avoid being trapped in local optimal Eren et al. (2017). In most GA-

SA algorithms, GA is first employed to generate a good enough solution, which becomes

the initial solution for SA. Then, the solution is improved via SA procedures. The GA-

SA algorithm’s superiority over conventional GA or SA is demonstrated in many of the

following works: Aroui et al. (2017), Rao et al. (2013), and Salahi et al. (2021).

In summary, approximation methods are applicable for solving complex and large-

scale optimization problems like WSP. They provide near-optimal solutions within a rea-

sonable time, making them suitable for computationally demanding problems such as NLP

or those with mathematical expression limitations. While heuristic algorithms are designed

to solve specific problems and provide initial solutions, metaheuristic algorithms offer more

generality and flexibility. The effectiveness of approximation techniques in solving WSP is

well-documented in the literature. This section has discussed various solution approaches

to WSP in different applications. Table 2.2 summarizes reviewed papers detailing their ap-

proximation solution approaches and applications to WSP, sorted in the order they appear

in the section. The following sections provide a literature review of noise-safe job rotation

scheduling and satisfaction-enhanced nurse scheduling, two WSP applications covered in

this dissertation.

2.3 Industrial application (noise-safe job rotation scheduling)

The previous sections have presented variations of WSP as discussed in the existing

literature, as well as their solution approaches. This section delves into the safe job rotation

scheduling research, which is the focus of the dissertation in industrial applications. Various

research variants and essential scheduling factors used in mathematical model formulations

in existing studies are also discussed.
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Table 2.2 A summary of papers utilizing approximation approaches to WSP
Authors Approaches Application Key points/ objectives
McGinnis et al. (1978) Heuristic Telecom - Optimize idle time and day off allocation.
Musliu (2006) Heuristic General - Minimize violations of workload &

operational constraints.
Becker (2020) Heuristic General - Constraint-satisfaction scheduling problem

- Develop problem decomposition heuristics
to solve the problem using less time.

Nanthavanij et al. (2010) Heuristic Industrial - Safe scheduling considering productivity
- Consider noise exposure & worker-job-fit.

Rodič and Baggia (2017) Heuristic Airline - Optimize workforce & equipment utilization
- Use system simulation to verify the result.

Youssef and Senbel (2018) Heuristic Healthcare - Optimize fulfillment of nurses’
preferred shift & day-off assignments.
- Consider workload fairness among nurses.

Laesanklang and Landa-Silva (2017) Heuristic Healthcare - Workforce scheduling & routing problem
- Optimize cost and penalties for violating
constraints and worker/client preferences.
- Consider worker-client relationship, worker
preferred location, clients’ preferred skills.

Éles et al. (2018) Heuristic Mobile - Optimize operational costs & tasks completion.
workforce - Use the heuristic algorithm to reduce search

space, accelerating MILP solving time.
Asensio-Cuesta et al. (2012) GA Industrial - Ergonomic job rotation scheduling

- Consider muscle group loading & worker skills.
J. C. Chen et al. (2022) GA Industrial - Optimize total cost & project tardiness.

- Consider worker multi-skill learning effects.
Turan et al. (2020) GA Military - Minimize total salary cost for military.

- Hybridize GA-simulation techniques
to improve solution quality.

Demirel and Deveci (2017) GA Airline - Determine legal crew pairing solutions.
- GA is coupled with repairing heuristics to
improve solution quality.

Deveci and Demirel (2018) GA Airline - Optimize the total crew assignment costs.
- Benchmark GA variants and other algorithms.

Shafipour-Omrani et al. (2022) GA Airline - Optimize crew preferred assignments
considering crew compatibility & seniority.

Ilk et al. (2018) GA Customer - Optimize staffing cost, and lost demand.
service - Consider omni service channels: phone,

live chat, emails & social media.
Aroui et al. (2017) GA-SA Industrial - Minimize workers overloading/fatigue.

- GA-SA outperforms GA and SA alone.
Rao et al. (2013) GA-SA Industrial - Optimize operation time and cost.

- Demonstrate effectiveness of GA-SA
Salahi et al. (2021) GA-SA Procurement - Minimize supply chain cost.

- GA-SA outperforms GA and SA alone.

Ref. code: 25666122300103FZD



24

2.3.1 Variants of safe job rotation scheduling

Job rotation scheduling research predominantly addresses two primary hazards: er-

gonomics and noise. Ergonomic hazards encompass repetitive heavy muscle loading and

awkward movements, potentially leading to musculoskeletal disorders. Researchers em-

ploy various indicators based on different body parts to assess and formulate mathematical

models, including OCRA (Upper limbs), RULA (Upper limbs), REBA (Entire body), and

LI (Lifting index). These models aim to optimize job rotations to reduce excessive muscle

loading (Adem & Dağdeviren, 2020; Assunção et al., 2022; Moussavi et al., 2019) while

considering differences in demographic characteristics of workers that influence the percep-

tion of ergonomic hazards such as age (Botti et al., 2020), gender (Battini et al., 2022),

and physical abilities (Costa & Miralles, 2009). The evaluation of muscle group loading in

ergonomic job rotation schedules is crucial to prevent the overuse of specific muscle groups.

In contrast, noise hazards remain relatively consistent across demographic groups.

Industries such as agriculture, construction, mining, and manufacturing are particularly

prone to violate the safe noise exposure standard of 85 dBA, which can result in hearing

loss, cardiovascular issues, psychological stress, and decreased work ability index. These

effects are gradual, asymptomatic, and often unnoticed, leading to delayed treatment. As a

practical and cost-effective strategy, job rotation scheduling, which involves periodic rota-

tions of workers between loud and quiet workstations throughout the workday can be useful.

Several studies have highlighted the effectiveness of job rotation in reducing workers’ daily

noise exposure. For example, Tharmmaphornphilas et al. (2003) developed a job rotation

model to minimize workers’ daily noise exposure. Although the model can reduce overall

workers’ noise exposure levels, some are exposed to over-limit noise levels. Alternatively,

some studies propose the inclusion of a daily noise limit constraint to ensure safety while

pursuing additional objectives, such as optimizing workforce size (Asawarungsaengkul &

Tuntitippawan, 2019; Yaoyuenyong & Nanthavanij, 2008) or enhancing overall system pro-

ductivity.

Job rotation scheduling research also extends its focus beyond ergonomics and noise,

addressing hazards such as heat stress (Srinakorn & Olapiriyakul, 2016), exposure to chem-

ical substances (Maleki, 2019), and hand-arm vibration (Adem & Dağdeviren, 2020).

2.3.2 Productivity performance in safe job rotation scheduling

Numerous studies have demonstrated the promising effects of job rotation in allevi-

ating excessive hazard exposure among workers. However, worker schedules that prioritize
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safety performance alone may not be practical or desirable for implementation in real-world

settings due to productivity concerns. Multiple factors can lead to productivity loss when

implementing job rotation, and it is essential to address them to achieve optimal job rotation

outcomes.

In job rotation schedules, workers are assigned to rotate between different tasks

throughout the workday, which potentially causes process discontinuity. Frequent rotations

can result in significant productivity loss as workers require additional time to relocate and

set up for new tasks. However, under harsh working conditions, frequent rotation may be

necessary to prevent workers from being overly exposed to hazards. Therefore, finding a bal-

ance between worker safety and productivity is crucial to ensure that job rotation schedules

benefit both workers and employers.

Several job rotation models have been proposed to address this issue. Asawarungsaengkul

and Nanthavanij (2008) developed a noise-safe job rotation model that aims to minimize the

frequency of worker-location changeovers while ensuring noise safety. Similarly, Rerkjirat-

tikarn et al. (2017) introduced a model that minimizes the overall setup time incurred by job

rotation while maintaining noise safety.

In addition to rotation frequency, the impact of worker skill heterogeneity on system

productivity is also significant, particularly for labor-intensive and highly manual industries.

When workers are rotated to tasks without considering their competency and the skill re-

quirements of the tasks, productivity and product quality may deteriorate. Therefore, consid-

ering workers’ competencies is essential for achieving better productivity performance and

practicality in job rotation scheduling. Some models, such as the one proposed by Wong-

wien and Nanthavanij (2012), formulate each worker’s ability to perform specific tasks as

a constraint to prevent workers from rotating to tasks they cannot perform. Alternatively,

workers can be categorized into different skill levels, each capable of performing a different

set of tasks with varying throughput, as demonstrated in Aryanezhad et al. (2009). Incorpo-

rating workers’ skills into the job rotation model enables the optimization of a broader range

of productivity performance metrics. For instance, Moussavi et al. (2018) introduced a job

rotation model that minimizes the total production cycle time by considering variations in

production time based on the assigned workers’ competencies. Similarly, Mossa et al. (2016)

developed a job rotation scheduling model aimed at maximizing the total production level,

with units produced per period based on workers’ skills.

Job rotation models can also be extended to meet production demand requirements,

which are among the most crucial objectives, especially for demand-driven manufacturing

operations. Neglecting demand fulfillment during the job rotation scheduling process can
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lead to inadequate production outputs, as constant worker rotations can result in production

losses along the way, risking the loss of customer reliance and competitiveness. McDonald

et al. (2009) proposed a job rotation model that facilitates worker multi-skill learning while

ensuring customer demand fulfillment. Niakan et al. (2016) developed a noise-safe worker

assignment model that guarantees demand fulfillment by employing worker hiring, firing, or

training schemes. Rerkjirattikarn et al. (2018) extended their work to develop a noise-safe

job rotation model that fulfills demand requirements by assigning workers to work overtime

during peak-demand periods. Their research demonstrates that a well-designed job rotation

schedule can achieve desirable worker safety and production requirements outcomes, even

with extended work hours.

While incorporating overtime assignments in the job rotation model enhances its

practicality and production performance, it is crucial to consider that overtime hours can

adversely affect worker safety and the economic aspect of the schedule. Achieving safe and

cost-effective scheduling outcomes with sufficient production levels to meet demand remains

a challenge that has not been fully explored in the literature. An open research area remains

in developing innovative approaches to balance worker safety, economic considerations, and

production requirements in job rotation scheduling.

2.3.3 Job rotation scheduling and worker job satisfaction

Worker job satisfaction is a crucial factor that positively influences worker perfor-

mance and turnover rates. One effective way to incorporate job satisfaction considerations

into scheduling is by allowing a certain degree of job autonomy, such as considering work-

ers’ preferences. Multiple aspects of workers’ preferences can be integrated into the schedul-

ing model to encourage worker engagement in the scheduling process. This approach en-

sures that the scheduling outcome aligns with workers’ needs while also meeting safety and

productivity criteria.

Among the various aspects of worker preferences, task preferences and days off are

commonly considered in industrial workforce scheduling, as evidenced by several studies.

For example, in the model proposed by Diego-Mas et al. (2009), workers can specify tasks

they prefer not to undertake, and the model penalizes violations of these task preferences.

Similarly, Wongwien and Nanthavanij (2017b) developed a safe job rotation scheduling

model that minimizes the number of times workers’ job and partner preferences are violated

while maintaining worker safety. In Adem and Dağdeviren (2020), a job rotation schedul-

ing model was formulated to mitigate vibration exposure while taking into account workers’

preferred days off. Additionally, Soriano et al. (2020) introduced a job rotation model aimed
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at minimizing the total scheduling penalty, which encompasses unsatisfied requested days

off and vacation leaves.

These studies highlight the significance of taking worker job satisfaction and pref-

erences into account in job rotation scheduling, as they contribute to enhanced worker en-

gagement and overall scheduling outcomes. Another crucial aspect that further reinforces

job satisfaction is motivation and the reduction of monotony-induced boredom, which will

be discussed in detail below.

2.3.4 Job rotation scheduling as worker cross-training and motivator

Job rotation serves as an effective means of providing workers with cross-training op-

portunities, enabling them to acquire tacit knowledge through the performance of various job

roles. This practice has been widely acknowledged for its capacity to enhance worker flexi-

bility, personal development, and career prospects (Al-Zoubi et al., 2022; Muduli, 2017).

The literature often integrates the learning effect into models to monitor workers’

skill development during job rotation. The learning effect is a time-dependent factor that

evolves as workers repeat tasks, resulting in reduced task completion times and increased

output efficiency within the same time frame. Each worker possesses a distinct learning

ability, known as the learning rate, and the time needed to acquire a skill may vary accord-

ingly. The learning curve of workers can be estimated using the log-linear equation initially

proposed by T. P. Wright (1936). This equation can be used in its original form or approx-

imated to a linear counterpart. For instance, Olivella et al. (2013) introduced a job rotation

model that aims to maximize the total work performed while ensuring that the worker cross-

training objective is met by the end of the period. Similarly, Jin et al. (2016) proposed a

worker assignment model focused on minimizing makespan while considering the learning

effect. To address concerns regarding the computational time required to solve the non-linear

model, they devised a linearized learning curve to shorten the problem-solving time.

Rotating workers through multiple job roles allows them to acquire diverse skills.

Nevertheless, workers’ productivity may decline after acquiring new skills if they lack the

opportunity to perform relevant tasks for a certain period. This phenomenon is commonly

referred to as the forgetting effect, posing a challenge in designing job rotation schedules

that balance the acquisition of new skills with the preservation of previously acquired ones.

The concept of worker learning and forgetting was generalized in the job rotation schedule

by Azizi et al. (2010). They developed a job rotation model aimed at minimizing produc-

tion delays resulting from workers’ lack of skill and boredom-induced lack of motivation.

Integrating learning-forgetting and boredom involves a combination of numerous non-linear
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equations in the mathematical model, making it more complicated to solve. To address this

complexity, they proposed a specialized metaheuristic algorithm, SAMED, which combines

SA and GA. Its effectiveness has been demonstrated to surpass that of conventional SA and

GA methods. In a subsequent study, Azizi and Liang (2013) extended their job rotation

model with the concept of skill learning and forgetting to minimize costs associated with

training, worker flexibility, and productivity loss. Furthermore, Chu et al. (2019) introduced

an adaptive memetic differential search algorithm to solve a comprehensive worker assign-

ment model, accounting for learning and forgetting, in a cellular manufacturing system. The

model’s goal is to minimize total training costs and workload imbalances among cells.

In addition to worker cross-training, many studies have explored the role of job ro-

tation in reducing boredom and increasing motivation, an aspect known to reinforce job

satisfaction and worker performance across various industries, including manufacturing (A.

Akbari & Maniei, 2017; Kurtulu, 2010; Tirloni et al., 2021). Boredom is characterized by

a significant lack of interest in current tasks, often resulting from repetitive exposure and

varying among individuals based on personality (Fisherl, 1993). While some studies have

examined the relationship between boredom and job rotation schedules, this aspect has not

received as much attention as the learning and forgetting effects. Models proposed by Ay-

ough et al. (2012) and Bhadury and Radovilsky (2006), for example, aim to minimize total

staffing costs and boredom associated with assigning the same job to workers throughout the

planning period.

More recent research has integrated the boredom effect with learning and forgetting

in worker assignment models. Motivation is considered a key factor in recovering from

boredom, as suggested by Azizi et al. (2010). They proposed that rotating workers with

low motivation away from repetitive tasks can aid in their recovery from boredom, lead-

ing to improved production performance. Building upon this concept, Ayough et al. (2020,

2021) developed job rotation scheduling algorithms for U-shaped and lean manufacturing

cells. Despite the numerous studies employing job rotation for cross-training and motivat-

ing workers in manufacturing systems, a comprehensive job rotation model that integrates

worker safety, cross-training, motivation, and job satisfaction aspects remains unexplored in

the literature.

2.3.5 Research gaps in noise-safe job rotation scheduling

Following an extensive literature review, two notable research gaps have been iden-

tified in the area of noise-safe job rotation scheduling:
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1. Previous research has not delved into the effectiveness of noise-safe job rotation schedul-

ing within a demand-driven manufacturing system that incorporates the use of over-

time assignments. The inclusion of overtime hours introduces additional complexities

in ensuring worker safety while meeting production demand requirements. Such an

aspect is prevalent in manufacturing operations and has not been sufficiently empha-

sized. To address this research challenge, this dissertation proposes a novel noise-safe

job rotation scheduling model with simultaneous consideration of worker-task skill

matching, demand-driven production, and overtime assignments. Furthermore, it also

investigates the impact of worker skills on worker safety.

2. To date, no research has combined the advantages of job rotation in maintaining occu-

pational safety with its potential for facilitating cross-training and motivating workers.

This consideration is based on practical aspects found in day-to-day manufacturing

operations and can help expand the potential of job rotation for practical implemen-

tation. Still, it presents a challenge in determining the optimal rotation plan to avoid

interrupting workers’ learning processes while ensuring their safety and motivation.

Addressing this research gap, this dissertation introduces a novel job rotation schedul-

ing model, taking into account multiple essential factors, including noise safety, skill

learning and forgetting, and monotony-induced boredom. Additionally, it accommo-

dates the consideration of worker heterogeneity in terms of skills, learning-forgetting-

boredom rates, and job preferences.

By addressing these research gaps, this dissertation aims to contribute valuable in-

sights and practical solutions to the field of job rotation scheduling in industrial applications.

2.4 Healthcare application (satisfaction-enhanced nurse scheduling)

This section addresses an area of WSP, specifically focusing on personnel scheduling

in healthcare applications. The medical staff scheduling literature can be categorized into

subcategories based on the personnel they focus on, including physician scheduling prob-

lems (PSP), resident scheduling problems (RSP), and nurse scheduling problems (NSP).

This dissertation primarily emphasizes nurse scheduling, recognizing the vital role that

nurses play in healthcare systems as front-line workers who actively engage in patient care

throughout the treatment process.

The increasing demand for healthcare services has subjected nurses to challenging

and strenuous conditions, including mandatory overtime, prolonged consecutive workdays,

and insufficient time for adequate rest and recovery. These conditions have had adverse
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effects on nurses’ well-being and job satisfaction, contributing to retention challenges and

the persistent issue of nurse shortages. A well-designed nurse schedule, one that balances

workload, allows for adequate rest and respects nurses’ autonomy in selecting their shifts or

days off preferences, plays a pivotal role in enhancing their well-being and job satisfaction.

Consequently, such scheduling practices can help alleviate retention issues. Given these im-

plications on human well-being, extensive research efforts have been devoted to developing

systematic approaches to nurse scheduling, making it a subject of ongoing interest within

the academic community.

The nurse scheduling problem (NSP) or nurse rostering problem (NRP) represents a

variant of personnel scheduling, with nurses being the primary resource. The fundamental

objective of NSP is to generate a periodic nurse-to-shift assignment on a weekly, biweekly,

or monthly basis while adhering to a set of constraints encompassing hospital regulations

and staffing requirements. Pioneering research by Maier-Rothe and Wolfe (1973) led to

the development of an NSP mathematical model aimed at creating schedules that utilize

the minimum number of nurses while adhering to hospital regulations. In recent decades,

scholarly literature has increasingly recognized the critical role of nurses’ job satisfaction in

reducing turnover intention through systematic scheduling approaches. Numerous studies

have emphasized the significance of developing nurse scheduling methodologies that posi-

tively influence job satisfaction by accommodating group and individual preferences while

ensuring fairness.

2.4.1 Group and individual preferences in nurse scheduling problem

The scheduling of nurses involves addressing their often challenging shift work pat-

terns, which can significantly impact their well-being and their ability to manage personal

and family responsibilities. To promote nurse well-being and job satisfaction, it is crucial

to incorporate nurses’ preferences when creating work schedules, allowing them to have a

degree of control over their schedules. Doing so helps nurses to achieve a better work-life

balance, which, in turn, leads to increased job satisfaction, improved performance, and en-

hanced retention rates. In the satisfaction-enhanced NSP research, preference consideration

can be categorized into group and individual preferences.

Group preferences encompass the general desirable characteristics of nurse sched-

ules, including workload distribution, rest allowance, equitable allocation of days off, and

adherence to constraints related to shift patterns. These constraints may include avoiding

consecutive night shifts followed by morning shifts or setting limits on the number of night

shifts per week or consecutive nights, which can vary across hospitals and regions. Numer-
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ous studies have focused on addressing group preferences, aiming to create nurse schedules

that prioritize nurses’ overall well-being and work-related preferences. For instance, Çetin

and Sarucan (2015) and Al-Hinai et al. (2018) introduced group preference-based nurse

scheduling approaches that consider desirable shift patterns, such as incorporating rest days

after night shifts, limiting consecutive night shifts, ensuring weekend day-off allocation,

and balancing workload between day and night shifts as primary goals in their GP mod-

els. Similarly, Rahimian et al. (2017) developed a CP-based NSP that minimizes violations

of schedule quality constraints, encompassing criteria such as the minimum and maximum

number of shift assignments, consecutive working days, consecutive shift types, and for-

bidden shift patterns. Éles et al. (2018) proposed a multi-commodity network flow nurse

scheduling approach that takes into account nurses’ well-being in terms of work hours and

the succession of healthy shift patterns. Their model was validated using a real hospital

case in Egypt, demonstrating improvements in the quality of shift and day-off assignments

compared to manually generated schedules.

While group preferences indeed enhance overall schedule quality, addressing indi-

vidual preferences is equally vital for ensuring job satisfaction. Preferences are diverse and

encompass many aspects that are influenced by personal needs and lifestyle. Typical yet es-

sential aspects are individual shift and day-off preferences. This allows flexibility for nurses

to choose working times that align with their preferences and lifestyles. Several works have

focused on incorporating individual shift or days off preferences. For instance, P. D. Wright

and Mahar (2013) developed an NSP model that minimizes undesirable shifts, overtime, and

weekend assignments. Y. C. Huang et al. (2016) integrated shift and day-off preferences into

their NSP model, resulting in more satisfactory schedules compared to manual approaches.

