

A SECURE, TRACEABLE, AND EFFICIENTLY

REVOCABLE CLOUD-BASED ACCESS CONTROL

SCHEME USING CIPHERTEXT POLICY ATTRIBUTE-

BASED ENCRYPTION AND BLOCKCHAIN

BY

KHANADECH WORAPALUK

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE (ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2023

Ref. code: 25666422040060GIV

(1)

Thesis Title A SECURE, TRACEABLE, AND

EFFICIENTLY REVOCABLE CLOUD-

BASED ACCESS CONTROL SCHEME USING

CIPHERTEXT POLICY ATTRIBUTE-BASED

ENCRYPTION AND BLOCKCHAIN

Author Khanadech Worapaluk

Degree Master of Science (Engineering and Technology)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Thesis Advisor Assistant Professor Somchart Fugkeaw, Ph.D.

Academic Years 2023

ABSTRACT

Ciphertext Policy Attributed-based Encryption (CP-ABE) is considered as

a suitable solution for supporting secure and fine-grained access control for outsourced

data. Considering the revocation problem in cloud-based access control, existing

revocable CP-ABE based schemes still have limitations. First, most solutions did not

support both user and attribute revocation with auditability of revocation transactions.

Second, they still relied on data owners or data users to generate the crypto components

such as ciphertext update key to support the revocation process, resulting in the

dependency of the availability of the data owner and computation overhead in both the

data owner and the data user. Third, they did not provide the formal procedure for

invoking the affected ciphertexts. Finally, most of them did not tackle the attributes

hiding to support privacy-preserving policy outsourcing. To this end, we proposed a

cloud-based access control scheme by leveraging CP-ABE, AES symmetric encryption,

and blockchain technology to deliver an efficient user and attribute revocation with the

ciphertext retrieval mechanism and transaction traceability. In addition, we introduced

the attribute hiding method based on hidden vector encryption (HVE) to preserve the

privacy of access policy content. To evaluate the efficiency of our proposed scheme,

we conducted experiments to show that our proposed scheme is efficient and practical

for real implementation.

Ref. code: 25666422040060GIV

(2)

Keywords: Access Control, CP-ABE, Blockchain, Attributes Hiding, Symmetric-Key

Cryptography

Ref. code: 25666422040060GIV

(3)

ACKNOWLEDGEMENTS

I want to express my deepest gratitude to everyone who provided me with

invaluable support and assistance throughout the completion of this thesis. With their

contributions, this graduate degree is possible.

First of all, words cannot express my gratitude to my thesis advisor,

Dr.Somchart Fugkeaw, who provided invaluable support and technical guidance

throughout my graduate studies. His encouragement and inspiration kept me on track

in my research, even when I lost myself when facing many problems during the

research. Furthermore, he has always been willing and enthusiastic to assist me in every

way possible. He was the first person who taught me the formal methods of scientific

research and the principles of academic paper writing. I am highly grateful for the

opportunity he gave me to choose a research topic that can open a path for my future

career, precisely blockchain-based access control with CP-ABE and cyber security

awareness. I appreciate his insightful suggestions and technical guidance, which have

significantly contributed to my research output, including this thesis and research

papers. With his help, this thesis and my research paper were possible.

Likewise, I would like to extend my sincere thanks to my thesis committee

members, Dr.Suratose Tritilanunt and Dr.Somrudee Deepaisarn, for giving valuable

suggestions on the research which were crucial for the improvement of this thesis.

Besides, I would like to extend my special thanks to my senior, Mr.Pattavee

Sanchol, who helped me set up the experimentation environment, helped me debug the

benchmark, and suggested the experimentation.

Additionally, I would like to thank Sirindhorn International Institute of

Technology for providing me with the Faculty Quota Scholarship for my master’s

degree. The scholarship was an enormous contribution to my post-graduate study.

Lastly, I would be remiss not to mention my family and friends. Their support

has been a valuable source of keeping my spirits and motivation high during my study.