Chiang et al. (2019) proposed a multi-objective NSP model to fulfill individual day-off re-

quests, assigning scores to preferences given by nurses. Similar approaches can be found in

works such as Becker et al. (2019), L. Huang et al. (2021), and Legrain et al. (2015). Other

aspects of individual preferences were also considered.

In addition to shift and day-off preferences, other aspects of individual preferences

have also been considered. For example, Z. Liu et al. (2018) developed a nurse scheduling

model that accounts for preferences in shifts and roles (in-charged, dispensing, and treat-

ment). Furthermore, Hamid et al. (2020)’s NSP model minimizes incompatibility among

nurses assigned to the same shift while maximizing nurses’ shift preferences.

When incorporating individual preferences into mathematical model formulations,

these preferences can be expressed in binary form, indicating whether a particular shift or

day off is preferred, or in numerical values representing the degree of preference that nurses
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have for specific shifts or days off. Models such as those proposed by C. C. Lin et al. (2015)

and C.-C. Lin et al. (2014) collect nurses’ preferences as ranks. Using different preference

ranks allows for increased flexibility in fulfilling nurses’ preferences and resolving potential

conflicts among preferences. However, it is important to note that different hospitals may

adopt varying policies for handling individual preferences. Therefore, NSP models should be

designed to accommodate both preference representations or be easily adaptable to specific

hospital policies.

2.4.2 Scheduling fairness in nurse scheduling problem

In addition to accommodating nurses’ preferences, fairness plays a crucial role in de-

termining overall nurse satisfaction with their work schedules. Within the existing literature,

scheduling fairness typically revolves around two vital dimensions: balancing the workload

and balancing preferred assignments.

Several studies have proposed NSP models to address workload variations among

nurses while omitting their individual preferences. These works include those by Al-Hinai

et al. (2018), Fügener et al. (2018), Mohammadian et al. (2019), and Thongsanit et al. (2016).

Meanwhile, Youssef and Senbel (2018) formulated an NSP that considers nurses’ shift and

day-off preferences while ensuring a balance only in workload assignments. Osman et al.

(2019) proposed an NSP approach that ensures nurses receive an equitable amount of day-

offs.

Concerning fairness in preference assignments, most studies have typically concen-

trated on either achieving balance in the allocation of preferred shifts B. Y. Ang et al. (2018)

or preferred day-offs Michael et al. (2014). However, C. C. Lin et al. (2015) developed an

NSP algorithm that balances both nurses’ preferred shifts and day-off allocations simulta-

neously. Nevertheless, their model did not address workload assignment balancing. This

indicates a significant research gap, as there is still a need for approaches to address com-

prehensive aspects of scheduling fairness, including workload allocation and preferred shift

and day-off assignments simultaneously. Prioritizing one aspect over the other may not fully

capture fairness from a holistic perspective. For instance, schedules with an equitable work-

load distribution but significant discrepancies in preferred assignment allocation may lead

to perceived unfairness among nurses, potentially resulting in job dissatisfaction. Therefore,

considering all fairness aspects can significantly enhance nurses’ satisfaction with their work

schedules.

Ref. code: 25666122300103FZD



33

2.4.3 Cost-effectiveness in satisfaction-enhanced nurse scheduling problem

Job satisfaction is vital for nurse retention and service quality. Many studies have

attempted to enhance nurse satisfaction through scheduling approaches, considering multi-

ple aspects of preferences and fairness. However, the economic aspect is essential from a

management perspective. A schedule with maximized job satisfaction may not be practi-

cally feasible as hospitals must also manage their expenses. Thus, there is a need for nurse

scheduling that balances cost-effectiveness and job satisfaction, accommodating the needs

of both hospitals and nurses.

Several studies addressed cost-effectiveness in satisfaction-enhanced nurse schedul-

ing. For instance, J. Lim et al. (2012) proposed an NSP model that minimizes total staffing

costs while meeting nurses’ shift preferences and patient workload requirements. P. D.

Wright and Mahar (2013) introduced centralized and decentralized NSP models, minimizing

total regular and overtime wages and undesirable shift assignments, comparing cost reduc-

tion and overtime utilization of both policies. El Adoly et al. (2018) presented a nurse

scheduling method that minimizes nurse assignment and overtime costs with constraints

to improve schedule quality regarding workload and shift assignments. An actual hospital

case in Egypt was used for model validation, and their model demonstrated its ability to de-

crease overtime cost and workload while providing more proper rest allowance. Hamid et al.

(2018) developed a nurse scheduling approach optimizing staffing cost and nurses’ job sat-

isfaction under workload balancing constraints. They later extended their model accounting

for nurses’ preferred shifts and co-workers (Hamid et al., 2020).

However, despite these advancements, the inclusion of cost in the satisfaction-enhanced

NSP context still holds potential for further improvements. For example, the trade-off be-

tween cost-effectiveness and job satisfaction still needs to be explored. This dissertation

aims to provide valuable insights and guidance to management on allocating resources to

achieve higher job satisfaction in scheduling without compromising cost considerations.

2.4.4 Research gaps in satisfaction-enhanced nurse scheduling

Based on the extensive literature review, this dissertation addresses two significant

research gaps within the domain of satisfaction-enhanced nurse scheduling. These gaps

are essential for further enhancing the practicality and applicability of satisfaction-enhanced

NSP:

1. The current literature on nurse scheduling often fails to provide comprehensive fair-

ness, as it primarily focuses on balancing individual workloads or preferences. This
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approach leads to schedules that prioritize one aspect over the other and may not fully

capture overall job satisfaction. To address this research gap, this dissertation pro-

poses a GP nurse scheduling model that takes into account comprehensive individual

preferences and fairness factors. The model aims to optimize nurses’ preferred shifts

and days off while ensuring equitable workload and preferred assignment distribution.

2. The integration of cost considerations within satisfaction-enhanced NSP is an area

that requires further exploration. Current studies that incorporate cost tend to focus

on singular aspects of preferences or fairness. Furthermore, the examination of trade-

offs between cost and job satisfaction remains relatively unexplored. To address this

gap, a bi-objective NSP model is introduced in this dissertation which minimizes the

total staffing cost and maximizes all nurses’ minimum total preference scores, which

are derived from individual shift and day-off preferences. The model also ensures

comprehensive fairness in balancing workload and preferred assignments.

Furthermore, the proposed nurse scheduling models are designed to accommodate

double-shift workday assignments, which are common in various countries, including Thai-

land but often neglected in the existing nurse scheduling research. Additional constraints are

introduced to control consecutive double-shift workdays, ensuring a healthier work schedule

and sufficient rest. These models fill another crucial research gap addressed in Abdalkareem

et al. (2021), which underscores the need to consider specific work conditions in different

countries to improve the practicality of nurse scheduling approaches and bridge the gap be-

tween theoretical research and practical application.
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CHAPTER 3
NOISE-SAFE JOB ROTATION SCHEDULING MODELS

This chapter presents the development of two noise-safe job rotation models pro-

posed in this dissertation. Section 3.1 describes noise standards and calculations. Section

3.2 outlines the mathematical model for the noise-safe job rotation with skill and demand re-

quirements. Section 3.3 covers the development of the noise-safe job rotation model consid-

ering learning-forgetting and the boredom effect. Each section includes the model validation

process, experimental results, and discussions.

3.1 Noise standard and calculation

Noise represents a significant occupational hazard, especially in heavy industries

such as wood and metal fabrication plants. Prolonged exposure to excessive noise can lead

to temporary or permanent hearing impairment, physical stress, elevated blood pressure, and

an increased risk of cardiovascular diseases. When noise levels rise within a workplace, it is

mandatory to establish effective control measures to protect employees.

Various noise-measuring tools, including sound level meters and noise dosimeters,

can be employed to assess the noise emitted from machinery. These instruments quantify

the sound pressure level (SPL), usually expressed in decibel A (dBA) units, corresponding

to the loudness perceived by the human ear. By correlating this data with the daily duration

of exposure, the management can accurately evaluate the potential risk of excessive noise

exposure for workers.

Occupational noise regulatory guidelines

• Occupational Safety and Health Administration (OSHA): Mandatory legally en-

forceable standard for noise exposure in the workplace is mandated at 90 dBA aver-

aged over an 8-hour workday. OSHA also recommends implementing a hearing con-

servation program for workplaces where noise levels exceed 85 dBA over an 8-hour

day.

• National Institute for Occupational Safety and Health (NIOSH): Recommended

noise exposure limit is at 85 dBA over an 8-hour workday. A lower noise exposure

limit aims to provide a safer working environment for workers. However, strictly

adhering to this recommended threshold is not legally mandatory.
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Exposure to noise levels at or above these defined thresholds significantly increases

the risk of noise-induced hearing loss among workers. It is important to note that different

countries and regions may adhere to distinct noise regulatory guidelines. This dissertation

complies with the guidelines established by the Thailand Department of Labor Protection

and Welfare, which has adopted the NIOSH noise exposure threshold. This ensures that

our research is in harmony with internationally recognized standards for occupational noise

exposure.

Noise exposure and permissible duration calculation

Given a noise exposure level in dBA, the reference exposure duration (T) in hours can

be calculated using equations (3.1) - (3.3), as provided by the occupational noise guidebook

published by the NIOSH (Chan, 1998):

T =
8

2(S PL−85)/3 (3.1)

Subsequently, the daily noise dose (DND), indicating the percentage of allowable

noise exposure, can be calculated using the equation below. A noise dose exceeding 100%

suggests that the worker has been exposed to noise levels exceeding the permissible thresh-

old.

DND = 100 · (
Cs

Ts
+

Cs+1

Ts+1
+ ...+

CS

TS
) (3.2)

Where:

• s is a set of shifts in a workday; S = {1, 2,. . . , S}

• Cs indicates the exposure duration of a specific SPL during the shift s.

The DND value can be converted to the Time-Weighted Average (TWA) value in

dBA using the following equation:

TWA = 10 · log(
DND
100

)+85 (3.3)

Table 3.1 summarizes noise exposure levels and their recommended exposure dura-

tion according to the NIOSH’s standard.
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Table 3.1 Noise level and associated exposure duration as per NIOSH

Noise exposure level (SPL) Recommended exposure duration (T)

82 dBA 12 hours

84 dBA 10 hours

85 dBA 8 hours

88 dBA 4 hours

91 dBA 2 hours

94 dBA 1 hour

97 dBA 30 minutes

100 dBA 15 minutes

The DND calculation is demonstrated with an example of an 8-hour workday. If a

worker is exposed to 84 dBA noise level for 3 hours and 88 dBA for the next 5 hours, the

recommended exposure duration (T) from Table 3.1 can be substituted into equations (3.2),

and (3.3).

DND = 100 · (
3

10
+

5
4

) = 155%

TWA = 10 · log(
155
100

)+85 = 87

The calculated DND value in this example exceeds the recommended threshold of

100%, with the TWA noise exposure level at 87 dBA. This underscores the need to control

worker exposure duration near noise-emitting machines. In such cases, job rotation can be

a useful strategy to mitigate prolonged exposure, supplementing personal protective equip-

ment and other hazard control measures.

When applying the noise-safe concept to the mathematical model, a constraint can

be imposed to limit the DND of workers to be within 100% or TWA within 85 dBA. Subse-

quently, the mathematical model can determine assignments that comply with the noise-safe

requirements. However, in cases with extreme noise levels, such a constraint might be too

strict, and the model may struggle to find assignments that strictly adhere to the guidelines.

An alternative approach is to integrate the noise calculation as an objective function. In this

scenario, the model focuses on minimizing the maximum noise level among workers. This

method allows for a more flexible solution, especially in harsh working conditions, given

that other hazard control measures are sufficient. Similar logic can be applied to address
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other occupational hazards as well.

3.2 The noise-safe job rotation scheduling model considering skill and demand

requirements

Job rotation is an effective and cost-efficient strategy for controlling hazards, a prac-

tice widely adopted across diverse industries. While it effectively mitigates prolonged ex-

posure to hazards, frequent rotation or rotation without considering worker-task skill re-

quirements can potentially reduce production performance and system productivity. This

is critical to prevent potential disruptions in production flow and to ensure that worker ro-

tations align with the demands of each task, which ultimately safeguards both productivity

and workers’ health.

Addressing demand fulfillment in workforce scheduling is equally imperative, espe-

cially in demand-driven manufacturing systems, especially in demand-driven manufacturing

systems. Neglecting to consider demand in the job rotation plan may lead to production

shortfalls, resulting in the inability to meet customer demand. This is particularly important

for demand-driven manufacturing systems or demand fluctuation situations. In response,

management often resorts to assigning overtime hours to increase production capacity to the

required level. However, while overtime can enhance production performance, it does come

at the cost of prolonged exposure for workers, putting them at more risk.

This holistic approach to job rotation scheduling is particularly vital in labor-intensive

industries with challenging working conditions. However, such a consideration has not been

extensively explored in the existing literature. To address this challenge, this dissertation in-

troduces a novel noise-safe job rotation model encompassing product demand, worker-task

skill requirements, and overtime assignments. This model serves as a valuable decision-

support tool, ensuring the demand and noise safety requirements are met throughout the

planning horizon. The model can be employed as a supplementary hazard control measure,

fostering a safer work environment for workers without requiring substantial investments.

The mathematical formulation of the model is described below.

3.2.1 Mathematical model formulation

The noise-safe job rotation scheduling model considering skill and demand require-

ments is developed as an integer programming (IP) model. The objective is to minimize

the total staffing cost, which encompasses both regular and overtime hourly wages. It is de-

signed to ensure that the resulting schedule aligns with cost-saving operational goals while

ensuring worker safety and sufficient production performance.
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This model is tailored to accommodate manufacturing systems that engage workers

with varying skill levels, with each task demanding distinct proficiency levels. This config-

uration is commonly observed in labor-intensive industries, where human labor is engaged

in machine operations. The following are assumptions and notations used in the model for-

mulation.

Assumptions

• Workers are categorized into three skill levels—entry, intermediate, and expert. Mean-

while, tasks are classified into three difficulty levels, with level 3 being the most chal-

lenging.

• Experts are proficient in performing all tasks, intermediates can handle levels 1 and 2

tasks, and entry-level workers manage only level 1 tasks.

• Steady-state production rates occur when workers perform the same task for consecu-

tive shifts.

• Overtime is permitted for workers engaged in both morning and afternoon shifts.

• The planning horizon encompasses multiple workdays, each composed of various

shifts, including morning, afternoon, and overtime. Shift and planning horizon lengths

are adjustable based on different manufacturing operations.

• Workers can perform only one task during each shift, with job rotations allowed only

at the end of a shift.

• The allocation of workers to tasks varies according to the demand level for each spe-

cific task.

• Labor costs encompass both regular and overtime shift wages, with these costs differ-

ing for each worker level.

• The permissible noise exposure is 85 dBA for a standard 8-hour workday (DND not

exceeding 100%). The noise limit differs for an extended workday depending on the

length of overtime hours.

• Workers must receive at least a specified amount of days off per week.
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Indices

W Set of workers;W = {1, 2, . . . , W}

K Set of worker skill levels; K = {1, 2, . . . , K}

T Set of tasks; T = {1, 2,. . . , T}

S Set of shifts in a workday; S = {1, 2, . . . , S}

D Set of days in planning horizon;D = {1, 2, . . . , D}

Input parameters

NDt Noise dose received by a worker from performing task t for one shift.

Demt Demand requirement of task t in units to be fulfilled at the end of the planning

period.

Ewkt A binary parameter: 1 if worker w with skill level k is eligible to perform task

t, 0 otherwise.

PRkt Initial production rate of a worker with skill level k performing task t in units.

S Rkt Steady-state production rate achieved when a worker with skill level k per-

forms task t over consecutive shifts.

Wk Regular daily wage of a worker with skill k.

Ok Overtime wage of a worker with skill k.

DND Maximum allowable daily noise dose.

WD Maximum number of workdays that can be assigned to workers.

OT Maximum number of overtime shifts that can be assigned to workers.

Decision variables

Xwktsd = 1 if worker w with skill k is assigned task t in shift s on day d, otherwise 0.

Ywktd = 1 if worker w with skill k performs task t in both morning and afternoon

shifts on day d, otherwise 0.

Zwktd = 1 if worker w with skill k performs task t in morning, afternoon, and over-

time shifts on day d, otherwise 0.

Awkd = 1 if worker w with skill k is scheduled for at least one shift on day d, other-

wise 0.

Objective function

The objective function aims to minimize the total labor cost, which comprises both

regular and overtime wages. It can be mathematically expressed as:
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min
W∑
w=1

K∑
k=1

D∑
d=1

(Wk ·Awkd)+
W∑
w=1

K∑
k=1

T∑
t=1

∑
s=S

D∑
d=1

(Ok ·Xwktsd) (3.4)

Constraints

T∑
t=1

Xwktsd ≤ 1 ∀w ∈W;k ∈ K ; s ∈ S;d ∈ D (3.5)

T∑
t=1

S∑
s=1

Xwktsd ≤ S ·Awkd ∀w ∈W;k ∈ K ;d ∈ D (3.6)

T∑
t=1

S−1∑
s=1

(NDt ·Xwktsd)+
o
r

T∑
t=1

∑
s=S

(NDt ·Xwktsd) ≤ DND ∀w ∈W;k ∈ K ;d ∈ D (3.7)

2 ·
T∑

t=1

∑
s=S

Xwktsd −

T∑
t=1

S−1∑
s=1

Xwktsd ≤ 0 ∀w ∈W;k ∈ K ;d ∈ D (3.8)

PRkt · (
W∑
w=1

K∑
k=1

S−1∑
s=1

D∑
d=1

Xwktsd +
o
r
·

W∑
w=1

K∑
k=1

∑
s=S

D∑
d=1

Xwktsd)+

W∑
w=1

K∑
k=1

D∑
d=1

[(S Rkt −PRkt) · (Ywktd +Zwktd)] ≥ Demt ∀t ∈ T

(3.9)

Ywktd ≤ 0.5 ·
S−1∑
s=1

Xwktsd ∀w ∈W;k ∈ K ; t ∈ T ;d ∈ D (3.10)

Ywktd +1 ≥
S−1∑
s=1

Xwktsd ∀w ∈W;k ∈ K ; t ∈ T ;d ∈ D (3.11)
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Zwktd ≤ 0.5 ·
S∑

s=S−1

Xwktsd ∀w ∈W;k ∈ K ; t ∈ T ;d ∈ D (3.12)

Zwktd +1 ≥
S∑

s=S−1

Xwktsd ∀w ∈W;k ∈ K ; t ∈ T ;d ∈ D (3.13)

D∑
d=1

Awkd ≤WD ∀w ∈W;k ∈ K (3.14)

Xwktsd ≤ Ewkt ∀w ∈W;k ∈ K ; s ∈ S; t ∈ T ;d ∈ D (3.15)

∑
s=S

D∑
d=1

Xwktsd ≤ OT ∀w ∈W;k ∈ K (3.16)

Xwktsd,Ywktd,Zwktd,Awkd ∈ {0,1} (3.17)

Constraint (3.5) ensures that each worker is allocated to a single task at any given

time. Constraint (3.6) prevents shift assignment on designated days off. Constraint (3.7)

is the DND calculation equation derived from equation (3.2), which is the summation of

the proportion of actual exposure duration and the recommended duration associated with

noise levels exposed throughout a workday. The second term indicates noise levels received

during overtime shift of length o, proportional to a regular length shift r. This constraint is

key to the noise-safe job rotation strategy as it restricts workers’ total daily noise dose, in-

cluding regular and overtime hours, to be within permissible limits. Constraint (3.8) restricts

overtime eligibility to workers engaging in both morning and afternoon shifts. Constraint

(3.9) guarantees fulfillment of task demands. Constraints (3.10) and (3.11) identify whether

workers are consecutively assigned the same task during regular shifts. Constraints (3.12)

and (3.13) determine whether workers are assigned the same task during overtime shifts.
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Constraint (3.14) limits the number of workdays per planning period. Constraint (3.15) en-

sures alignment between worker skills and task skill requirements. Constraint (3.16) limits

the number of overtime assignments in a planning period. Constraint (3.17) is the standard

integrality constraint.

3.2.2 Numerical example

In this section, a numerical example is presented to demonstrate the practical appli-

cation of the proposed model. The example considers a manufacturing system comprising

ten workers and seven tasks. The workforce is categorized into three experience levels: five

entry-level workers, three intermediate-level workers, and two experts. The smaller number

of experts reflects the actual challenges of acquiring and training highly skilled workers.

The planning horizon of seven workdays (one week) is assumed, which is a typical

duration for short-term scheduling in manufacturing plants. Each workday consists of two

4-hour shifts, labeled as Morning (M) and Afternoon (A), as well as a 2-hour overtime shift

(O). This numerical example emphasizing matching worker skills with task requirements

represents labor-intensive, small and medium-sized enterprises (SMEs), which generally

utilize semi-skilled and skilled laborers operating with machines.

Realistic wage rates for industrial workers in Thailand are used, converting them

from Thai Baht to US dollars as detailed in Table 3.2.

Table 3.2 Wages for workers at different skill levels

Worker level Entry Intermediate Expert

Regular daily wage (Wk)($) 11.23 12.35 15.08

Overtime shift wage (Ok)($) 4.23 4.62 5.65

The tasks are categorized into three levels based on complexity, with level 3 repre-

senting the most complex tasks. Table 3.3 provides values for the worker-workstation ca-

pability index (Ewkt), noise levels, and noise doses associated with each task. Additionally,

Table 3.4 summarizes the initial production rate, steady-state production rate, and demand

requirement of each task.
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Table 3.3 Job difficulty index, worker level capability index, and noise levels

Tasks Difficulty Worker capability index Noise level Noise dose per

index Entry Intermediate Expert (dBA) 4-hour shift (%)

T1 1 1 1 1 87 79.4

T2 1 1 1 1 79 12.5

T3 2 0 1 1 80 15.7

T4 2 0 1 1 86 63

T5 2 0 1 1 84 39.7

T6 3 0 0 1 86 63

T7 3 0 0 1 81 13.8

Table 3.4 Tasks’ initial and steady-state production rates and demand requirements

Tasks
Difficulty

index

Initial production rate

(units/ shift) (PRkt)

Steady-state production

rate (units/ shift) (S Rkt)
Demand

(units)
Entry Intermediate Expert Entry Intermediate Expert

T1 1 90 110 120 110 125 145 2,700

T2 1 110 130 140 120 140 170 2,900

T3 2 0 100 120 0 120 140 1,800

T4 2 0 100 120 0 120 130 1,700

T5 2 0 150 165 0 165 180 1,900

T6 3 0 0 90 0 0 110 1,000

T7 3 0 0 100 0 0 120 1,200

3.2.3 Results and discussion

This section presents the empirical findings of the proposed job rotation model, ex-

amining its effectiveness in mitigating excessive noise exposure while meeting operational

demands. To analyze the impact of worker skill on noise safety, three scenarios featuring

different worker skill compositions are considered: 1) Normal skill mix, 2) Medium skill

mix, and 3) High skill mix, as detailed in Table 3.5. ‘The Normal skill mix’ scenario rep-

resents typical manufacturing operations, where entry-level workers make up the majority,

while expert-level workers are typically fewer in number. In contrast, the ‘High skill mix’

scenario includes the highest number of experts, allowing us to explore the impact of a more

proficient workforce on job rotation and worker safety. The model is solved using Open-

Solver version 2.9.0, an optimization tool add-in for Microsoft Excel, running on a 2.3 GHz

Dual-Core Intel Core i5-8300H processor for all analyses. The model efficiently produces
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optimal job rotation schedules for all scenarios within a minute.

Table 3.5 Worker skill composition of each scenario

Worker level Entry Intermediate Expert

Scenario 1: Normal skill mix 5 3 2

Scenario 2: Medium skill mix 4 3 3

Scenario 3: High skill mix 3 3 4

The impact of job rotation on labor cost, safety, and productivity

This initial analysis focuses on exploring the impact of job rotation on labor cost,

safety, and productivity. This examination compares schedule outcomes between non-rotation

and job rotation plans under the ‘Normal-skill mix’ scenario. The non-rotation plan repre-

sents a productivity-focused scheduling strategy that prioritizes worker-task skill matching

but does not explicitly consider safety considerations. The comparative results can be found

in Table 3.6.

Table 3.6 Performance comparison between non-rotation and job rotation plan

Key performance indicators (KPIs) Non-rotation plan Job rotation plan

Total labor cost ($) 747.19 827.72

Maximum/minimum DND 1.98/ 0.25 0.99/ 0.71

Average DND (SD) 0.87 (0.54) 0.89 (0.07)

Frequency of DND exceeding 1.0 24 0

Total regular shifts assigned 112 120

Total overtime shifts assigned 11 15

Total steady-state production units achieved 1,165 225

As indicated in Table 3.6, the non-rotation plan results in workers experiencing DND

levels nearly double the safe limit of 1.0. Over the 7-day planning period, workers exceeded

the safe DND threshold on 24 occasions. Although the average DND appears almost the

same for both rotation and non-rotation plans, the non-rotation plan exhibits a wider spread

of DND, indicated by a significantly higher SD and range. This means that, in the non-

rotation plan, some workers are exposed to minimal DND levels, while others experience

almost double the DND limit. Consequently, the non-rotation plan has a lower DND average

than the rotation plan, where the range of DND is smaller, resulting in a higher average.

However, the non-rotation plan performs better when considering economic and pro-

ductivity aspects. It requires fewer overtime assignments to meet the same demands, leading
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to reduced labor costs. Additionally, higher production rates are achieved through work

continuity, as less production is lost due to workers needing to rotate and adapt to different

tasks.

In contrast, under the proposed job rotation scheduling approach, the cost increases

to $827.72, or approximately 10%. Nevertheless, all workers’ DND levels remain within the

safe limit throughout the planning period. The noise-safe schedule employs more regular

shifts and overtime hours to fulfill demand due to the disruption in process continuity caused

by job rotation, resulting in a significantly lower steady-state production rate. These results

highlight the inherent trade-offs between safety and cost and between safety and production

performance. They also demonstrate the model’s capability to ensure worker safety while

meeting demand requirements despite the additional total labor cost. The findings offer

insights for decision-makers seeking to implement a job rotation scheduling plan.

It is crucial to emphasize that this model strictly adheres to noise safety standards,

ensuring that exposure remains within the permissible limit. However, meeting this standard

may be challenging in some scenarios, particularly in manufacturing systems with extremely

high noise levels. For such cases, there is flexibility to adjust the noise consideration by ei-

ther raising the DND limit or treating it as an additional objective function. This adaptation

allows the model to generate a job rotation plan that balances worker safety with other oper-

ational requirements. Subsequently, supplementary measures such as engineering controls

or personal protective equipment can be introduced to mitigate noise exposure levels effec-

tively. Moreover, the constraint related to demand requirements can also be modified by

introducing violation penalties, making the model more adaptable to fluctuations in demand.

The impact of worker skill composition on job rotation performance

The proposed job rotation model is applied to three different worker skill composition

scenarios to assess how varying worker skills influence job rotation safety and operational

performance. The outcomes of the job rotation model are assessed across these scenarios

and are summarized in Table 3.7.
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Table 3.7 Performance of job rotation scheduling under different worker skill composition
scenarios

Key performance indicators (KPIs)
Scenario 1:

Normal skill mix

Scenario 2:

Medium skill mix

Scenario 3:

High skill mix

Total labor cost ($) 827.72 803.91 798.08

Maximum/minimum DND 0.99/ 0.71 0.99/ 0.67 0.99/ 0.65

Average DND (SD) 0.89 (0.070) 0.87 (0.085) 0.85 (0.086)

Frequency of workers with DND > 0.9 42 36 28

Total regular shifts assigned 120 120 118

Total overtime shifts assigned 15 8 5

The results reveal that, despite the higher wages paid to expert workers, the scenario

with a larger proportion of expert-level workers (Scenario 3) is more cost-effective. Scenario

3 demonstrates a cost reduction of approximately 3.6% compared to Scenario 1. This cost-

saving can be attributed to the higher production rates of expert workers, requiring fewer

shifts and less overtime to meet the same demand.

Regarding noise exposure, all scenarios maintain the maximum DND values within

the safe limit. However, as more expert-level workers are incorporated, the average DND

and the frequency of workers exposed to DND levels exceeding 0.9 decreases. On average,

Scenario 1 has the highest DND values due to the lower spread of noise exposure levels.

This indicates that workers are almost equally exposed to high noise levels, as evidenced

by a lower range and SD. In contrast, Scenario 3 exhibits the lowest average DND due to a

greater spread of noise exposure levels among workers, and the frequency of workers with

DND exceeding 0.9 is lower than that of the two scenarios.

These findings suggest that a workforce with a higher proportion of expert work-

ers (Scenario 3) can enhance noise safety by achieving the required production rates more

efficiently, meeting the same demand within less time, and thereby reducing the risk and du-

ration of excessive noise exposure. To provide a more detailed insight into how worker skills

affect job rotation schedules, work schedules for scenarios 1 and 3 are provided in Tables

3.8 and 3.9.
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Table 3.8 Job rotation schedule under Scenario 1: Normal skill mix

Level Workers
Daily task assignment for Morning, Afternoon, Overtime shifts (DND) Total shifts

D1 D2 D3 D4 D5 D6 D7 Regular Overtime

Entry

1
T1, T2, -

(0.919)

T1, T2, -

(0.919)

T2, T1, -

(0.919)

T1, T2, -

(0.919)

T2, T1, -

(0.919)

T2, T1, -

(0.919)

DAY

OFF
12 0

2
T2, T1, -

(0.919)

T2, T1, -

(0.919)

T1, T2, -

(0.919)

DAY

OFF

T1, T2, -

(0.919)

T1, T2, -

(0.919)

T1, T2, -

(0.919)
12 0

3
T1, T2, -

(0.919)

T2, T1, -

(0.919)

DAY

OFF

T2, T1, -

(0.919)

T1, T2, -

(0.919)

T2, T1, -

(0.919)

T1, T2, -

(0.919)
12 0

4
T2, T1, -

(0.919)

T1, T2, -

(0.919)

T2, T1, -

(0.919)

T1, T2, -

(0.919)

DAY

OFF

T2, T1, -

(0.919)

T1, T2, -

(0.919)
12 0

5
T1, T2, -

(0.919)

T1, T2, -

(0.919)

T1, T2, -

(0.919)

T1, T2, -

(0.919)

DAY

OFF

T2, T1, -

(0.919)

T1, T2, -

(0.919)
12 0

Interme-

diate

6
T4, T3, T5

(0.986)

T4, T3, T5

(0.986)

T4, T3, -

(0.787)

DAY

OFF

T4,T3,T5

(0.986)

T4, T3, -

(0.787)

T4, T2, -

(0.755)
12 3

7
T4, T3, T5

(0.986)

DAY

OFF

T3, T4, -

(0.787)

T5, T5, T5

(0.992)

T4, T3, -

(0.787)

T3, T4, -

(0.787)

T5, T5, T3

(0.872)
12 3

8
T4, T3, T5

(0.986)

DAY

OFF

T3, T4, -

(0.787)

T5, T5, T5

(0.992)

T4, T3, T5

(0.986)

T4, T3, -

(0.787)

T4, T3, -

(0.787)
12 3

Expert
9

T5, T5, T5

(0.992)

DAY

OFF

T6, T2, T7

(0.854)

T3, T6, -

(0.787)

T5, T7, T6

(0.910)

T5, T5, -

(0.794)

T7, T6, -

(0.828)
12 3

10
T6, T7, T7

(0.928)

T6, T7, T7

(0.928)

T6, T7, -

(0.828)

T6, T7, -

(0.828)

DAY

OFF

T7, T7, T4

(0.712)

T6, T3, -

(0.787)
12 3

Total labor cost ($) 827.72

Table 3.9 Job rotation schedule under Scenario 3: High skill mix

Level Workers
Daily task assignment for Morning, Afternoon, Overtime shifts (DND) Total shifts

D1 D2 D3 D4 D5 D6 D7 Regular Overtime

Entry

1
T2, T1, -

(0.919)

DAY

OFF

DAY

OFF

T1, T2, T2

(0.981)

T2, T1, -

(0.919)

T2, T1, -

(0.919)

T2, T1, -

(0.919)
10 1

2
T1, T2, -

(0.919)

T2, T1, -

(0.919)

T1, T2, -

(0.919)

DAY

OFF

T1, T2, -

(0.919)

T1, T2, T2

(0.981)

T1, T2, -

(0.919)
12 1

3
T1, T2, -

(0.919)

T2, T2, T1

(0.647)

DAY

OFF

T2, T1, -

(0.919)

T1, T2, -

(0.919)

T2, T1, -

(0.919)

T1, T2, -

(0.919)
12 1

Interme-

diate

4
T3, T1, -

(0.951)

T4, T3, -

(0.787)

T2, T1, -

(0.919)

T3, T1, -

(0.951)

DAY

OFF

T1, T2, -

(0.919)

T2, T4, -

(0.755)
12 0

5
T1, T2, -

(0.919)

T1, T2, -

(0.919)

T1, T2, -

(0.919)

T1, T2, -

(0.919)

DAY

OFF

T2, T1, -

(0.919)

T1, T2, -

(0.919)
12 0

6
T4, T2, -

(0.755)

T4, T3, -

(0.787)

T4, T3, -

(0.787)

DAY

OFF

T4, T3, T5

(0.986)

T3, T1, -

(0.951)

T4, T3, -

(0.787)
12 1

Expert

7
T4, T3, -

(0.787)

T6, T2, -

(0.755)

T1, T7, -

(0.992)

T5, T5, -

(0.794)

T4, T3, -

(0.787)

DAY

OFF

T5, T5, -

(0.794)
12 0

8
DAY

OFF

T1, T2, -

(0.919)

T7, T4, -

(0.828)

T5, T5, -

(0.794)

T4, T2, -

(0.755)

T7, T3, T6

(0.671)

T4, T3, -

(0.787)
12 1

9
DAY

OFF

T6, T7, -

(0.828)

T5, T5, -

(0.794)

T7, T6, -

(0.828)

T5, T5, -

(0.794)

T5, T5, -

(0.794)

T6, T7, -

(0.828)
12 0

10
T4, T2, -

(0.755)

T6, T7, -

(0.828)

T5, T5, -

(0.794)

T6, T7, -

(0.828)

DAY

OFF

T6, T7, -

(0.828)

T6, T7, -

(0.828)
12 0

Total labor cost ($) 798.08
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The numerical example employed to validate the model reflects the typical scale of

SME manufacturing plants. In all scenarios, the model efficiently generates optimal 7-day

job rotation schedules for 10 workers handling 7 tasks in just 0.02 seconds. This computa-

tional efficiency extends to larger workforce sizes of 30 workers, with a solution time of 2

seconds. These results underscore the model’s applicability to larger manufacturing environ-

ments, demonstrating its capacity to swiftly create job rotation schedules without substantial

time or financial investments.

From a practical standpoint, the model is developed in a generic manner, making

it easily adaptable to a range of scenarios with minimal adjustments. Decision-makers can

fine-tune the model by modifying its size, input parameters, or planning horizon to align

with the specific needs of their manufacturing operations. Furthermore, certain constraints,

like those related to noise safety or demand requirements, can be modified or relaxed to

enhance flexibility in generating job rotation schedules.

3.2.4 Conclusion

This section introduces a novel noise-safe job rotation scheduling model, which ad-

dresses the intricate interplay of essential scheduling factors, encompassing safety, worker

skill, productivity, and demand requirements. The model takes into account aspects like

aligning worker skills with specific tasks, demand-driven production, and overtime consid-

erations, factors that have not been extensively explored in existing literature. Formulated

as an integer programming problem, the model seeks to minimize the overall labor cost

associated with employing workers of various skill levels during regular and overtime hours.

To validate the model, a numerical example is used to represent labor-intensive SMEs

with heterogeneous workforces and tasks of varying complexities. When compared to a non-

rotation plan, the job rotation schedule generated by the proposed model demonstrates a

notable improvement in workforce safety. Although this is accompanied by a slight increase

in labor costs due to process disruptions caused by job rotations, it underlines the inherent

trade-off between cost and worker safety. Nevertheless, the model can produce job rotation

schedules that effectively meet both demand and safety requirements while maintaining costs

at a minimal level within a negligible time.

Furthermore, scenario analyses are conducted under scenarios varying the numbers

of entry-level and expert workers in the rotation plan. These analyses emphasize the role

of worker skill and expertise in simultaneously achieving better cost management, boost-

ing productivity, and enhancing worker safety. The findings suggest that including more

expert workers in the rotation plan can efficiently fulfill demand requirements using fewer
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regular and overtime shifts, resulting in a more cost-effective and safer job rotation strategy.

This sheds light on the importance and positive effects of worker development and retention

programs on worker safety and production performance.

Finally, the proposed model is developed in a generic manner and can be applied to

other manufacturing cases with minor modifications. However, a limitation of our model is

its suitability for manufacturing cases with combinations of high and low noise levels. In

manufacturing systems with excessive noise levels, the model may fail to generate feasible

solutions. In such instances, decision-makers should consider relaxing the safety constraint

and implementing alternative noise control measures such as engineering controls or per-

sonal protective equipment.

3.3 The noise-safe job rotation scheduling model with learning-forgetting and

boredom effects

As demonstrated in the previous section, job rotation scheduling is a highly effective

strategy for reducing excessive noise exposure, meeting demand requirements, and main-

taining cost efficiency. This approach is a widely adopted practice in various industries, not

only addressing safety concerns but also for worker cross-training, enhancing versatility and

proficiency in performing different job functions. In addition, engaging in multiple tasks

across a workday can motivate workers, reducing monotony-induced boredom, which can

also reinforce job satisfaction. However, the challenge lies in balancing safety and skill de-

velopment, especially when frequent rotations are required to ensure worker well-being and

maintain non-monotonous work environments.

To maximize the benefits of job rotation, it is essential to address a fundamental issue:

the potential deterioration of skills when workers are away from specific tasks. Achieving

this balance is crucial for ensuring the best outcomes in terms of safety, worker satisfaction,

and productivity.

In addition to optimizing system productivity, it is equally important to consider the

human element in workforce scheduling. Worker heterogeneity, including factors like skill

levels, task preferences, and cognitive abilities related to learning, forgetting, and boredom,

plays a vital role in scheduling effectiveness. While various aspects of workforce hetero-

geneity have received substantial attention in job rotation scheduling, their integration with

safety considerations remains relatively unexplored in the existing literature.

This dissertation introduces a novel approach to job rotation scheduling, where safety,

cross-training, and the management of boredom are simultaneously considered. This inte-

gration represents the primary contribution of this dissertation. The proposed model serves
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as a useful decision-support tool for stakeholders implementing job rotation strategies, en-

abling the creation of safe work schedules that not only accommodate worker skill develop-

ment but also address individual preferences. The subsequent sections provide the mathe-

matical model formulation and validation.

3.3.1 Mathematical model formulation

The noise-safe job rotation scheduling model, which takes into account worker learning-

forgetting and boredom effects, is formulated as a non-linear programming (NLP) model due

to the exponential nature of skill learning-forgetting and boredom curves. The primary ob-

jective is to minimize the total production delay resulting from worker skill deficiencies and

boredom. The assumptions and notations employed in the model formulation are summa-

rized below.

Assumptions

• Workers are heterogeneous in skills, learning, forgetting, boredom, and task prefer-

ences.

• The planning period consists of multiple days, with each workday divided into multi-

ple shifts of the same length.

• The permissible noise exposure follows NIOSH standards of 85 dBA for a standard

8-hour workday (DND not exceeding 100%). However, the noise limit may vary for

workdays longer than 8 hours.

• Workers can perform only one task per shift and can rotate to other tasks at the end of

each shift.

• The frequency of job rotation influences worker skill development, forgetting, and

boredom, directly impacting system productivity.

• Workers must receive at least a specified amount of days off per week.

Indices

W Set of workers;W = {1, 2, . . . , W}

T Set of tasks; T = {1, 2,. . . , T}

S Set of shifts in a workday; S = {1, 2, . . . , S}

D Set of days in planning horizon;D = {1, 2, . . . , D}
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Input parameters

T Pwt A binary parameter: 1 if worker w prefers task t, 0 otherwise

NDt Noise dose received by a worker from performing task t for one shift.

Delaymax
t Maximum production delay of task t.

S Kmax Maximum skill level of workers in which they can produce a unit of product

using the exact time as the standard production time

Vmax Maximum satisfaction level of workers.

βw Learning slope of worker w.

γw Forgetting slope of worker w.

τw Boredom slope of worker w.

H Length of a work shift in hours.

DND Maximum allowable daily noise dose.

WD Maximum number of workdays that can be assigned to workers.

Decision variables

Xwtsd = 1 if worker w is assigned task t in shift s on day d, otherwise 0.

Awd = 1 if worker w is scheduled for at least one shift on day d, otherwise 0.

Auxiliary variables

S wtsd Skill level of worker w for task t in shift s on day d.

S Rem
wtsd Skill remnant of worker w for task t in shift s on day d.

S BD
wtsd Skill before departure of worker w for task t in shift s on day d.

Vwsd Satisfaction level of worker w in shift s on day d.

Uwsd Satisfaction level restoration w in shift s on day d.

Wwtsd Working duration of worker w on task t in shift s on day d.

Dwtsd Departure duration of worker w on task t in shift s on day d.

Worker skill learning and forgetting effect

Worker skill learning and forgetting represent the human cognitive ability to acquire

and retain skills over time through repetitive learning and subsequent forgetting. Workers

who repeatedly perform the same task may experience a learning phenomenon, resulting in

reduced task processing times. On the other hand, when there are gaps between consecutive

operations, the forgetting effect can lead to longer task processing times than usual. This

fundamental mechanism of skill acquisition and decay serves as the foundation for various

learning and forgetting models discussed in the literature.
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Numerous attempts have been made to quantify the industrial learning and forgetting

effect. This dissertation utilizes the skill learning and deterioration curve from a highly-cited

article on worker cross-training job rotation schedules by Azizi et al. (2010). Their schedul-

ing model incorporates critical characteristics influencing learning and forgetting rates in

human-paced operations. These characteristics encompass individual variations in skill ac-

quisition and deterioration, steady-state performance levels (maximum and minimum), and

the exponential nature of skill improvement and deterioration. This exponential pattern and

its variations, such as log-linear and hyperbolic patterns, have been previously employed

to construct various learning and forgetting models for both manual and cognitive tasks,

representing worker performance changes during the learning and forgetting phases.

The relationships between worker skill levels and the learning and forgetting rates

used in this safe job rotation scheduling model are derived from the work of Azizi et al.

(2010) and described by the following equations. The learning phenomenon depends on

the initial/remaining skill level and the duration of task engagement, while the forgetting

phenomenon is influenced by the duration of departure from the task and the skill level

attained before the interruption.

S wtsd = S Kmax− [(S Kmax−S Rem
wtsd) · e(βw·Wwtsd)] (3.18)

S Rem
wtsd = S BD

wtsd · e
(γw·Dwtsd) (3.19)

S BD
wtsd = [S BD

wt,s−1,d · (1−Xwtsd)]+ [S wt,s−1,t · (1−Xwtsd)] (3.20)

In industrial settings, defining worker skills can be approached in various ways. In

this dissertation, S Kmax is described as the ability to produce a unit of product within the

standard time. Meanwhile, S KBD
wt signifies the time worker w takes to produce one unit

before moving on from a specific task t. Alternatively, skill can also be viewed as the theo-

retical maximum number of units a worker can produce within a single working period, as

discussed by Pérez-Wheelock et al. (2022).

The development of worker skill proficiency is influenced by their learning and for-

getting rates. A higher learning rate and longer task engagement result in more effective skill

development. However, when workers switch between tasks, their proficiency in previously

assigned tasks can decline due to the forgetting effect. In our specific scenario, worker skill
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Figure 3.1 Illustration of worker skill improvement and deterioration between two tasks,
adapted from Azizi et al. (2010).

proficiency varies based on individual learning and forgetting rates, yet it remains within the

predefined minimum and maximum skill proficiency limits. The variation of worker skill

variation due to the learning-forgetting effect is illustrated in Figure 3.1. While excessive

worker rotation can negatively impact overall productivity, insufficient rotation may hinder

the scheduling plan’s ability to address issues like job dissatisfaction due to monotony and

noise exposure among workers.

Worker job satisfaction, task preference, and boredom effect

Job rotation serves a multifaceted purpose, addressing not only excessive hazard

exposure and promoting multi-skill development but also preventing the issue of worker

boredom. Monotonous, repetitive tasks can deteriorate motivation and job satisfaction, neg-

atively impacting production performance, as extensively discussed in previous studies.

This dissertation considers a manufacturing scenario that features highly repetitive

processes, where worker job satisfaction and production performance are significantly in-

fluenced by worker task preferences and the emergence of boredom resulting from task

monotony. Worker task preference refers to the attitudes workers hold toward specific tasks,

with some being preferred and others less so. Boredom manifests when workers engage in

repetitive tasks.
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Job satisfaction levels decrease according to the individual boredom slope when per-

forming the same task over time. The following equations illustrate the relationship between

worker satisfaction levels, boredom slope, and worker task preference.

Vwsd = Vmax− (Vmax−Vw,s−1,d) · eτw·(
∑T

t=1 Dwtsd+Uwsd) (3.21)

Uwsd = [
T∑

t=1

Dwt,s−1,d · (1−
T∑

t=1

(Xwstd ·Xw,s−1,td))]+ [Uw,s−1,d ·

T∑
t=1

(Xwstd ·T Pwt)] (3.22)

Based on these equations, when workers are rotated to tasks they prefer, their job

satisfaction levels can be effectively restored. However, if workers are assigned to tasks they

do not prefer, the presence of a non-restoration variable (U) prevents the restoration of their

satisfaction levels.

In this model, the maximum and minimum threshold satisfaction levels of workers

are defined. The assumption is that variations in worker satisfaction levels within these de-

fined thresholds have a direct influence on productivity. Workers with higher job satisfaction

can perform tasks with higher productivity. Conversely, when workers lack sufficient skill

proficiency and job satisfaction, their productivity rates fall below the standard rate. This

leads to delays in achieving production targets, and such productivity delays are considered

as the additional time in minutes required to reach production targets.

Objective function

The objective is to minimize the total production delay resulting from the lack of

skill proficiency and boredom-induced motivation. It is calculated as a weighted sum of the

skill proficiency and motivation factors for each worker-task combination, multiplied by the

maximum delay for the respective task.

min
W∑
w=1

T∑
t=1

S∑
s=1

D∑
d=1

[[(
S Kmax−S wtsd

S Kmax

)
+

(
Vmax−Vwsd

Vmax

)]
·Delaymax

t ·Xwtsd

]
(3.23)

Constraints

T∑
t=1

Xwtsd ≤ 1 ∀w ∈W; s ∈ S;d ∈ D (3.24)
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T∑
t=1

S∑
s=1

Xwtsd ·NDt ≤ DND ∀w ∈W;d ∈ D (3.25)

D∑
d=1

Awd ≤WD ∀w ∈W (3.26)

S wtsd = S Kmax− [(S Kmax−S Rem
wtsd) · e(βw·Wwtsd)] ∀w ∈W; t ∈ T ; s ∈ S;d ∈ D (3.27)

S Rem
wtsd = S BD

wtsd · e
(γw·Dwtsd) ∀w ∈W; t ∈ T ; s ∈ S;d ∈ D (3.28)

S BD
wtsd = [S BD

wt,s−1,d · (1−Xwtsd)]+ [S wt,s−1,t · (1−Xwtsd)] ∀w ∈W;

t ∈ T ; s ∈ S;d ∈ D
(3.29)

Vwsd = Vmax− (Vmax−Vw,s−1,d) · eτw·(
∑T

t=1 Dwtsd+Uwsd) ∀w ∈W; s ∈ S;d ∈ D (3.30)

Uwsd = [
T∑

t=1

Dwt,s−1,d · (1−
T∑

t=1

(Xwstd ·Xw,s−1,td))]+

[Uw,s−1,d ·

T∑
t=1

(Xwstd ·T Pwt)] ∀w ∈W; s ∈ S;d ∈ D

(3.31)

Wwtsd = [(Wwtsd +Xwtsd) ·Xwtsd] ·H ∀w ∈W; t ∈ T ; s ∈ S;d ∈ D (3.32)

Dwtsd = [(Dwtsd +1) · (1−Xwtsd)] ·H ∀w ∈W; t ∈ T ; s ∈ S;d ∈ D (3.33)
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Xwktsd,Awkd ∈ {0,1} (3.34)

S wktsd,S Rem
wktsd,S

BD
wktsd,Vwsd,Uwsd,Wwtsd,Dwtsd ∈ R+ (3.35)

Constraint (3.24) restricts that each worker is allocated to a single task at any given

time. Constraint (3.25) ensures that daily noise exposure of workers remains within the

defined limit. Constraint (3.26) guarantees that workers receive a certain number of days off

per planning period. Constraint (3.27) calculates the skill level of workers. Constraint (3.28)

Computes the remnant skill for the task after the worker is reassigned. (3.29) determines

the task skill level that the worker has gained before being rotated from the task. Constraint

(3.30) calculates the worker satisfaction levels. Constraint (3.31) limits the restoration of job

satisfaction for workers assigned to non-preferred tasks. Constraints (3.32) and (3.33) keep

track of workers’ working duration and departure duration for each task. Constraints (3.34)

and (3.35) are the standard integrality constraints.

This proposed noise-safe job rotation model incorporates skill learning-forgetting dy-

namics and the impact of boredom-induced job dissatisfaction. The model involves various

parameters, including noise exposure levels, skill learning/forgetting rates, and job satisfac-

tion levels, some of which are represented as exponential functions. Due to the problem’s

complexity and non-linearity, obtaining optimal solutions using exact techniques may not be

practical within a reasonable time. As a result, the use of heuristic techniques is proposed.

The following sections include details of the heuristic techniques, numerical examples, and

a comparison of computational performance across different solution methods.

3.3.2 Heuristic solution approaches

This section provides an overview of the heuristic and metaheuristic algorithms ap-

plied to the proposed model. The two main algorithms employed in our study are the ran-

domized greedy algorithm (RGA) and the well-known genetic algorithm (GA).

3.3.2.1 Initialization algorithm

Both RGA and GA initiate their operations with the same initialization algorithm, as

depicted in Figure 3.2. This initialization step is essential for constructing initial noise-safe

job rotation schedules that are both feasible and of relatively high quality. This initial sched-
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ule serves as the starting point for RGA and GA, guiding them in the search for improved

solutions and expediting the path to a near-optimal solution.

Figure 3.2 Flowchart of the initialization algorithm

The algorithm begins by randomly assigning tasks to workers without considering

their skill proficiency or job satisfaction. Subsequently, workers are sorted in descending

order based on their accumulated noise dose values. The algorithm then assigns tasks to

workers to minimize delay, giving priority to those with the highest accumulated noise dose

while ensuring that the assigned tasks comply with the noise restriction. These worker-

task assignment processes repeat for all shifts in a workday until the last workday. Upon

completion, the algorithm generates an optimal job rotation schedule with noise safety.
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3.3.2.2 Randomized greedy algorithm (RGA)

RGA is a heuristic optimization algorithm used to solve combinatorial optimization

problems. It operates by making a sequence of choices by selecting the locally optimal

option at each step aiming to find a globally optimal solution. Unlike traditional greedy

algorithms, RGA introduces randomness by occasionally selecting sub-optimal solutions in

certain iterations rather than consistently opting for the locally optimal choice. This element

of randomization enables RGA to avoid becoming trapped in local optima. The procedures

involved in RGA are outlined as follows.

For each iteration, denoted as i and continuing until the predefined maximum number

of iterations (I) is reached, the following steps are executed:

1. Generate several random initial populations using the initialization algorithm as de-

scribed in Section 3.3.2.1.

2. Identify a subset of members characterized by relatively low total production delay

values. Randomly select a member from this defined subset and record the result

along with the total production delay for the current iteration.

3. Repeat steps 1 - 2 until the iteration I is reached.

RGA is a versatile approach applicable to a wide range of optimization problems.

While its implementation is relatively simple, it can effectively strike a balance between

exploration and exploitation, which marks its ability to escape local optima and potentially

find better solutions. Consequently, RGA is often used for problems that are computationally

expensive, like NLP, and when a reasonably good solution is accepted.

3.3.2.3 Genetic algorithm (GA)

GA is a metaheuristic optimization technique inspired by the principles of natural

selection, where individuals with higher fitness levels have a better survival chance and

propagating their genetic traits. It proves to be a powerful tool for solving problems charac-

terized by large search spaces, combinatorial optimization challenges, and complex, multi-

dimensional objective functions. Given the nature of this noise-safe job rotation model, GA

is employed as the primary solution approach, with an equipped initialization algorithm for

generating the initial population.

In this model, the fitness value for GA is defined as the reciprocal of the total pro-

duction delay, calculated using Equation (3.23). This choice prioritizes minimizing adverse
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productivity effects arising from skill and job satisfaction deficiencies. Therefore, solutions

with lower delays are favored during the selection process. The GA algorithm can be de-

scribed through the following steps.

For each generation (g), continuing until a predetermined maximum number of gen-

erations (G) is reached, the following steps are executed:

1. Generate a set of random initial populations using the initialization algorithm de-

scribed in Section 3.3.2.1.

2. Evaluate the fitness value of each chromosome using the following equation:

Fitness value =
1

Total production delay
(3.36)

3. Select parents from the initial population (with a size of P) using the roulette wheel

selection method, where the probability of each chromosome’s selection is directly

proportional to its fitness value.

4. Apply crossover operations at specified rates and crossover points to the selected par-

ents to generate offspring.

5. Verify the feasibility of each offspring chromosome, ensuring that all tasks are allo-

cated and workers’ DND levels remain within the defined limits. If necessary, reassign

tasks to infeasible chromosomes.

6. Introduce mutations to offspring chromosomes at a predefined mutation rate, randomly

altering some of the genes. Subsequently, validate the feasibility of the mutated chro-

mosomes and adjust them as required.

7. Combine the parent and offspring populations and repeat steps 1 - 6 until reaching

generation G.

Over multiple generations of GA, the quality of the solutions typically improves.

Nevertheless, GA may sometimes become trapped in local optima. This can be influenced by

various factors, such as the diversity and size of the initial population, crossover points, and

mutation rates, among others. Thus, parameter tuning and algorithm modifications are often

necessary to ensure that the generated solutions are near-optimal, if not globally optimal. In

this model, SA is employed as an additional step to evaluate and improve the performance

of GA. The rationale is that if the GA solution is locally optimal, SA, an algorithm specially
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designed for escaping local extreme points, is expected to further enhance it. The details of

SA are presented in the following subsection.

3.3.2.4 Simulated annealing (SA)

SA is a metaheuristic algorithm inspired by the metal annealing process, known for

its capability to escape local optima by introducing perturbations, which may initially de-

grade solutions but ultimately lead to improved results (Gallo et al., 2019). SA is funda-

mentally a hill-climbing algorithm but differs in that it probabilistically accepts sub-optimal

solutions rather than strictly selecting the best one. The algorithm integrates a temperature

parameter (Temp) as part of the probability calculation, which gradually decreases as the

algorithm progresses. The slower cooling rate can lead to a higher chance of getting an

optimal solution, but the solution time can be long. The SA process is described below.

For each iteration, i, until the predetermined maximum number of iterations (I) is

reached, the following steps are performed:

1. Set the solution obtained from GA as the current solution (S cur), and calculate the total

delay.

2. Randomly generate a new solution (S new), and calculate the total delay. Regenerate if

the solution is infeasible.

3. Compare the total delay of S new with that of S cur. If it is less, proceed to step 6;

otherwise, go to step 4.

4. Calculate the probability of acceptance (p) using the following equation and generate

a random number (r) in the range (0,1):

p = exp
(
−[ f (S new)− f (S cur)]

Temp

)
(3.37)

If r <p, go to step 5; otherwise, proceed to step 6.

5. Update the current solution by setting S cur = S new.

6. Decrease the temperature value (Temp) at a predetermined cooling rate.

7. Repeat steps 2 - 8 until the final iteration I is reached.

In this model, SA was applied after GA to evaluate and potentially refine the best

solution obtained. If SA cannot find an improved solution, then it can be concluded that the

GA solution is good enough, if not globally optimal.
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3.3.3 Numerical example

This numerical example represents a manufacturing system characterized by a di-

verse set of tasks, each demanding distinct skills. The number of available workers cor-

responds to the number of tasks. Essential parameters, including the learning, forgetting,

and boredom slopes of the workers, are derived from the comprehensive study conducted by

Azizi et al. (2010), and these values are presented in Table 3.11. Furthermore, this model

considers workers’ task preferences and non-preferred tasks are listed in the same table.

Table 3.11 Workers learning, forgetting, boredom slopes, and non-preferred tasks

Workers
Learning

slope (β)

Forgetting

slope (γ)

Boredom

slope (τ)

Non-preferred

tasks

1 -0.20 -0.12 0.15 3

2 -0.23 -0.15 0.17 5

3 -0.19 -0.20 0.14 4

4 -0.30 -0.25 0.21 5

5 -0.21 -0.08 0.17 1, 3

6 -0.22 -0.13 0.13 9

7 -0.18 -0.10 0.11 9

8 -0.25 -0.15 0.21 5

9 -0.18 -0.21 0.11 -

10 -0.17 -0.27 0.12 3

In this scenario, we consider manufacturing plants adhering to a 5-day workweek

structure, with each workday divided into two 4-hour shifts. Thus, the constraint (3.26) is

excluded from the model, as workers are granted weekends off. However, the model can

be easily adapted to accommodate alternative operational schedules. Decision-makers have

the flexibility to modify shift lengths and planning horizons, extending them to either a 7-

day workweek or an entire month while ensuring the reinstatement of Constraint (3.26) to

guarantee sufficient rest days for workers. Still, it is important to note that for extended

planning periods, particularly in the case of a combinatorial NLP problem like this, the

computational time required for a solution may become substantial. In such instances, it

may be advisable to decompose the planning period into weekly.

Over the 5-day job rotation cycle, workers are assigned tasks considering their com-

petencies, preferences, and noise exposure limits. They encounter varying noise exposure

levels while carrying out these tasks. Detailed information regarding the noise levels expe-
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rienced by workers during each task and the maximum allowable delays for each task are

provided in Table 3.12. The noise dose is computed based on the duration of exposure during

the 4-hour shift.

Table 3.12 Noise levels, noise dose and maximum production delays for each task

Tasks
Noise levels

(dBA)

Noise dose

per shift

Maximum production

delay (Delaymax
t )

(minutes)

1 70 0.016 30

2 86.5 0.707 30

3 87 0.79 29

4 65 0.005 15

5 80 0.15 20

6 87 0.79 30

7 82 0.25 27

8 78 0.099 39

9 71.5 0.022 29

10 85 0.5 30

3.3.4 Results and discussion

This section presents the experimental results, which aimed to assess the effective-

ness of the proposed model and solution approaches and to explore the impact of different

job rotation plans on productivity delay. Three solving approaches are used in the analyses:

NLP for exact optimization, RGA, and GA for approximate solutions. Additionally, a com-

parison is made between a job rotation and a non-rotation plan to understand the influence of

skill and satisfaction factors and the necessity of rotating workers based on noise exposure

limits.

Comparison of solution approaches

NLP, RGA, and GA are applied to solve the problem, and their computational effi-

ciency for various problem sizes ranging from 5 - 60 workers within a 5-day planning period

is investigated. Table 3.13 presents the results, including total production delay and solving

times.
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Table 3.13 Comparison of results and solving time between solution approaches

Problem sizes

(worker-task)

Total production

delay (minutes)

Solving time

(seconds)

Percentage of excess

total production delay

compared to GA

NLP RGA GA NLP RGA GA NLP RGA GA-SA

5w-5t 581.6 406.0 402.0 48 0.1 105.1 45% 1.0% 0%

6w-6t 651.0 517.4 506.4 199.8 0.3 984.2 29% 2.2% 0%

7w-7t 810.8 578.1 568.6 400.2 0.6 1,836.3 43% 1.7% 0%

8w-8t 1,018.7 690.6 673.8 1,021.8 0.6 1,292.6 51% 2.5% 0%

9w-9t 1,106.1 821.4 802.6 1,575 0.8 1,896.0 38% 2.4% 0%

10w-10t - 907.6 890.7 - 1.0 2,439.9 - 1.9% 0%

20w-20t - 1,834.4 1,801.4 - 2.3 3,658.9 - 1.8% 0%

30w-30t - 2,762.4 2,714.1 - 4.2 3,606.0 - 1.8% 0%

40w-40t - 3,692.2 3,606.5 - 6.8 3,607.4 - 2.4% 0%

50w-50t - 4,616.4 4,521.9 - 9.7 3,608.1 - 2.1% 0%

60w-60t - 5,561.9 5,448.2 - 13.2 3,621.7 - 2.1% 0%

It can be observed that NLP is efficient for cases with up to 9 workers and 9 tasks

within the 5-day scheduling period, but it showed limitations beyond this scale. The lim-

itations of NLP may arise from the complexity and non-convexity of the problem, leading

to convergence on local optima. Meanwhile, GA and RGA exhibited robustness across all

problem sizes, even reaching up to 60 workers and 60 tasks. GA consistently produced so-

lutions with the lowest delay for all instances, while RGA, providing slightly higher delays,

offered significantly shorter computational times. RGA stands as a practical choice when

prompt solutions are needed, especially for large-scale problems. Additionally, SA is ap-

plied after GA to evaluate and improve the performance of GA. However, SA consistently

fails to improve upon GA solutions, indicating that GA solutions are likely near-optimal

if not optimal. Despite RGA’s speed and practicality, GA consistently produced solutions

with minimal delay, making it a robust choice for solving complex job rotation scheduling

challenges.

The impact of job rotation on safety, skill learning, and production delay

This section examines the effects of implementing the proposed job-rotation schedul-

ing approach to reduce noise exposure, comparing it with a scenario where noise control

measures are neglected. GA is applied to address the problem of 5 workers and 5 tasks over

a 5-day planning period in both scenarios. The results are presented in Table 3.14.
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Without noise exposure control, workers are assigned the same task for the entire

planning period. The schedule primarily focuses on skill development objectives, resulting

in reduced production delay. This non-rotation plan results in some workers engaging in

loud tasks and being exposed to noise levels well above the permissible daily limits. It also

leads to a gradual decline in workers’ job satisfaction due to the boredom effect.

In contrast, the implementation of noise exposure control involves regular worker

rotation among tasks to ensure safety regarding noise exposure. This rotation efficiently

reduces the average DND of workers and provides opportunities for multi-skill develop-

ment while mitigating boredom-induced job dissatisfaction. Because skill development con-

tributes to less production delay, workers assigned to quiet tasks are not rotated, as in the

case of worker 3. However, if minimizing boredom becomes the priority, workers will be

rotated frequently at the end of each shift to mitigate the boredom effect, but with the poten-

tial compromise of continuous skill development.

Table 3.14 Comparisons of production delays caused by skill learning-forgetting and
boredom between rotation and non-rotation plans

Scheduling plans

Total production

delay

(minutes)

Delay due to skilll

learning-forgetting

(minutes)

Delay due to

boredom

(minutes)

Non-rotation plan 341.5 126.3 215.2

Job rotation plan 402.0 265.1 136.9

Table 3.14 presents the total production delay from each rotation plan. Despite the

positive effects of job rotation in mitigating noise exposure and boredom, it incurs a sub-

stantial production delay (402 minutes) compared to the non-rotation plan (341.5 minutes).

This total delay is further categorized into delay attributed to skill learning-forgetting and

delay due to boredom. Job rotation plans cause disruptions in production operations and the

learning process. Thus, the delay due to skill-learning-forgetting increases, while the delay

due to boredom is less than the non-rotation plan due to a non-monotonous work environ-

ment from frequent rotation. In contrast, the non-rotation plan experiences less delay from

the skill learning-forgetting effect but incurs more delay due to the monotony of performing

the same task throughout the entire planning period.

Figure 3.3 illustrates the impact of job rotation, learning and forgetting rates, and

boredom on workers’ skill development and job satisfaction via worker 1’s task assignments.

The figure shows the changes in worker 1’s skill level during the transition between tasks

1 and 3. As the worker shifts from task 1 to task 3, the skill for task 1 decreases due to
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Figure 3.3 Impact of job rotation on worker 1’s skill learning, forgetting, and job
satisfaction.

the forgetting effect, while the skill for task 3 increases due to the learning effect. However,

the worker’s job satisfaction remains low as task 3 is not their preferred task, resulting in a

continued decline in satisfaction until returning to task 1.

3.3.5 Conclusion

This section introduces a novel noise-safe job rotation scheduling approach, which

considers workers’ skill learning and forgetting rates, as well as their boredom-related job

satisfaction. The simultaneous consideration of safety management, cross-training, and job

satisfaction in job rotation scheduling constitutes a significant academic contribution of this

dissertation.

This proposed job rotation model serves as a decision-support tool aiming to mini-

mize production delays caused by skill deficiency and job dissatisfaction while simultane-

ously ensuring worker safety by limiting noise exposure. Given its complexity and NP-hard

nature, exact optimization may not always be feasible. Therefore, RGA and GA algorithms

are employed as alternative solutions with a problem-specific initialization algorithm to gen-
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erate initial solutions for both. Additionally, SA is employed to enhance GA solutions, lever-

aging its ability to escape local optima. Experimental results indicate that NLP is viable for

small-scale problems while RGA efficiently delivers comparable solutions within a reason-

able computational time for all problem sizes. GA achieves optimal solutions for all problem

sizes but at a substantial computational time, rendering it less suitable for large-scale man-

ufacturing systems. However, for those prioritizing solution quality over computation time,

GA remains a viable choice. The findings from SA experiments suggest that the solutions

produced by GA are of sufficiently high quality, if not globally optimal. With GA, decision-

makers can consider decomposing the planning horizon into multiple weekly plans instead

of monthly.

The experiment underscores that job rotation can reduce noise exposure while pro-

moting worker multi-skill development among workers. Without job rotation, workers con-

tinuously develop skills for a specific task, but some are exposed to extreme noise levels, and

the associated boredom-induced job dissatisfaction contributes to production delays. Under

job rotation, noise exposure and delays due to boredom decrease, though production de-

lays increase due to skill development interruptions. Over time, these delays can decrease

as workers acquire proficiency in multiple tasks. For better efficiency, noise levels at tasks

should be reduced using supplemental controls, leading to less frequent rotation, improving

process continuity, and reducing production delays. In summary, this model demonstrates

that job rotation can effectively mitigate hazards, foster multi-skill development, and alle-

viate monotony-related boredom. However, it may take time for workers to acquire the

necessary skills for productive operations.

In practice, this model serves as a theoretical foundation for job rotation implemen-

tation, demonstrating three-fold benefits: reducing occupational injuries, facilitating multi-

skill learning, and mitigating boredom. However, the model is particularly suitable for man-

ufacturing cases with varying noise levels. For more flexibility, the noise limit constraint

can be relaxed given that decision-makers supply other noise hazard controls. In addition,

methods for evaluating workers’ learning, forgetting, and boredom rates should be further

explored. Although this model was originally tailored for handling noise hazards, it can be

adapted for other occupational hazards with minor adjustments to hazard assessments and

limits. The assessment of learning, forgetting, and boredom-related dissatisfaction can also

be customized to specific cases.

To summarize, this chapter has introduced the development of two novel noise-safe

job rotation scheduling models. The first model incorporates critical scheduling parameters

such as matching workers to tasks, demand-driven production, and overtime assignments
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– an area relatively unexplored in the context of safe job rotation scheduling. A numeri-

cal example representing SME manufacturing systems has been utilized to validate its effi-

cacy in meeting operational and safety requirements with a marginal increase in total labor

costs. The results emphasize the trade-off between worker safety and cost and underscore

the importance of including more experts in the rotation plan, highlighting the significance

of worker skill development and retention.

The second model extends the benefits of job rotation by integrating workers’ skill

learning, forgetting rates, and boredom-related job satisfaction into noise-safe job rotation

scheduling. This integration constitutes a novel contribution to the field. The model’s ob-

jective is to minimize production delays due to skill deficiency and job dissatisfaction with

many proposed solution approaches to address its complexity. Numerical examples rep-

resentative of manufacturing scenarios with tasks demanding distinct skill sets have been

employed for model validation. The results highlight that the model effectively mitigates

workplace hazards, encourages multi-skill development, and alleviates monotony-induced

boredom.

Both noise-safe job rotation models serve as decision-support tools for utilizing job

rotation scheduling as an administrative hazard control strategy in manufacturing facilities.

They have been designed in a generic manner, enabling easy adaptation with minor modifica-

tions to various manufacturing scenarios. Furthermore, they can be applied to manage other

hazards, such as ergonomics, heat, or vibration, by adjusting hazard evaluations and limits.

However, it is important to note that both models are equipped with strict hazard constraints,

making them suitable for manufacturing systems with varying noise levels. For systems with

extreme hazards, relaxing noise limits may be necessary to implement the models, provided

that additional hazard controls are employed to ensure worker safety.
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CHAPTER 4
SATISFACTION-ENHANCED NURSE SCHEDULING MODELS

Nurses are invaluable resources in healthcare premises, which are facing strenuous

working and demanding conditions, prompting them to leave the profession and leading to

nurse shortage issues. Ensuring their well-being and job satisfaction becomes paramount in

healthcare human resource management. A satisfied nurse not only provides better care but

also stays committed to the profession.

This chapter presents the development of the two satisfaction-enhanced NSP mod-

els proposed in this dissertation. Section 4.1 presents the mathematical formulation of

satisfaction-enhanced NSP Model I, while Section 4.2 outlines the mathematical formu-

lation of the cost-effective, satisfaction-enhanced NSP Model II. Additionally, each section

includes details on the hospital dataset, experimental results, and discussions relevant to the

respective model.

4.1 The satisfaction-enhanced NSP (Model I)

Numerous factors have a positive influence on job satisfaction, as discussed earlier.

This model encompasses two essential aspects to enhance nurse job satisfaction via schedul-

ing: 1) Fulfilling their preferred shifts and days off. and 2) Equitably distributing workload

and preferred assignments among nurses.

While individual preferences encompass various dimensions, this model emphasizes

personal preferences for shifts and days off. In terms of fairness, the model aims to establish

equal workload distribution and preferred assignments. This model fills a gap in existing

research by simultaneously considering two fairness factors with comprehensive individual

preferences.

The model encompasses three objectives: minimizing discrepancies in the allocation

of shifts to nurses, minimizing variations in their preferred shifts, and minimizing variations

in their preferred day-off assignments. Each objective has adjustable target values to meet the

requirements of different healthcare facilities. In practice, hospitals often set specific shift

quotas for nurses while attempting to accommodate preferred assignments and maintaining

equitable workloads. Therefore, a goal programming (GP) technique is chosen to formulate

and solve this proposed model. GP transforms objectives into goals with target values that

can be defined by hospital management.
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GP is an effective solution approach for addressing multi-objective problems, as

well-documented in the literature. It reflects real-world decision-making and allows decision-

makers or stakeholders to contribute their insights into setting desired targets for each objec-

tive. This results in an optimal solution that aligns with the collective needs of the healthcare

facility.

In GP, model objectives are formulated into goals with target values specified by

hospital management. The objective function of GP is to minimize the total undesirable

deviations from these specified target values. The adaptability of this approach makes it par-

ticularly suitable for scheduling tasks in hospitals, where the allocation of shifts to nurses is

typically predetermined. Then, hospital management can actively involve nurses in refining

preferences-related goals, thus fostering their perception of job autonomy. The mathematical

formulation of the model is described below.

4.1.1 Mathematical model formulation

This satisfaction-enhanced NSP model is formulated as a GP model. Its primary

objective is to create a well-balanced work schedule that equally distributes the workload

and preferable tasks. Without loss of generality, model formulation adheres to the following

key assumptions and notations.

Assumptions

• The planning horizon is four weeks (28 days), with each workday consisting of multi-

ple shifts of uniform length.

• Nurses are categorized based on experience levels, and shift assignments must adhere

to hospital regulations regarding nurse quantity and skill prerequisites.

• Shift allocations per nurse follow the defined hospital limits.

• Each nurse is guaranteed a minimum number of weekly days off.

• Scheduling morning shifts immediately following night shifts is prohibited.

• Weekly night shift assignments are limited as defined.

• Consecutive night shifts are limited to ensure adequate rest.

• In the case of double-shift workdays, the number of consecutive double-shift workdays

is restricted within the defined limit.
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Indices

N Set of nurses: N = 1,2, . . . ,N.

S Set of shifts in a workday: S = 1,2, . . . ,S .

K Set of nurse skill levels: K = 1,2, . . . ,K.

D Set of days in the planning horizon: D = 1,2, . . . ,D.

Input parameters

Rsd The total number of nurses required in shift s on day d.

RLsk The minimum number of nurse with skill level k required in shift s.

Nk The set of nurses belonging to skill level k: N = N1∪ N2∪ . . .∪ NK

S Knk A binary parameter: 1 if nurse n belongs to skill level k, 0 otherwise.

S Pnsd A binary parameter: 1 if nurse n prefers to work in shift s on day d, 0 other-

wise.

DPnd The preference score of nurse n for taking a day-off on day d: DPnd ∈ {1, . . . ,Q}

DS The maximum number of shifts that can be assigned to a nurse per day.

DO The minimum number of days off a nurse must receive per week.

NS The maximum number of night shifts that can be assigned to a nurse per week.

TS The maximum total shifts that can be assigned to a nurse per month.

TS target The target number of shifts assigned to nurses.

S Ptarget The target number of preferred shift assignments.

DPtarget The target preferred day-off preference scores.

Decision variables

Xnsd = 1 if nurse n is assigned to work in shift s on day d, 0 otherwise.

Ynd = 1 if nurse n is assigned to take a day-off on day d, 0 otherwise.

TS +n ,TS −n Positive and negative deviations of the total number of shifts from the target

for nurse n.

S P+n ,S P−n Positive and negative deviations of the number of preferred shifts from the

target for nurse n.

DP+n ,DP−n Positive and negative deviations of the preferred day-off scores from the target

for nurse n.

The proposed satisfaction-enhanced NSP model encompasses three objectives for-

mulated as GP goals. The first goal aims to evenly distribute shifts among nurses while

adhering to workload targets. The second and third goals focus on balancing individual
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preferences for shifts and days off. The description and formulation of each goal are pro-

vided below.

Goal 1: Balancing shift assignments

This goal is to achieve a balance in shift assignments, minimizing deviations for

each nurse from the target while ensuring equitable distribution of workloads among nurses.

Deviations below the target represent under-assignment, while deviations exceeding the

target indicate over-assignment. These deviations can be calculated using Equation (4.1).

The objective function includes positive and negative deviations because over- and under-

assignment are undesirable.

S∑
s=1

D∑
d=1

Xnsd −TS +n +TS −n = TS target ∀n ∈ N (4.1)

Equation (4.1) can be explained as follows: Consider a scenario in which the desig-

nated target workload for nurses (TS target) is 24 shifts per month, while the actual workload

assigned to a nurse n is to 22 shifts. Substituting these values, the equation becomes,

22−TS +n +TS −n = 24

For the equation to remain valid, TS +n must be set to 0, indicating that nurse n does

not exceed the workload limit. Simultaneously, TS −n is set to 2 within the model, signifying

that nurse n is under-assigned by two shifts. The equation’s validity is confirmed by substi-

tuting these decision values, as demonstrated below. This computational logic is applied to

subsequent goal formulations.

22−0+2 = 24

Goal 2: Balancing preferred shift assignments

This goal is to equitably fulfill nurses’ individual shift preferences. Each nurse’s

preference for working in shifts s on day d (S Pnsd) is expressed as a binary value, with 1

representing a preferred shift and 0 indicating otherwise. When a shift assignment aligns

with a nurse’s preference, it contributes to the count of preferred shift assignments. Devia-
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tions in the total number of preferred shift assignments for each nurse from the designated

target (S Ptarget) are computed using Equation (4.2). In this goal, only negative deviations

are considered in the objective function because positive deviations indicate that nurses re-

ceive more preferred assignments than the target, resulting in a more satisfactory schedule

outcome.

(
S∑

s=1

D∑
d=1

S Pnsd ·Xnsd)−S P+n +S P−n = S Ptarget ∀n ∈ N (4.2)

Goal 3: Balancing preferred day off scores

This final goal is to accommodate nurses’ preferences for days off. We use scores

to express days off preferences (DPnd), reflecting the degree of their preference for taking

a day off on specific days. This scoring approach offers enhanced assignment flexibility,

enabling nurses to indicate multiple preferred days for time off. It also helps handle pref-

erence conflicts among nurses. Each day is assigned a different score based on individual

preferences, and these scores can be adjusted based on the nurses’ judgment. Deviations

in preferred day off scores for each nurse from the designated target scores (DPtarget) are

quantified using Equation (4.3). Similar to the second goal, only negative deviations are

considered in the objective function, as positive deviations indicate an excess of preferred

day-off assignments, resulting in a more preferable schedule outcome.

(
D∑

d=1

DPnd ·Ynd)−DP+n +DP−n = DPtarget ∀n ∈ N (4.3)

Objective function

In a GP model, the objective function is the summation of the total undesirable de-

viations from all goals. As each goal in the model may have a different magnitude, it is

necessary to normalize these deviations before summing them to avoid incommensurability

issues. The normalization process standardizes deviations from each goal into a uniform

unit, thus preventing any bias towards goals with larger magnitudes.

The objective function for this satisfaction-enhanced NSP model seeks to minimize

the sum of normalized undesirable deviations, as presented below.
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min

 (
∑N

n=1(TS +n +TS −n )
TS target ·N

+  ∑N
n=1 S P−n

S Ptarget ·N

+  (
∑N

n=1 DP−n
DPtarget ·N

 (4.4)

Constraints

N∑
n=1

Xnsd ≥ Rsd ∀s ∈ S;d ∈ D (4.5)

S∑
s=1

(Xnsd ·S Kns) ≥ RLsk ∀s ∈ S;d ∈ D;k ∈ K (4.6)

S∑
s=1

Xnsd ≤ DS ∀n ∈ N ;d ∈ D (4.7)

d+6∑
d=d

Ynd ≥ DO ∀n ∈ N ;d ∈ D1∪D8∪D15∪D22 (4.8)

S∑
s=1

D∑
d=1

Xnsd ≤ TS ∀n ∈ N (4.9)

S∑
s=1

Xnsd +Ynd ≥ 1 ∀n ∈ N ;d ∈ D (4.10)

Xn,s=S ,d +Xn,s=1,d+1 ≤ 1 ∀n ∈ N ;d ∈ D−{D} (4.11)

∑
s=S

d+t∑
d=d

Xnsd ≤ t ∀n ∈ N ;d ∈ D\ {D− t+1, ...,D} (4.12)
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∑
s=S

d+6∑
d=d

Xnsd ≤ NS ∀n ∈ N ;d ∈ D1∪D8∪D15∪D22 (4.13)

S∑
s=1

d+ f∑
d=d

Xnsd ≤ 2 f +1 ∀n ∈ N ;d ∈ D\ {D− f +1, ...,D} (4.14)

Xnsd,Ynd ∈ {0,1} (4.15)

TS +n ,TS −n ,S P+n ,S P−n ,DP+n ,DP−n ∈ Z+0 (4.16)

Constraint (4.5) ensures that the number of assigned nurses per shift meets the re-

quirements. Constraint (4.6) guarantees that the specified nurse numbers for each skill level

are met. Constraint (4.7) restricts the assignment of shifts for nurses within a workday. Con-

straint (4.8) mandates a minimum number of days off per week for nurses. Constraint (4.9)

ensures that the total shifts assigned to nurses across the planning horizon remain within

specified limits. Constraint (4.10) prevents shift assignments on designated days off. Con-

straint (4.11) prohibits scheduling morning shifts following night shifts. Constraint (4.12)

limits consecutive night shifts to be fewer than t days. Constraint (4.13) restricts the number

of night shifts per week. Constraint (4.14) enforces a maximum of f consecutive double-

shift workdays, which can be omitted if double-shift workdays are not allowed. Constraints

(4.15) and (4.16) are standard integrality and non-negativity constraints.

4.1.2 Hospital case data

The validation of the proposed model is conducted through a case study in the op-

erating room (OR) of a medium-sized private hospital with a capacity of 200 beds located

in Pathum Thani, Thailand. Data collection for this case study was carried out between

December 2019 and February 2020, employing a comprehensive approach that included a

field survey, a questionnaire survey, and an interview with the head nurse. It is important to

note that the data collection procedures were conducted in accordance with the requirements

of The Human Research Ethics Committee of Thammasat University and the hospital. The
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name of the hospital, along with raw data, is confidential and cannot be publicized. There-

fore, only anonymized and processed data can be included.

The OR department consists of 16 full-time registered nurses, including one head

nurse. The operational structure follows a shift work rotation system with three 8-hour

shifts: morning shift (M) from 8 AM to 4 PM, afternoon shift (A) from 4 PM to 12 AM,

and night shift (N) from 12 AM to 8 AM. The head nurse only works during morning shifts.

The department’s nurses are categorized into two experience levels: nine level-1 nurses

(including the head nurse) and eight level-2 nurses.

In the current hospital scheduling process, the head nurse manually generates monthly

nurse schedules at the beginning of each month. The primary objective is to allocate an ad-

equate number of nurses to each shift within the planning horizon. However, the head nurse

characterizes this scheduling task as demanding, often requiring up to a week to create a

schedule that complies with all hospital regulations. The current scheduling process does

not take into account nurses’ preferences or fairness considerations.

For the generality of the proposed model, a scheduling period of 28 days is assumed.

The specific scheduling criteria, relevant hospital constraints, and the three target goals spec-

ified by the head nurse are summarized in Table 4.1.

Table 4.1 Hospital regulation parameters
Parameters Value
Number of nurses required in each shift (Rsd)

Morning 6
Afternoon 6
Night 2

Number of level-1 nurse required in each shift (RLs1)
Morning 3
Afternoon 3
Night 1

Allowable total shifts per month (TS ) 24
Maximum daily shift (DS ) 1
Minimum day off per week (DO) 1
Allowable night shifts per week (NS ) 2
Target shifts assigned (TS target) 24
Target preferred shifts (S Ptarget) 20
Target preferred day off score (DPtarget) 12

From Table 4.1, the hospital stipulates a maximum of one shift per day for each nurse

and requires a minimum of one day off per week for every nurse. Nurses are also restricted

to a maximum of two night shifts per week. The total number of monthly shifts is limited

to 24, and the target number is set in accordance with this restriction. The hospital specifies
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that the required number of nurses for morning, afternoon, and night shifts is 6, 6, and 2,

respectively, for all days within the planning horizon. Additionally, the head nurse specifies

that the number of level-1 nurses must constitute at least half the total number of nurses

to maintain the desired service quality. However, no specific number of level-2 nurses is

specified for each shift. Therefore, Table 4.1 only displays the required number of level-1

nurses for each shift.

In terms of individual preferences, nurses were asked to indicate their preferred shifts

and days off over the 28-day planning period through a questionnaire survey. The mathe-

matical model uses this preference data as input to fulfill shift and day-off preferences. An

example of the shift preference data for the first 14 days is presented in Table 4.2. It can

be observed that nurses exhibit a lower preference for night shifts compared to morning and

afternoon shifts. However, given the coverage requirements, they must still be assigned to

night shifts. Consequently, fulfilling all shift preferences becomes complicated when con-

flicts arise. In this case study, the head nurse has established a target of 20 preferred shifts.

This implies that out of the 24 shifts assigned to nurses each month, approximately 20 of

these should align with their preferences.

Table 4.2 Nurses’ preferred working shifts
Nurse EXP D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

1 1 (H) M M M M M M M M M M M M M M
2 1 M A A A M M M A A A N A A A
3 1 M M M M M N M M M M M M M A
4 1 A A A A A M A A A A M N M M
5 1 M M A A A A N A A A A A M M
6 1 A A A A A N A A A A A M M M
7 1 M M M M M A A A A A A A N A
8 1 A A A A A A M M M M M M M M
9 1 A A M M M M A A A A N A A N
10 2 M M M M M M M M M M M M M M
11 2 A A A A A N A A A N M M M M
12 2 M M A A A M M M M M N A A A
13 2 M M M M M A A A A A N A A A
14 2 A A A A A A A M M M M M M M
15 2 A A A N A M M M M M M A A A
16 2 M M M M M A A A A A A A N A
17 2 N A A A A M M A A A A N A A

EXP = Experience level, H = Head nurse, M =Morning shift, A = Afternoon shift, N = Night shift

In terms of day-off preferences, nurses were requested to specify their most preferred

and second-most preferred days off each week, resulting in a total of specified 8 day-off pref-

erences over the planning period. A Likert scale was employed to assign preference ratings,

offering enhanced scheduling flexibility and increasing the likelihood of accommodating
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nurses’ preferences. Based on the head nurse’s recommendation, the most preferred and

second-most preferred days off were assigned 3 and 1 points, respectively.

The target preferred day-off score (DPtarget) of 12 is met when nurses are assigned

their most preferred day off every week throughout the 28-day planning period. The day-off

preference sheets for the first 14 days can be found in Tables 4.3.

The following section discusses experimental results, scenario analysis and further

explores the effectiveness of the proposed model compared to manually generated schedules.

Table 4.3 Nurses’ preferred day-off scores
Nurse EXP D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

1 1 (H) - 1 - - - - 3 - 1 - - - - 3
2 1 - - 3 - - 1 - - 1 - - 3 - -
3 1 1 - - - 3 - - - 3 - - - 1 -
4 1 - 1 - - - - 3 3 - - 1 - - -
5 1 - - - - - 3 1 - 1 - - - 3 -
6 1 - - - 3 - 1 - - - 1 3 - - -
7 1 - 3 - - 1 - - - 1 - - - - 3
8 1 1 - - - - 3 - 1 - - - 3 - -
9 1 - 1 - - - - 3 - 3 - - - - 1

10 2 - 1 - - 3 - - - - 1 - 3 - -
11 2 - - 1 - - - 3 - - - 1 - - 3
12 2 3 - - - - - 1 - - 3 - - 1 -
13 2 3 - - 1 - - - - 3 - - 1 - -
14 2 - 3 - - - 1 - 1 - - - - 3 -
15 2 1 - - - 3 - - - 1 - - - - 3
16 2 - - 1 - - 3 - - - 1 - 3 - -
17 2 3 - - - - 1 - 3 - - - 1 - -

4.1.3 Results and discussion

This section presents the experimental results of scenario analysis to assess the prac-

ticality and robustness of the proposed model under different operational settings. Three

scenarios are used for model validation: 1) Standard operation, 2) Extended operation ca-

pacity, and 3) Higher demand for experienced nurses.

In the standard operation scenario, the number of nurses required for each of the

three shifts is 6, 6, and 2, respectively. In the extended capacity scenario, the capacity of

the morning shift is expanded to accommodate a higher patient volume during the morning

hours, as indicated by the head nurse. The number of nurses required for each shift in the

extended capacity operation is 9, 6, and 2.

The efficiency of the optimal schedules obtained from scenario analysis is compared

to the manually-made schedule, evaluating their performance in preference fulfillment and

fairness. As this model is the first to incorporate fairness considerations in both workload
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and preferred assignments, direct comparisons with existing models are not feasible. It is

important to note that scheduling requirements, such as allowable shifts and prohibited shift

patterns, are formulated as hard constraints based on the regulations of the hospital case.

Thus, this case study relies solely on scenario analysis. In alternative hospital cases, hard

constraints can be reformulated as soft constraints or goal equations, allowing for limited

constraint violations with associated penalties, thereby enhancing model flexibility.

Scenario 1: standard operation

The proposed satisfaction-enhanced NSP is solved using Opensolver version 2.9.0,

an optimization tool add-in in Microsoft Excel, operating on a 2.3 GHz Dual-Core Intel

Core i5-8300H processor. The standard operation scenario replicates the actual operational

setting of the hospital case. In this scenario, there are 17 nurses available, with 6, 6, and 2

nurses required for each shift on all workdays. The optimal nurse schedule can be obtained

within 5 seconds. An example of the nurse schedule for the first 14 days under the standard

operation scenario is provided in Table 4.4.

Table 4.4 Nurse schedule under the standard operation scenario
Nurse EXP D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

1 1 (H) M M M O M M O M M O M M M O
2 1 M M O N M A M A A M N O A A
3 1 M M O M N A M M M M M M O A
4 1 A A A O A M A M M N O N M M
5 1 M M N A A O N A N A A A O A
6 1 A A A A O N A M A A O M A M
7 1 M M M M O A A N M A A A N O
8 1 A N A A A O M M M M M O M M
9 1 N A M M M M O A A O A A A N

10 2 M O M M M M M M O M M M M M
11 2 A A O A A N O A A N O M M M
12 2 O N A A N M M N M O N A A A
13 2 O M M M M A A A O A A A M N
14 2 A O N A A A A O N M M M O M
15 2 A A A N O M M O O M M A A O
16 2 O O M M M A A A A A A O N A
17 2 N A A O A O N O A A A N A A

EXP = Experience level, H = Head nurse, M =Morning shift, A = Afternoon shift, N = Night shift, O = Day
off

The summarized results for the 28-day planning period encompass the total shifts,

preferred shifts received, and day-off preference scores for all 17 nurses, as shown in Table

4.5. The table’s second-left column presents the actual total shifts assigned to nurses based

on the schedule manually created for the prior month. Detailed deviations from the three

goals are also provided in the table. The experimental findings demonstrate the achievement
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Table 4.5 Summary of deviations from goals in Scenario 1

Nurse
n

Actual
total
shift

G1: Balancing shift
assignments

G2: Balancing preferred
shift assignments

G3: Balancing preferred
day off scores

Total
shifts TS −n

TS
target

%
Dev

Total
preferred

shifts
S P−n

SP
target

%
Dev

Total
preferred
day off
score

DP−n -
DP

target
%

Dev

1 24 23 1 24 0.3 20 0 20 4.3 12 0 12 5.7
2 20 24 0 24 4.1 17 3 20 11.3 10 2 12 11.9
3 20 23 1 24 0.3 18 2 20 6.1 11 1 12 3.1
4 20 23 1 24 0.3 16 4 20 16.6 11 1 12 3.1
5 24 22 2 24 4.6 18 2 20 6.1 11 1 12 3.1
6 23 23 1 24 0.3 20 0 20 4.3 11 1 12 3.1
7 21 23 1 24 0.3 18 2 20 6.1 11 1 12 3.1
8 22 23 1 24 0.3 20 0 20 4.3 11 1 12 3.1
9 24 24 0 24 4.1 20 0 20 4.3 12 0 12 5.7

10 20 24 0 24 4.1 20 0 20 4.3 12 0 12 5.7
11 20 22 2 24 4.6 20 0 20 4.3 12 0 12 5.7
12 24 23 1 24 0.3 19 1 20 0.9 10 2 12 11.9
13 20 23 1 24 0.3 20 0 20 4.3 12 0 12 5.7
14 20 23 1 24 0.3 20 0 20 4.3 12 0 12 5.7
15 24 24 0 24 4.1 20 0 20 4.3 12 0 12 5.7
16 24 22 2 24 4.6 20 0 20 4.3 12 0 12 5.7
17 24 23 1 24 0.3 20 0 20 4.3 11 1 12 3.1

Average 22 23 0.9 1.9 19.2 0.8 5.6 11.3 0.6 5.4

% Dev = Percent deviation from the average value

of all desired goals.

In the workload balancing goal, most nurses deviate by no more than two shifts

from the target of 24 shifts, with four nurses exhibiting zero deviations. This indicates a

relatively balanced distribution of shift assignments. In the optimal schedule, five nurses

receive fewer workloads, nine receive more, and three receive no workload change. It is

also worth mentioning that the total allowable shifts (TS ) and the targeted shifts (TS target)

are both set at 24 by the head nurse, resulting in TS +n being zero and excluded from Table

4.5. Deviations in shift assignments, both over and under, are observed when target and

allowable shifts are unequal.

Regarding the other two goals, deviations from the target number of preferred shifts

and day-off scores are negligible. Consequently, it can be inferred that shift and day-off pref-

erences are effectively met and balanced. However, Nurse 2 experiences a moderate percent

deviation across the two preference-related goals, while Nurse 4 receives the fewest pre-

ferred shifts. To address this, nurses with compromised preferences should be compensated

with increased preferred shifts and day-off assignments in subsequent schedules to main-

tain fairness over time. Nevertheless, it is reasonable to conclude that the proposed model

satisfactorily fulfills all goals within this scenario’s optimal solution.

For enhanced visualization, a comparison of workload allocation between the ac-

tual and optimal schedules is illustrated in Figures 4.1 and 4.2. These figures demonstrate
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the optimal schedule’s more even workload distribution compared to the actual schedule.

Additionally, Figure 4.3 visually depicts the spread of preferred shift assignments and total

day-off preference scores among all nurses in the optimal schedule. It can be seen that pref-

erences are nearly aligned with target values in both goals, exhibiting a relatively low spread

among nurses.

Figure 4.1 A comparison of the workload assignments between the actual and optimal
schedules

Figure 4.2 Workload assignments between the actual and optimal schedules by nurses
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Figure 4.3 Distribution of shift and day-off preference fulfillment

Scenario 2: Extended operation capacity

According to the head nurse’s speculation, periods of high patient volume frequently

occur during morning shifts, resulting in an occasional inadequate nursing capacity of 17. In

this scenario, the required nurse count for each shift is increased to 9 for the morning, 6 for

the afternoon, and 2 for the night shifts. This adjustment results in a total nursing capacity

of 20, allowing the healthcare facility to manage heightened demand better. Three artificial

nurses are introduced to accommodate the expanded capacity, each equipped with synthetic

shift and day-off preferences.

The summarized results of this scenario are provided in Table 4.6. The proposed

approach effectively achieves the workload balancing goal. With the augmented nursing

staff, the workload distribution becomes more proportional and manageable. Furthermore,

the shift assignments align relatively well with the nurses’ preferences. While most nurses’

shift preferences are satisfactorily met, one nurse experiences a preferred shift deviation of

4, highlighting a potential area for improvement. The fulfillment of day-off preferences re-

mains relatively consistent. However, some nurses’ day-off preferences are compromised to

accommodate the increased demand during morning shifts. These nurses should be consid-

ered for compensation through additional preferred assignments in the upcoming planning

period.

Regarding computational efficiency, generating an optimal solution takes only 5 sec-

onds. This computational performance is further validated through testing with a larger-scale

problem, demonstrating that the optimal schedule for 50 nurses can be generated within 20
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seconds. This quick solution time underlines the model’s applicability to more extensive

healthcare facilities, enhancing its practicality in real-world settings.

Table 4.6 Summary of deviations from goals in Scenario 2

Nurse
n

Actual
total
shift

G1: Balancing shift
assignments

G2: Balancing preferred
shift assignments

G3: Balancing preferred
day off scores

Total
shifts TS −n

TS
target

%
Dev

Total
preferred

shifts
S P−n

SP
target

%
Dev

Total
preferred
day off
score

DP−n -
DP

target
%

Dev

1 24 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
2 20 24 0 24 0.8 16 4 20 19.0 10 2 12 10.3
3 20 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
4 20 23 1 24 3.4 20 0 20 1.3 10 2 12 10.3
5 24 24 0 24 0.8 20 0 20 1.3 10 2 12 10.3
6 23 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
7 21 24 0 24 0.8 20 0 20 1.3 9 3 12 19.3
8 22 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
9 24 24 0 24 0.8 19 1 20 3.8 9 3 12 19.3

10 20 24 0 24 0.8 20 0 20 1.3 10 2 12 10.3
11 20 23 1 24 3.4 20 0 20 1.3 11 1 12 1.3
12 24 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
13 20 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
14 20 23 1 24 3.4 20 0 20 1.3 11 1 12 1.3
15 24 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
16 24 23 1 24 3.4 20 0 20 1.3 11 1 12 1.3
17 24 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
18 - 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
19 - 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6
20 - 24 0 24 0.8 20 0 20 1.3 12 0 12 7.6

Average 23.8 0.2 1.3 19.7 0.3 2.3 11.2 0.8 8.4

% Dev = Percent deviation from the average value

Scenario 3: Higher demand for experienced nurses

This scenario investigates the implications of an increased need for more experi-

enced nurses (level-1) during the demanding morning shifts on Monday and Tuesday. To

address the heightened patient volume, the required count of level-1 nurses during these

peak-demand periods is raised from 3 to 5. The computational model is solved using the

given parameters, and the results are summarized in Table 4.7. The results show that level-1

nurses bear heightened workloads in this scenario. Most of them are assigned the maximum

allowable shifts. The fulfillment of level-1 nurse preferences encounters limitations due to

the augmented necessity for level-1 nurses during the peak-demand period, particularly in

the day-off preference scores, as level-1 nurses cannot take a day off on Monday and Tues-

day, even if they prefer. Compared to the other scenarios, the average percent deviations are

higher for all goals.
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Table 4.7 Summary of deviations from goals in Scenario 3

Nurse
n

Actual
total
shift

G1: Balancing shift
assignments

G2: Balancing preferred
shift assignments

G3: Balancing preferred
day off scores

Total
shifts TS −n

TS
target

%
Dev

Total
preferred

shifts
S P−n

SP
target

%
Dev

Total
preferred
day off
score

DP−n -
DP

target
%

Dev

1 24 22 2 24 4.6 20 0 20 6.3 12 0 12 23.6
2 20 24 0 24 4.1 19 1 20 0.9 9 3 12 7.3
3 20 24 0 24 4.1 19 1 20 0.9 4 5 12 58.8
4 20 24 0 24 4.1 17 3 20 9.7 4 5 12 58.8
5 24 24 0 24 4.1 19 1 20 0.9 12 0 12 23.6
6 23 24 0 24 4.1 17 3 20 9.7 10 4 12 3.0
7 21 24 0 24 4.1 20 0 20 6.3 12 0 12 23.6
8 22 24 0 24 4.1 19 1 20 0.9 10 2 12 3.0
9 24 24 0 24 4.1 20 0 20 6.3 6 9 12 38.2

10 20 23 1 24 0.3 20 0 20 6.3 7 2 12 27.9
11 20 22 2 24 4.6 20 0 20 6.3 11 1 12 13.3
12 24 22 2 24 4.6 15 5 20 20.3 12 0 12 23.6
13 20 22 2 24 4.6 16 4 20 15.0 12 0 12 23.6
14 20 23 1 24 0.3 19 1 20 0.9 11 1 12 13.3
15 24 22 2 24 4.6 20 0 20 6.3 12 1 12 23.6
16 24 22 2 24 4.6 20 0 20 6.3 10 1 12 3.0
17 24 22 2 24 4.6 20 0 20 6.3 11 0 12 13.3

Average 22 23.1 0.9 3.9 18.8 1.2 6.4 9.7 2 22.4

% Dev = Percent deviation from the average value

Comparison to the manually-devised schedule

In addition to the scenario analyses, a comparative assessment of performance met-

rics is conducted between manually constructed schedules and the optimal schedules gen-

erated by the proposed computational model. This evaluation focuses exclusively on the

workload balancing objective since preference-related goals were omitted from the origi-

nal manual schedule. The comparison highlights the superiority of our proposed model in

achieving goals and its computational efficiency.

Table 4.8 presents the average and standard deviation of each targeted goal for the

manually made and optimal schedules across the various scenarios. For the workload bal-

ancing goal, it is observed that nurses, on average, engage in one additional shift compared

to the manual schedule. The optimal schedule consistently yields a substantially lower stan-

dard deviation across all scenarios when compared to the manual schedule, underscoring the

model’s capacity to establish a more equitable and balanced workload allocation than the

manual schedule.

In terms of shift preferences, nurses, on average, are assigned nearly the target shift

preference of 20 with a relatively low standard deviation. This is except for the scenario

involving higher demand for level-1 nurses. In this scenario, the constraint on fulfilling the

preferences of level-1 nurses stems from the imperative of managing escalating demand. A

similar trend is observed in the context of day-off preference scores.
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In terms of computational efficiency, the proposed model can generate optimal sched-

ules in less than a minute, even when dealing with larger departments encompassing 50

nurses. This efficiency enables the head nurse to address spontaneous requests, accommo-

date nurses’ preferences, and promptly generate a desirable final schedule.

Table 4.8 A comparison of performance indicators between the manual and optimal
schedules

G1: Balancing
shift assignments

G2: Balancing
preferred shift
assignments

G3: Balancing
preferred day-off

scores
Average SD Average SD Average SD

Manually-devised 22 1.84 - - - -
Scenario 1: Standard operation 23.0 0.64 19.17 1.24 11.32 0.68
Scenario 2: Extended capacity 23.8 0.4 19.75 0.89 11.15 1.06
Scenario 3: Higher demand for 23.1 0.94 18.82 1.60 9.70 2.78
experienced nurses

SD - Standard deviation

4.1.4 Conclusion

This section presents a novel nurse scheduling model designed to enhance job sat-

isfaction by accommodating nurses’ shift and day-off preferences while ensuring a fair dis-

tribution of workloads and preferred assignments. Employing the GP technique, the model

incorporates three key satisfaction-enhancement goals: balancing shift assignments, balanc-

ing preferred shift assignments, and balancing preferred day-off scores among nurses. Data

collected from an OR at a private hospital in Thailand is used to validate and assess the

model’s practicality.

Scenario analyses were performed to evaluate solution quality and computational

performance across various settings. The experimental results clearly demonstrate that the

schedules generated by our proposed model outperform manually created schedules in all

targeted goals and execution times. This optimization-based nurse scheduling model effi-

ciently delivers satisfactory and equitable monthly work schedules. Furthermore, we demon-

strated the model’s scalability by successfully solving a large-scale instance involving 50

nurses and a 28-day planning horizon in just 20 seconds. As a result, the proposed model

serves as a practical decision-support tool well-suited for implementation within standard

platforms commonly used by nurses, such as Microsoft Excel.

From a theoretical perspective, the model significantly enriches the existing literature

on NSP by integrating multiple job satisfaction-enhancement factors, including comprehen-

sive individual preferences and fairness considerations. Furthermore, the model’s generic
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structure allows customization to various hospital settings or applications. It can be adapted

to handle emergencies by relaxing certain constraints and regulations. Potential extensions

could encompass additional scheduling attributes, such as staffing cost, task heterogeneity,

and nurses’ affinities, in alignment with broader administrative policies.

It is worth noting that while this model demonstrates promising outcomes in fulfilling

nurses’ preferences and ensuring fairness, practical implementation must also consider eco-

nomic aspects. Schedules that comply with both economic and job satisfaction requirements

can be particularly desirable from a managerial perspective. To address this, an extension of

the model is proposed with the integration of staffing cost as an additional objective to further

enhance its practical utility. The subsequent section outlines the mathematical formulation

and validation of this extended model.

4.2 The cost-effective and satisfaction-enhanced NSP (Model II)

The previous section describes the development of the satisfaction-enhanced NSP

(Model I), designed to create work schedules that balance workload and preferred assign-

ments while accommodating nurses’ shift and day-off preferences. While the model demon-

strates promising and satisfactory scheduling outcomes, the practicality of NSPs also relies

on economic considerations. To address this, the foundational concept of Model I is ex-

tended by integrating the consideration of staffing cost. This section introduces the formula-

tion and development of the cost-effective and satisfaction-enhanced NSP (Model II).

Similar to Model I, the design principles of Model II uphold the importance of pref-

erences and fairness—specifically, shift and day-off preferences, equitable workload dis-

tribution, and desirable assignments. This model incorporates a bi-objective optimization

approach with the objectives of minimizing the total staffing cost and maximizing the mini-

mum total preference score among all nurses. The total preference score is derived from the

fulfillment of nurses’ shift and day-off preferences. This dual-objective formulation ensures

that the generated schedules are both economically viable and satisfactory—qualities that

are advantageous from both nurses’ and management’s perspectives. However, the priorities

of these two objectives differ from a managerial standpoint. Typically, cost-effectiveness

takes precedence over job satisfaction. To address this priority distinction, we employ a

lexicographic optimization technique as our solution approach.

The lexicographic optimization technique, also known as preemptive optimization,

is a valuable approach for solving multi-objective problems. Unlike other methods that aim

to find a single solution that optimizes all objectives simultaneously, lexicographic opti-

mization allows decision-makers to assign priority levels to each objective. The model is
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then solved iteratively, tackling one objective at a time based on its assigned priority. The

optimal solution from each iteration becomes a constraint for subsequent iterations. This

methodology enables us to optimize the most important objective first and subsequently

fine-tune other less critical objectives. Unlike approaches such as weighted-sum or goal

programming, lexicographic optimization does not require normalization or weight assign-

ment, as each objective is handled separately. The problem is effectively decomposed into a

sequence of single-objective problems, reducing computational complexity. This sequential

approach leads to reduced computational time compared to the simultaneous handling of

multiple objectives.

4.2.1 Mathematical model formulation

This NSP Model II aims to generate cost-effective nurse schedules that can accom-

modate nurses’ individual preferences and ensure scheduling fairness. The model is formu-

lated as a bi-objective MILP, and the lexicographic optimization technique is applied as the

solution approach. Without loss of generality, the assumptions and notations used in the

model formulation are summarized below.

Assumptions

• The planning horizon spans four weeks (28 days), with each workday consisting of

multiple shifts of uniform length.

• Nurses are categorized based on experience levels, and shift assignments must con-

form to hospital regulations regarding nurse quantity and skill prerequisites.

• Shift allocations per nurse adhere to the prescribed limits set by the hospital.

• Each nurse is guaranteed a minimum number of weekly days off.

• Scheduling morning shifts immediately following night shifts is prohibited.

• Weekly night shift assignments are limited as defined.

• Consecutive night shifts are limited to ensure adequate rest.

• In the case of double-shift workdays, the number of consecutive double-shift workdays

is restricted within the defined limit.
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Indices

N Set of nurses; N = {1, 2, . . . , N}

S Set of shifts in a workday; S = {1, 2,. . . , S}

K Set of nurse skill levels; K = {1, 2, . . . , K}

D Set of days in planning horizon;D = {1, 2, . . . , D}

Input parameters

Rsd The total number of nurses required in shift s on day d.

RLsk The minimum number of nurse with skill level k required in shift s.

Nk A set of nurses that belong to skill level k: N = N1∪ N2∪ . . .∪ NK

S Knk A binary parameter: 1 if nurse n belongs to skill level k, 0 otherwise.

S Pns The preference score of nurse n for working in shift s: S Pns ∈ {1, . . . ,Q}

DPnd The preference score of nurse n for taking a day-off on day d: DPnd ∈ {1, . . . ,Q}

Qnd A binary parameter: 1 if nurse n requests to take a day-off on day d, 0 other-

wise.

Cs Cost of assigning a shift type s to a nurse

DS The maximum number of shifts can be assigned to a nurse per day.

DO The minimum number of days off a nurse must receive per week.

TS The maximum total shifts can be assigned to a nurse per month.

GapWL The limit on the differences between total shifts assigned among nurses

BigM A large positive value for formulating conditional equations

Decision variables

Xnsd = 1 if nurse n is assigned to shift s on day d, 0 otherwise.

Ynd = 1 if nurse n is assigned to take a day-off on day d, 0 otherwise.

Auxiliary variables

This section introduces auxiliary variables used in formulating objective functions

and constraints.
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T PCn The total preference score of nurse n, calculated as the sum of the total shift

and day-off preference scores:

T PCn =

S∑
s=1

D∑
d=1

(Xnsd ·S Pns)+
D∑

d=1

(Ynd ·DPnd) ∀n ∈ N (4.17)

T PCmin The minimum total preference score among all nurses:

T PCmin =min
n∈N
{T PCn} (4.18)

WLn The total shifts assigned to nurse n across the planning period:

WLn =

S∑
s=1

D∑
d=1

Xnsd ∀n ∈ N (4.19)

Objective functions

The proposed cost-effective and satisfaction-enhanced nurse scheduling approach

(Model II) encompasses the following two objectives.

1.) Minimize the total staffing cost:

min
N∑

n=1

(
S∑

s=1

(
D∑

d=1

Xnsd) ·Cs) (4.20)

2.) Maximize the minimum total preference score among all nurses:

max T PCmin (4.21)

The second objective is derived using the MAXIMIN technique, which seeks to si-

multaneously maximize the total preference scores and minimize the deviation of scores

among nurses. The technique is widely recognized for its capacity to enhance fairness and

has been prominently featured in the personnel scheduling literature as discussed in Wol-

beck (2019). Through MAXIMIN, fairness is achieved by improving the quality of the

least-preferred schedule outcome, effectively narrowing the gap between the upper and lower

bounds.
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Constraints

N∑
n=1

Xnsd ≥ Rsd ∀s ∈ S;d ∈ D (4.22)

N∑
n=1

(Xnsd ·S Knk) ≥ RLsk ∀s ∈ S;d ∈ D;k ∈ K (4.23)

S∑
s=1

Xnsd ≤ DS ∀n ∈ N ;d ∈ D (4.24)

d+6∑
d=d

Ynd ≥ DO ∀n ∈ N ;d ∈ D1∪D8∪D15∪D22 (4.25)

WLn ≤ TS ∀n ∈ N (4.26)

S∑
s=1

Xnsd ≤ BigM · (1−Ynd) ∀n ∈ N ;d ∈ D (4.27)

S∑
s=1

Xnsd +Ynd ≥ 1 ∀n ∈ N ;d ∈ D (4.28)

Qnd ≤ Ynd ∀n ∈ N ;d ∈ D (4.29)

|WLn−WLn′ |≤GapWL ∀n ∈ N ;n ̸= n′ (4.30)
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Xn,s=S ,d +Xn,s=1,d+1 ≤ 1 ∀n ∈ N ;d ∈ D−{D} (4.31)

∑
s=S

d+t∑
d=d

Xnsd ≤ t ∀n ∈ N ;d ∈ D\ {D− t+1, ...,D} (4.32)

S∑
s=1

d+ f∑
d=d

Xnsd ≤ 2 f +1 ∀n ∈ N ;d ∈ D\ {D− f +1, ...,D} (4.33)

Xnsd,Ynd ∈ {0,1} (4.34)

T PCn,T PCmin,WLn ∈ Z+0 (4.35)

Constraint (4.22) enforces that the assigned number of nurses for each shift meets

the required staffing level. Constraint (4.23) guarantees the fulfillment of the specified nurse

numbers in each skill level. Constraint (4.24) restricts the assignment of shifts for nurses

within a workday. Constraint (4.25) mandates a minimum number of days off per week for

nurses. Constraint (4.26) ensures that the total shifts assigned to nurses across the plan-

ning horizon remain within specified limits. Constraints (4.27) and (4.28) events shift as-

signments on designated days off. Constraint (4.29) guarantees the fulfillment of nurses’

requested day off. Constraint (4.30) promotes workload fairness by limiting the differences

in total shift assignments (WLn) among all nurses. Constraint (4.31) prohibits scheduling

morning shifts following night shifts. Constraint (4.32) limits consecutive night shifts to

be fewer than t days. Constraint (4.33) enforces a maximum of f consecutive double-shift

workdays, which can be omitted if double-shift workdays are not allowed. Constraints (4.34)

and (4.35) are the standard integrality and non-negativity constraints.

For this problem, attaining the minimum staffing cost takes precedence before max-

imizing the minimum total preference score. By employing the lexicographic method, the

problem is decomposed into two sequential single-objective optimization problems. In the
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initial iteration, the model optimizes the objective of minimizing staffing cost (4.20) while

adhering to Constraints (4.22) - (4.35), obtaining the optimal total staffing cost (Cost∗). Sub-

sequently, in the second iteration, an additional constraint (4.36) is introduced as an upper

limit on the staffing cost.

N∑
n=1

(
S∑

s=1

(
D∑

d=1

Xnsd) ·Cs) ≤Cost∗ (4.36)

The objective of the model in the second iteration is to maximize the minimum total

preference score (4.21) while complying with Constraints (4.22) - (4.36). The lexicographic

approach guarantees that enhancements in total preference scores are achieved without com-

promising the economic feasibility of the schedule outcomes.

4.2.2 Hospital case data

The model validation features a case study conducted at an Emergency Department

(ED) within a large-scale public hospital with an 800-bed capacity in Pathum Thani, Thai-

land. Data collection from March to June 2021 involved questionnaire surveys and inter-

views. It is important to note that the data collection procedures were conducted in ac-

cordance with the requirements of The Human Research Ethics Committee of Thammasat

University and the hospital. The name of the hospital, along with raw data, is confidential

and cannot be publicized. Therefore, only anonymized and processed data can be included.

The nursing staff comprises 40 registered nurses, including a head nurse. Hospital

operations adhere to a 3-shift rotation: morning shift (M) from 8 AM to 4 PM, afternoon

shift (A) from 4 PM to 12 AM, and night shift (N) from 12 AM to 8 AM, with the head

nurse exclusively assigned to morning shifts. Nursing staff are categorized into five levels,

denoted as levels 1 through 5. Level 5 signifies more than ten years of experience, with the

staff distribution being 10, 11, 7, 9, and 3 nurses for levels 1 through 5, respectively.

Similar to the previous section’s hospital case, the head nurse manually constructs a

monthly nurse schedule before each month’s commencement. This schedule aims to ensure

comprehensive nurse coverage across all shifts and days during the planning horizon while

adhering to hospital regulations and accommodating requested time off. Due to the intri-

cate regulations and the department’s scale, individual preferences are not considered. The

manual scheduling process typically spans 3 to 7 days, contingent upon request conflicts.

Regarding scheduling fairness, the head nurse aims to distribute duties as evenly as possible.

However, there exists no specific metric for evaluating this fairness. The hospital regula-
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tions data gathered from an interview with the head nurse are summarized in Table 4.9 and

serve as input parameters for the model. The planning horizon of 28 days is assumed for the

generality of the model.

Table 4.9 Regulation-related parameters
Parameters Value
Cost of assigning a shift s to nurses (Cs) ($)

Morning 23.66
Afternoon 31.84
Night 32.42

The number of required nurses in shift s (Rsd)
Morning 13
Afternoon 12
Night 9

The number of nurses with skill level k required in shift s (RLsk)
(ordered from levels 1 - 5, respectively)

Morning 3, 3, 2, 2, 1
Afternoon 3, 3, 2, 2, 0
Night 2, 2, 1, 1, 0

Maximum shifts per month (TS ) 26
Maximum daily shifts (DS ) 2
Minimum day off per week (DO) 1
Allowable gap of workloads assigned between nurses (GapWL) 3

Table 4.9 presents shift assignment costs converted from Thai Baht to US dollars.

Afternoon and night shifts offer higher pay rates to compensate for out-of-office hours, and

nurses receive automatic overtime compensation for these shifts. The hospital adheres to

uniform shift wages for all experience levels, accompanied by an additional position al-

lowance. However, this study focuses solely on the shift assignment costs to nurses. Thus,

the position allowance is omitted.

Nurse allocation across the three shifts is influenced by patient volume, leading to

varying staffing requirements. Morning shifts are the busiest and require the highest number

of nurses, followed by afternoon and night shifts. Additionally, the minimum staffing levels

for nurses of skill levels 1 to 5 in each shift s are specified.

It is important to highlight that the regulations of this hospital differ from those of

the previous hospital case. It adopts a double-shift workday scheme, allowing for increased

monthly shift assignments. In contrast to the previous case, there is no limit on weekly night

shifts. Instead, regulations permit a maximum of three consecutive night shifts and two

double-shift workdays per week. Consequently, Constraint (4.32) is bounded by 3, while

Constraint (4.33) is set to 2 for this specific hospital case.

Nurse shift and day off preferences were gathered through a questionnaire survey.
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The survey design used during the data collection for Model I (Section 4.1.2) required

nurses to outline preferred shift allocations across a 28-day planning horizon and indicate

their most-preferred eight days off. However, this process proved cumbersome and time-

consuming, as many nurses did not have a specific shift preference for all days in the plan-

ning period. As a result, the questionnaire was revised to rank working shifts from most to

least preferred and identify the three most to least favored day-of-week to take days off. This

streamlined approach requires only six preference indications, resulting in a more straight-

forward and less time-consuming process. However, it is worth noting that preference col-

lection can be adapted to accommodate different hospital regulations if the model is applied

to other hospital cases. Below are several examples of the questionnaire survey questions.

Please indicate your preferences for shifts and days off by filling in the corresponding

information below:

1. Shift Preferences: Please rank your shift preferences from most preferred to least

preferred among morning, afternoon, and night shifts.

(a) Most preferred shift:

(b) Second-most preferred shift:

(c) Third-most preferred shift:

2. Days Off Preferences: Rank your three most-preferred days of the week for taking a

day off (E.g., Monday – Sunday).

(a) Most preferred day to take a day off:

(b) Second-most preferred day to take a day off:

(c) Third-most preferred day to take a day off:

The shift and day-off preferences of the 40 ED nurses, as gathered from the question-

naire survey, are summarized in Table 4.10 and Table 4.11, respectively. In this hospital case,

shift preferences of nurses are converted into scores: 3, 2, and 1 for their first, second, and

third-most preferred shifts, respectively, as shown in Table 4.10. This table is interpreted as

follows: for instance, Nurse 1 prioritizes the morning shift, followed by afternoon and night

shifts, while Nurse 2 favors night shifts most, then afternoon and morning shifts.

Table 4.11 outlines the three most preferred days of the week for nurses’ desired days

off. Similar to shift preferences, scores (DPnd) are assigned to first, second, and third-most

preferred days with values of 3, 2, and 1, respectively. For instance, Nurse 1 prefers taking
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days off on Sunday, Saturday, and Friday, corresponding to scores of 3, 2, and 1, respectively.

Days not among the preferred options receive a score of 0.

While the survey captures nurses’ general shift and day-off preferences, it is note-

worthy that they may vary based on monthly holidays. In such instances, the questionnaire

from Model I may be more suitable, as it can comprehensively capture preferences for all

days within the planning period. In Model II, nurses’ requested days off are accommodated

(Qnd) using the Constraint (4.29) in cases when they need to attend to personal matters.

Table 4.10 Nurses’ shift preferences

Nurse

(Skill)
Shifts

Shift preference

score (S Pns)

Nurse

(Skill)
Shifts

Shift preference

score (S Pns)

1 M 3 21 M 3

(5) A 2 (2) A 1

N 1 N 2

2 M 1 22 M 1

(5) A 2 (2) A 3

N 3 N 2

3 M 1 23 M 3

(5) A 2 (2) A 2

N 3 N 1

4 M 3 24 M 1

(4) A 2 (2) A 2

N 1 N 3

5 M 1 25 M 2

(4) A 2 (2) A 3

N 3 N 1

6 M 2 26 M 1

(4) A 1 (2) A 2

N 3 N 3

7 M 3 27 M 3

(4) A 1 (2) A 2

N 2 N 1

8 M 1 28 M 1

(4) A 2 (2) A 2
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Nurse

(Skill)

Preference

rank

Day-of-

week

Nurse

(Skill)

Preference

rank

Day-of-

week

N 3 N 3

9 M 3 29 M 3

(4) A 2 (2) A 2

N 1 N 1

10 M 1 30 M 1

(4) A 2 (2) A 2

N 3 N 3

11 M 3 31 M 2

(4) A 2 (1) A 3

N 1 N 1

12 M 1 32 M 2

(4) A 2 (1) A 3

N 3 N 1

13 M 3 33 M 1

(3) A 2 (1) A 2

N 1 N 3

14 M 2 34 M 3

(3) A 1 (1) A 2

N 3 N 1

15 M 2 35 M 1

(3) A 3 (1) A 2

N 1 N 3

16 M 2 36 M 2

(3) A 3 (1) A 3

N 1 N 1

17 M 1 37 M 3

(3) A 2 (1) A 2

N 3 N 1

18 M 3 38 M 2

(3) A 2 (1) A 3

N 1 N 1

19 M 1 39 M 2
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Nurse

(Skill)

Preference

rank

Day-of-

week

Nurse

(Skill)

Preference

rank

Day-of-

week

(3) A 2 (1) A 3

N 3 N 1

20 M 3 40 M 3

(2) A 1 (1) A 2

N 2 N 1

Table 4.11 Nurses’ day off preferences

Nurse

(Skill)

Preference

rank

Day-of-

week

Nurse

(Skill)

Preference

rank

Day-of-

week

1 1st Sun 21 1st Thu

(5) 2nd Sat (2) 2nd Wed

3rd Fri 3rd Mon

2 1st Sun 22 1st Sat

(5) 2nd Sat (2) 2nd Fri

3rd Fri 3rd Thu

3 1st Thu 23 1st Sat

(5) 2nd Wed (2) 2nd Fri

3rd Mon 3rd Mon

4 1st Sat 24 1st Fri

(4) 2nd Fri (2) 2nd Sat

3rd Thu 3rd Sun

5 1st Sat 25 1st Sun

(4) 2nd Fri (2) 2nd Sat

3rd Mon 3rd Fri

6 1st Fri 26 1st Sun

(4) 2nd Sat (2) 2nd Sat

3rd Sun 3rd Fri

7 1st Sun 27 1st Thu

(4) 2nd Sat (2) 2nd Wed

3rd Fri 3rd Mon

8 1st Tue 28 1st Sat

(4) 2nd Wed (2) 2nd Fri

Ref. code: 25666122300103FZD



98

Nurse

(Skill)

Preference

rank

Day-of-

week

Nurse

(Skill)

Preference

rank

Day-of-

week

3rd Mon 3rd Thu

9 1st Sat 29 1st Sat

(4) 2nd Fri (2) 2nd Fri

3rd Thu 3rd Mon

10 1st Sat 30 1st Fri

(4) 2nd Fri (2) 2nd Sat

3rd Mon 3rd Sun

11 1st Sat 31 1st Sun

(4) 2nd Fri (1) 2nd Sat

3rd Mon 3rd Fri

12 1st Fri 32 1st Sun

(4) 2nd Sat (1) 2nd Sat

3rd Sun 3rd Fri

13 1st Sun 33 1st Thu

(3) 2nd Sat (1) 2nd Wed

3rd Fri 3rd Mon

14 1st Sun 34 1st Sat

(3) 2nd Sat (1) 2nd Fri

3rd Fri 3rd Thu

15 1st Thu 35 1st Sat

(3) 2nd Wed (1) 2nd Fri

3rd Mon 3rd Mon

16 1st Sat 36 1st Fri

(3) 2nd Fri (1) 2nd Sat

3rd Thu 3rd Sun

17 1st Sat 37 1st Sun

(3) 2nd Fri (1) 2nd Sat

3rd Mon 3rd Fri

18 1st Fri 38 1st Sun

(3) 2nd Sat (1) 2nd Sat

3rd Sun 3rd Fri

19 1st Sun 39 1st Thu
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Nurse

(Skill)

Preference

rank

Day-of-

week

Nurse

(Skill)

Preference

rank

Day-of-

week

(3) 2nd Sat (1) 2nd Wed

3rd Fri 3rd Mon

20 1st Sun 40 1st Sat

(2) 2nd Sat (1) 2nd Fri

3rd Fri 3rd Thu

The next section presents the experimental results and discusses the efficacy of the

proposed model in comparison with the manually made schedule.

4.2.3 Results and discussion

This section presents the outcomes of the proposed cost-effective and satisfaction-

enhanced NSP (Model II), which was solved using the GUROBI optimizer version 9.1.2,

implemented in Python, on a 2.3 GHz Dual-Core Intel Core i5-8300H operating system.

The model can achieve optimal values for both objectives in less than a minute.

An illustrative nurse schedule output for a scenario involving 40 nurses and a 28-

day work cycle is displayed in Table 4.12. The model’s performance is assessed under

varying objective priorities to discern the impact of each objective on the other. Under the

cost-prioritized scheme, the model minimizes staffing costs before maximizing job satisfac-

tion. Conversely, the job-satisfaction-prioritized scheme maximizes the minimum satisfac-

tion score before minimizing total staffing costs. The model’s performance is evaluated using

key performance indicators (KPIs) encompassing staffing costs, workload distribution, and

preferences for both actual and optimal schedules under the two objective schemes. These

findings are summarized in Table 4.13. This comprehensive analysis sheds light on the

trade-offs between the two key objectives of the model.

As presented in Table 4.13, the optimal schedules in both settings demonstrate sub-

stantial improvements compared to the manual schedule across all key performance indi-

cators (KPIs). Under the cost-prioritized scheme, the proposed model leads to a significant

reduction of nearly 13% in total staffing costs, equivalent to approximately $4,000 in savings

for the one-month scheduling period.

Regarding workload distribution, the actual schedule assigns an average of 27 monthly

shifts for nurses, with a standard deviation of 4.44 and a wide range of 19 shifts between the

minimum and maximum. In contrast, the optimal schedule achieves a more balanced dis-

tribution of shift assignments, evidenced by the significant reduction in the average (24),
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Table 4.12 Example of nurse schedule output

Nurses D1 D2 D3 D4 D5 . . . D24 D25 D26 D27 D28
Total
shifts
(WLn)

1 O M M M M . . . M M M O M 24
2 M A N N A/N . . . A A A/N O O 24
3 N N O O A/N . . . N O O M/N N 25
4 M O M M O . . . M M O M/A M/A 23
5 A A N A O . . . N A/N O O A/N 25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 A M O A O . . . A A O O M/A 24
37 M M M M M . . . M M M O O 22
38 A A A A A . . . N A A M/A O 24
39 A O A O A . . . O O A A/N A 25
40 M O M M M/N . . . M M O O M 23

M =Morning shift, A = Afternoon shift, N = Night shift, O = Off day

Table 4.13 Comparison of KPIs of the actual and optimal schedules

Key Performance
Indicators (KPIs)

Actual schedule
Optimal schedules

Cost-prioritized
scheme

Job-satisfaction-
prioritized scheme

Total staffing cost ($) 31,465.3 27,482.3 28,845.0
Total shifts (WLn)

Min - Max 17 - 36 22 - 25 23 - 26
Range 19 3 3
Average 27.3 23.8 24.7
Standard deviation (SD) 4.44 0.98 1.2

Total Satisfaction score (T PCn)
Min - Max - 80 - 81 85 - 85
Range - 1 0
Average - 80.3 85
Standard deviation (SD) - 0.4 0

standard deviation (0.98), and range (3) of shifts.

Given that the manual schedule did not account for nurses’ preferences, the scores

cannot be evaluated. The experimental results underscore the model’s efficacy in accom-

modating nurses’ shift and day-off preferences. In the cost-prioritized scheme, nurses are

assigned an average of 24 monthly shifts, with approximately 8 days off. If all assignments

align with nurses’ most-preferred slots, the total preference score can reach 96. The average

total preference score of 80 in the cost-prioritized scheme suggests that around 83% of the

most preferred preferences are fulfilled. Moreover, the small standard deviation and range of

the score reflect a relatively equitable distribution of preferred assignments. Therefore, it is

reasonable to conclude that the model effectively and equitably addresses nurses’ shift and

day-off preferences. It is important to note that total preference scores vary among nurses

Ref. code: 25666122300103FZD



101

based on the number of shifts and days off allocated. A higher allocation of shifts and days

off contributes to a correspondingly higher total preference score.

In the job-satisfaction-prioritized scheme, nurses can achieve total preference scores

as high as 85, indicating a more satisfactory and equitable schedule. However, this comes

with a corresponding increase in total staffing costs to $28,845, representing an approximate

5% increment. This finding highlights the trade-off between staffing costs and the enhance-

ment of job satisfaction. These results can provide decision-makers with valuable insights

into balancing staffing costs and attaining higher and more equitable job satisfaction among

nurses, enabling them to tailor objectives to align with their policies.

For enhanced visualization, Figures 4.4 and 4.5 illustrate the distribution of workload

allocations in both the manual and optimal schedules under the cost-prioritized scheme. The

optimal schedule exhibits a more consistent workload distribution than the actual schedule.

Additionally, Figure 4.6 presents a frequency histogram depicting the distribution of total

preference scores among nurses.

Based on the experimental findings, the proposed model effectively yields cost-

effective, satisfactory, and equitable scheduling outcomes. The model’s time complexity

is evaluated by generating 28-day schedules for varying department sizes, ranging from 20

to 100 nurses. Remarkably, the optimal solutions are obtained within a minute for all in-

stances. This rapid solving time enables the scheduling process to be highly responsive to

last-minute changes in requests or preferences when employing the proposed model.

Figure 4.4 A comparison of workload distribution among nurses between actual and
optimal schedules
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Figure 4.5 Workload assignments between the actual and optimal schedules by nurses

Figure 4.6 Distribution of the total preference score among nurses of the optimal schedule
under the cost-prioritized scheme

4.2.4 Conclusion

The proposed cost-effective and satisfaction-enhanced NSP (Model II) represents a

pioneering approach that simultaneously considers multiple job satisfaction factors and eco-

nomic aspects. The objective is to generate a cost-efficient schedule aligned with nurses’

preferences for shifts and days off while ensuring an equitable workload and preferred as-

signment distribution. The model is proposed as a bi-objective MILP and solved with the

lexicographic optimization approach using the data collected from an actual hospital case of

an ED at a large-scale public hospital in Thailand.

The experimental findings underscore the model’s ability to enhance cost savings
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and job satisfaction, surpassing outcomes achievable through manual scheduling. Moreover,

the trade-off analysis highlights the potential for achieving higher and more equitable to-

tal preference scores among nurses by incurring incremental costs. This insight can help

decision-makers strategically prioritize objectives that align with their organizational goals.

In addition, the model can generate a monthly schedule for varying department sizes of 20

to 100 nurses within one minute, highlighting its responsiveness in accommodating urgent

scheduling requirements.

To summarize, this chapter presents the development of the two satisfaction-enhanced

NSP models. Model I introduces a novel NSP approach that integrates fairness aspects in

workload and preferred assignment distributions, an unexplored aspect in the existing lit-

erature. Employing a goal programming technique, the model aims to balance workload,

preferred shifts, and day-off assignments among nurses. The model demonstrates its effi-

cacy in generating satisfactory scheduling outcomes through a case study of an OR depart-

ment in a medium-sized private hospital in Pathum Thani, Thailand. The findings show that

the model successfully fulfills nurses’ preferences while ensuring equitable workload and

preferred assignment allocations, surpassing the performance of the actual schedule across

various operational scenarios.

Model II presents a significant advancement by incorporating an economic perspec-

tive into the NSP alongside comprehensive satisfaction-enhanced factors. This model adopts

the lexicographic optimization technique to minimize costs while maximizing the fulfillment

of nurses’ shift and day off preferences. The model’s validation using a real-world case

from an ED at a large-scale public hospital in Pathum Thani, Thailand, showcases its ca-

pacity to reduce staffing expenses while equitably accommodating nurses’ shift and day-off

preferences. Both proposed NSP models exhibit efficient computation times, promptly gen-

erating satisfactory and equitable scheduling outcomes for instances of varying sizes. The

NSP models introduced in this chapter serve as practical decision-support tools that can be

seamlessly integrated into hospital scheduling processes, offering enhanced efficiency and

fairness without substantial software investment.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Concluding remarks

This dissertation presents innovative workforce scheduling approaches to improve

well-being and job satisfaction in industrial and healthcare contexts. The contributions of

this work span both academic and practical dimensions, providing fundamental concepts and

valuable decision-support tools for researchers and practitioners.

In industrial applications, the significance of job rotation scheduling is emphasized

as a means to reduce excessive hazard exposure and achieve multifaceted benefits. Two job

rotation scheduling models have been developed to address worker noise safety, productivity,

skill development, and job satisfaction. The first model addresses critical scheduling factors

such as safety, worker-task skill alignment, productivity, and demand requirements. It serves

as a comprehensive scheduling approach, ensuring worker safety and efficient production in

demand-driven manufacturing operations. The second model explores the advantages of safe

job rotation in promoting worker multi-skill development and reducing production losses due

to monotony-induced boredom. Numerical examples have validated and demonstrated the

efficiency of both proposed models in achieving worker safety, productivity, and multi-skill

development objectives. These models establish the groundwork for future research and

serve as theoretical validation for practical implementations, underscoring the essential role

of job rotation scheduling in industrial workforce management.

In healthcare applications, the proposed satisfaction-enhanced nurse scheduling mod-

els address the critical issue of nurse shortages by focusing on job satisfaction and fair-

ness. These models provide a guideline for hospitals to create efficient and satisfactory work

schedules that align with nurses’ individual preferences and operational requirements. Data

collected from actual hospital cases are used to validate the models against manually created

schedules. Results showcase their capability to generate more satisfactory and fair nurse

schedules within negligible time. These proposed satisfaction-enhanced nurse scheduling

approaches can serve as practical decision-making tools, assisting head nurses in generating

schedules that accommodate nurses’ personal needs while maintaining economic perfor-

mance. Hospitals can integrate these models into their scheduling processes by tailoring

objective functions and constraints to ensure cost-effectiveness, satisfaction, and equitable
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work schedules. Positive scheduling outcomes are anticipated to play a pivotal role in nurse

retention, thereby mitigating the challenges posed by nurse shortages prevalent in hospitals.

Furthermore, our workforce scheduling models are versatile and adaptable to various

application domains. In the manufacturing sector, the models can be adjusted to accommo-

date different occupational hazards or expanded to account for multiple hazards simultane-

ously. Meanwhile, our nurse scheduling models can also be applied to personnel scheduling

with around-the-clock work patterns. These models provide a robust framework for address-

ing scheduling challenges while optimizing multiple dimensions of worker well-being.

While experiments have showcased the efficacy of the proposed models, there re-

mains scope for further enhancement and fine-tuning to facilitate their seamless implementa-

tion into real-world scenarios. This dissertation serves as a foundation for ongoing progress

in workforce scheduling research, supplementing the knowledge that future studies can build

upon.

In conclusion, this dissertation underscores the importance of workforce scheduling

and its potential to drive positive transformations in the work environment. The method-

ologies and findings documented herein are believed to benefit researchers and practitioners

alike in their pursuits to enhance safety, satisfaction, and productivity across various sectors,

including manufacturing and healthcare. This work provides significant academic contri-

butions to the fields of occupational safety and industrial human resource management, and

healthcare personnel management. It can be used as a basis for future research in these areas.

5.2 Dissertation contributions

This section outlines the academic and practical contributions of this dissertation in

the field of workforce scheduling for industrial and healthcare applications.

5.2.1 Academic contribution

All model formulations and experimental findings have been documented in confer-

ence proceedings and international journal articles. This dissertation provides an up-to-date

understanding of noise-safe job rotation scheduling and satisfaction-enhanced nurse schedul-

ing fields and strengthens their practical application value.

Practitioners and researchers can use the proposed models as guiding principles to

enhance workforce scheduling approaches, promote employee well-being, and improve job

satisfaction. These holistic approaches can be incorporated into future research to advance

these study areas further. Significant academic contributions to the fields of occupational

safety, industrial human resource management, and healthcare personnel management are
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described below.

Occupational safety and industrial human resource management

This dissertation presents novel insights into workforce scheduling, focusing on oc-

cupational safety and industrial human resource management. Workforce scheduling is a

fundamental aspect of human resource management, encompassing the efficient allocation

of workers to tasks and time slots to optimize operational objectives. Job rotation scheduling

is a branch of workforce scheduling that assigns workers to specific time slots and various

tasks. Rotating workers through multiple tasks can reduce excessive hazard exposure and

provide safer working conditions. Workers’ safety is essential to industrial human resource

management, especially for labor-intensive industries with harsh working environments.

The first noise-safe job rotation model considers crucial scheduling factors, such

as safety, skill, productivity, and demand requirements, which have yet to be simultane-

ously accounted for in existing literature. This model integrates worker-task skill matching,

demand-driven production, and overtime assignments. The experimental results validate the

model’s ability to ensure worker safety even during extended work hours while maintain-

ing the necessary production levels to meet production demand. Additionally, our findings

underscore a valuable insight: the presence of expert workers within the system positively

influences worker safety, emphasizing the importance of worker development programs in

human resource management.

Moreover, the second noise-safe job rotation model explores the multifaceted ben-

efits of job rotation, including hazard exposure mitigation, worker cross-training, and job

satisfaction enhancement. This simultaneous consideration of these vital aspects remains

unexplored in the existing literature, contributing toward seamlessly integrating occupational

safety measures with industrial human resource management. The model generates job ro-

tation schedules that not only protect workers from excessive noise exposure but also foster

their horizontal skill development, addressing the challenges posed by trade-offs between

safety and multi-skill development. It addresses the challenges associated with trade-offs

between safety and multi-skill development. Moreover, this model accounts for the forget-

ting effect and monotony-induced job dissatisfaction, enhancing its practical applicability.

The proposed noise-safe job rotation models offer a foundation for advancing work-

force scheduling research in industrial sectors, aiming to enhance worker well-being while

maintaining production competitiveness. They supplement industrial human resource man-

agement knowledge by ensuring improved worker safety and fostering professional devel-

opment. While the models primarily focus on noise control, they can be extended to various
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occupational hazards such as ergonomics, heat, vibration, or chemical substances. By adjust-

ing hazard evaluations and limits, the models can accommodate diverse work environments

and multi-limit occupational hazards.

Healthcare personnel management

In healthcare personnel management, our dissertation contributes to existing knowl-

edge on nurse scheduling approaches to enhance job satisfaction. The nurse shortage issue

emerges due to demanding and shift work conditions, which poses a significant challenge

in healthcare personnel management. We propose novel NSP models encompassing the

consideration of comprehensive satisfaction-enhancing factors, with particular emphasis on

multiple fairness aspects to ensure satisfactory and fair work schedules for nurses as a means

to subside their intention to leave.

The NSP Model I incorporates nurses’ shift and day preferences alongside consid-

erations for fairness in workload distribution and preferred assignment allocations. This

approach enriches the previous NSP models that only focus on fairness in either workload

or desirable assignments, resulting in schedules that may not be perceived as fair. Model I

ensures that nurses’ workloads and preferred assignments are distributed equally. The model

was tested using data collected from an actual hospital case study and effectively produced

satisfactory and equitable scheduling outcomes.

In addition, this dissertation introduces NSP Model II, which builds on Model I by

including cost minimization as an objective. This considers the importance of the economic

dimension of nurse scheduling, making it a more practical and cost-effective solution. Ex-

perimental results demonstrated a trade-off between cost and job satisfaction, enhancing un-

derstanding for researchers or practitioners to develop approaches that offer more promising

solutions in both economic and satisfaction-enhance aspects.

These NSP models have been developed to enhance the job satisfaction and working

conditions of healthcare personnel, with a particular focus on nurses. The models priori-

tize individual preferences and fairness factors, which are crucial for the overall well-being

of nurses and can be a foundation for future research to accommodate for comprehensive

factors. Although this dissertation mainly focuses on nurse scheduling, the models can be

adapted to other medical personnel scheduling research with minor modifications.

5.2.2 Practical contribution

This section describes the practical contributions of this dissertation within the do-

mains of human resource management for manufacturing and healthcare sectors. It also
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discusses the practical implementation and implications for other application domains.

Enhancing worker safety in manufacturing industries

This dissertation emphasizes the importance of job rotation scheduling for the safety

of workers in manufacturing industries. The proposed model considers workers’ diverse

skills and the skill requirements of their tasks. This makes the model adaptable for use in

manufacturing systems requiring worker-task skill matching under demand-driven produc-

tion conditions to ensure worker safety and productivity.

Furthermore, this research demonstrates that employers can leverage job rotation to

foster multi-skill development and boost worker motivation while maintaining job safety and

satisfaction. The study highlights that well-designed job rotation scheduling programs can

effectively achieve these fundamental pillars of human resource management.

The proposed job rotation models can serve as valuable decision-support tools for

manufacturing industries aiming to enhance worker well-being and skill development. Decision-

makers seeking to implement job rotation within their workplace can utilize these models as

practical guidelines, customizing them as necessary to align with the specific requirements

of their manufacturing settings.

Enhancing nurses’ job satisfaction in healthcare

This dissertation underscores the critical role of enhancing nurses’ job satisfaction as

a crucial solution to address the ongoing nurse shortage issue. Thoughtfully designed nurse

scheduling approaches enable decision-makers to consider workload allocation, nurses’ job

satisfaction factors, and fairness while complying with hospital regulations and economic

requirements.

The proposed satisfaction-enhanced NSP models account for nurses’ diverse per-

sonal preferences in shifts or days off, aligning them with individual lifestyles. Such a con-

sideration encourages nurses to have some degree of job autonomy and allows them to design

work schedules to suit their needs. Furthermore, the models ensure scheduling fairness in

both workload distribution and preferred assignment allocation, enhancing their practicality

for real-world implementation.

This dissertation also demonstrates that balancing cost minimization and job satisfac-

tion enhancement through our nurse scheduling approach is possible, even though trade-offs

between these aspects may exist. Our model allows decision-makers to customize objective

goal values or priorities to reflect their preferences and operational needs.

These proposed models can be seamlessly integrated into hospital scheduling pro-
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cesses as decision-support tools. Hospital administration can tailor model components to

align with their operational systems. For instance, the input and regulations-related param-

eters can be adjusted based on the scale of departments, desired planning period, or opera-

tional requirements. Hospitals can efficiently utilize the proposed NSP models to generate

high-quality work schedules that positively affect nurses’ well-being and job satisfaction.

This enables head nurses to allocate their time and effort to other critical administrative

tasks.

Enriching workforce sustainability development

This dissertation underscores the pivotal role of workforce sustainability develop-

ment and introduces scheduling approaches to foster the achievement of workforce sustain-

ability goals. Based on the work by Karakhan et al. (2020), various dimensions of workforce

sustainability are recognized, including:

1. Nurturing: The extent to which the workplace offers support, education, and training

to facilitate employee growth.

2. Diversity: The extent to which the workplace embraces an inclusive workforce, en-

compassing differences in ethnicity, background, demographics, and cultural diversity.

3. Equity: The extent to which the workplace ensures equal treatment, accommodates

needs fairly and evaluates employees without biases.

4. Health and well-being: The extent to which the workplace prioritizes a safe working

environment, emphasizing employees’ physical and mental well-being and satisfac-

tion.

5. Connectivity: The extent to which the workplace encourages relationships, collabo-

rations, and employee interactions.

6. Value: The extent to which the workplace acknowledges, appreciates and respects

employees for their contributions, work performance, and commitment.

7. Community: The extent to which the workplace nurtures team bonding, fostering

acceptance and support among employees.

8. Maturity: The extent employees share competency, responsibility, and accountability

in problem-solving and decision-making processes.
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This dissertation actively contributes to nurturing, equity, and health and well-being

attributes. The proposed job rotation model, which considers multi-skill development, pro-

vides comprehensive training opportunities for workers, nurturing their career growth.

Addressing equity, the proposed nurse scheduling models offer guidelines for achiev-

ing enhanced fairness in the workplace through improved workforce scheduling practices.

Ultimately, all proposed models promote health and well-being by enhancing many key as-

pects of worker safety, well-being, work-life balance, and overall job satisfaction.

Practical implementation

All proposed models were implemented using widely accessible tools, primarily Mi-

crosoft Excel, and for those who prefer coding, Jupyter Notebook or Google Colab. Mi-

crosoft Excel, a user-friendly office tool familiar to professionals in various sectors, serves

as a convenient platform for model implementation. By utilizing optimization solvers like

OpenSolver (free) or Gurobi (commercial license required) within Microsoft Excel, these

models can efficiently generate job rotation or nurse schedules for medium- to large-sized

manufacturing plants or hospital departments. Although implementing the scheduling mod-

els in Microsoft Excel does not demand extensive coding skills, a basic understanding of

spreadsheet and solver manipulation is required. This approach provides a cost-effective so-

lution for companies with Microsoft Office subscriptions, eliminating the need for dedicated

scheduling software.

In the experiments, OpenSolver and Gurobi integrated with Microsoft Excel can

swiftly generate job rotation and nurse schedules with negligible processing time for most

scenarios. However, for complex problems involving aspects like worker learning and for-

getting, it may be advisable to consider alternative solving approaches, such as heuristics

or metaheuristics. These advanced methods may not be fully supported within Microsoft

Excel’s environment.

Additionally, for those who prefer a more programming-oriented approach, Jupyter

Notebook or Google Colab, open-source platforms supporting multiple programming lan-

guages, can also be employed for model implementation. In Jupyter Notebook or Google

Colab, the optimization technique can be implemented through the Gurobi or CPLEX op-

timization library. Heuristics and metaheuristic approaches such as RGA or GA offer flex-

ibility and the capability to handle more complex and larger problems. These approaches

can be effectively applied to the job rotation model involving the worker learning-forgetting

aspect. GA may take longer to generate optimal solutions due to its multiple genetic op-

erators required in each generation. Decision-makers can employ other metaheuristics that
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offer shorter solution times based on their specific needs.

Implications for other application domains

The workforce scheduling models presented in this dissertation are designed to be

versatile decision-support tools that can be adapted for scheduling processes across different

sectors with minimal modifications.

Noise-safe job rotation models can be readily applied to industries sharing similar

scheduling patterns. These models accommodate the rotation of workers among multiple

tasks within a workday or over specific periods, enhancing safety, multi-skill development,

and work motivation. Managers can customize the model to address specific hazard controls

or learning-forgetting aspects relevant to their context. The hazard control constraints can

be adjusted to accommodate specific occupational hazards encountered in various settings.

The proposed nurse scheduling models can be implemented in different hospital de-

partments or other hospitals requiring only parameter adjustments such as shift lengths,

planning periods, or specific hospital regulations. Furthermore, their versatility extends to

scheduling other personnel working around the clock, including physicians, security guards,

gas station attendants, and hotel front staff. For instance, challenges in staffing hotel front

desks share similarities with nurse scheduling, encompassing concerns such as staffing cov-

erage, schedule quality, staffing cost, and fairness.

The proposed workforce scheduling models incorporate a standard set of constraints

frequently encountered in personnel scheduling problems, encompassing work-hour or days

off requirements and staffing coverage criteria. For around-the-clock work systems, it is

advisable to include forbidden shift pattern constraints to ensure that staff receive sufficient

rest. The consideration of differences in skill levels and skill requirements can be tailored

to match the specific demands of various job natures. Decision-makers can include or omit

specific constraints or conditions to align with the unique requirements of their applications.

In conclusion, the versatility of these workforce scheduling models renders them

handy decision-support tools with applicability across a wide range of sectors. Whether mit-

igating noise hazards or enhancing job satisfaction, their capabilities empower practitioners

and researchers to address scheduling challenges in diverse domains while optimizing oper-

ational efficiency and employee well-being.

5.3 Limitations and future works

While the experiments confirm the effectiveness of the proposed scheduling ap-

proaches, there exist limitations and avenues for future research and improvement.
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5.3.1 Noise-safe job rotation scheduling approaches

While both noise-safe job rotation models have demonstrated their effectiveness in

ensuring worker safety, productivity, job satisfaction, and skill development, they still pos-

sess inherent limitations that warrant further refinement for practical application.

Firstly, these models are primarily designed to address noise hazard exposure and

may not consider other potential occupational hazards in the work environment. Future

research should focus on extending the models to account for multiple occupational hazards

simultaneously, enhancing workplace safety comprehensively. This may involve considering

factors such as heat stress, vibration, and ergonomic risks, ensuring a more holistic approach

to worker safety.

The current models are equipped with strict noise constraints and are most suitable

for systems involving combinations of tasks with varying noise levels. They may encounter

limitations when applied to scenarios where all tasks consistently have high noise levels,

potentially resulting in infeasible schedules. Future enhancements could involve reformu-

lating strict noise constraints as objectives, allowing more flexibility in handling hazards.

Alternatively, noise limits can be relaxed when other hazard control measures are readily

implemented.

Another critical aspect is the estimation of worker learning, forgetting, and boredom

rates. These parameters are derived from theoretical estimates by the existing literature,

which may not fully align with their influences on real-world worker production perfor-

mance. Future research can aim to improve the estimation of these values, making them

more reflective of actual worker dynamics and their influence on production performance.

Regarding model evaluation, the efficiency of the job rotation models is assessed by

comparing scenarios with rotation and without rotation in terms of safety and productivity

performance. To rigorously test the models, they can be benchmarked against other existing

models in the literature or employ system simulation to evaluate their effectiveness.

Furthermore, while job rotation models provide valuable insights, their practical im-

plementation in real-world cases remains limited due to their complexity and potential dis-

ruptions to production processes. Finding cooperative cases for implementation can be chal-

lenging. Therefore, there is a need for further refinement of these models to ensure their

practicality and ease of implementation in industrial settings. Future research efforts should

focus on bridging the gap between theory and practice by conducting real-world case studies

to gain insights into job rotation’s potential impacts and benefits.

In conclusion, future research should address these limitations, expand the applica-
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bility of job rotation models to diverse hazards, improve parameter estimation, and prioritize

practical implementation. This will provide actionable insights for enhancing workplace

safety, productivity, and worker well-being in real-world manufacturing environments.

5.3.2 Satisfaction-enhanced nurse scheduling approaches

While both NSP models demonstrate efficiency, they have limitations that warrant

further exploration for improved practicality and fairness. The current models primarily

focus on assigning nurses to shifts, which may not fully encompass the complexities of

nurse-team or nurse-role allocations, as seen in some hospitals. Future research should delve

into these aspects to enhance the models’ capabilities.

In terms of fairness, the current models address it within a single planning horizon

but may fall short of ensuring long-term fairness. Continuous use of the models can lead

to situations where some nurses consistently receive less preferred assignments. To address

this, future research should incorporate historical assignments into the scheduling process,

prioritizing nurses who have received less favorable assignments in the past. Additionally,

the models assume fairness for all nurses regardless of their levels, whereas nurses with dif-

ferent levels may have varying work-hour contracts. Future research can employ hierarchical

fairness models to align with practical considerations, ensuring fairness only among nurses

with similar levels and conditions.

The satisfaction-enhanced models proposed primarily consider individual prefer-

ences for shifts and days off. Nevertheless, there is potential for further refinement by

incorporating additional preference aspects, such as nurse affinities or preferences for spe-

cific shift patterns when working two daily shifts. By doing so, the working atmosphere

can be improved by catering to specific scheduling preferences. This can make scheduling

approaches enhance overall job satisfaction among nurses more efficiently.

Finally, while our models were developed under deterministic assumptions of pa-

rameters, they do not consider inherent uncertainties in hospital operations, such as patient

volume fluctuations or sudden nurse absences. To address this, future research can intro-

duce uncertainty considerations during the scheduling stage. This proactive approach can

minimize understaffing risks and mitigate adverse rescheduling impacts, resulting in more

resilient and less disruptive nurse schedules.

In summary, the current satisfaction-enhanced nurse scheduling models provide a

solid foundation but offer areas for further refinement. Exploring nurse-team assignments,

long-term fairness considerations, individual preferences, and uncertainty handling can fur-

ther enhance the practicality and effectiveness of these scheduling approaches.
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Lorenzo-Espejo, A., Muñuzuri, J., Onieva, L., & Cortés, P. (2021). Scheduling Consecutive

Days Off: A Case Study of Maritime Pilots. Computers & Industrial Engineering,

155, 107192. https://doi.org/10.1016/J.CIE.2021.107192

Ref. code: 25666122300103FZD



123
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