Khanadech Worapaluk

Ref. code: 25666422040060GIV

(4)

TABLE OF CONTENTS

Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (3)

LIST OF TABLES (6)

LIST OF FIGURES (7)

LIST OF SYMBOLS/ABBREVIATIONS (8)

CHAPTER 1 INTRODUCTION 1

1.1 Background Information 1

1.2 Problem statement 3

1.3 Our contributions 3

1.4 Organization of this thesis 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Attribute-based Access Control (ABAC) 5

2.2 Identity-based Encryption (IBE) 5

2.3 Attribute-based Encryption (ABE) 6

2.4 Non-Blockchain Cloud-based Access Control 7

2.5 Cloud-based Access Control with Blockchain Integration 8

CHAPTER 3 PRELIMINARIES 17

3.1 Blockchain 17

3.2 Smart Contract 19

3.3 Bilinear Mapping 19

3.4 Advance Encryption Standard (AES) 20

Ref. code: 25666422040060GIV

(5)

3.5 Rivest-Shamir-Adleman Cryptosystem (RSA) 23

3.6 Hidden Vector Encryption (HVE) 24

CHAPTER 4 OUR PROPOSED SCHEME 27

4.1 System Overview 27

4.2 Ciphertext-Attribute-User Ethereum Account Mapping 29

4.3 Attributes Hiding 29

4.4 Smart Contract Design 31

4.5 Cryptographic Constructs 36

CHAPTER 5 SECURITY ANALYSIS 47

5.1 Security Model of our proposed scheme 47

5.2 Security Proof of our proposed scheme 49

5.3 Forward Security 53

5.4 Backward Security 53

5.5 Confidentiality of Ciphertexts on Cloud and Blockchain Storage 53

5.6 Proxy’s Key Security 53

CHAPTER 6 COMPARATIVE ANALYSIS AND EVALUATION 54

6.1 Functionality Analysis 54

6.2 Computation Cost Analysis 55

6.3 Communication Cost Analysis 56

6.4 Storage Cost Analysis 59

6.5 Experimental Analysis 60

CHAPTER 7 CONCLUSION AND FUTURE WORK 70

REFERENCES 71

BIOGRAPHY 76

Ref. code: 25666422040060GIV

(6)

LIST OF TABLES

Tables Page

3.1 Attributes Vector Table Example 26

4.1 Attributes Vector Table Example 30

4.2 Notation used in our model 36

6.1 Notation for comparative analysis section 54

6.2 Functional Comparison 55

6.3 Computation Cost Comparison 55

6.4 Communication Cost Comparison 57

6.5 Storage Cost Comparison 59

Ref. code: 25666422040060GIV

(7)

LIST OF FIGURES

Figures Page

2.1 Taxonomy of A Cloud-based Access Control with Blockchain Integration 9

2.2 A permission-less blockchain in cloud 10

2.3 A permission-based blockchain in cloud 14

3.1 Blockchain Block Structure 18

4.1 System Model 28

4.2 Ciphertext-Attributes-User Ethereum Account Mapping Model 29

4.3 Attribute-Tree with Attribute Hiding 31

4.4 User Revocation Process Diagram 41

4.5 Attribute Revocation Process Diagram 44

6.1 Encryption Performance 62

6.2 Decryption Performance 62

6.3 User Revocation Performance based on number of attributes in policy 64

6.4 Attribute Revocation Performance based on number of attributes in policy 64

6.5 User Revocation Performance based on number of ciphertexts 66

6.6 Attribute Revocation Performance based on number of ciphertexts 66

6.7 Query Performance Per Attribute 68

6.8 Revocation Performance with Query Time 68

Ref. code: 25666422040060GIV

(8)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

AA Attribute-Authority

ABE Attribute-based Encryption

ABAC Attribute-based Access Control

AES Advanced Encryption Standard

CP-ABE Ciphertext-Policy Attribute-base

 Encryption

CTM Data Ciphertext

CTK Key Ciphertext

CTSK,DU DU’s Key Ciphertext

DO Data Owner

DU Data User

HVE Hidden Vector Encryption

IBE Identity-based Encryption

IPFS Interplanetary File System

KP-ABE Key-Policy Attribute-base

Encryption

MSK Master Secret Key

PRE Proxy-Re-Encryption

PRX Proxy

PK Public-Key

RSA Rivest-Shamir-Adleman Public-Key

Cryptosystem

RSADU,PubK Data User RSA public key

RSADU,PrivK Data User RSA private key

SHA Secure Hash Algorithm

SKDU User’s Secret Key

SKProxy Proxy’s Secret Key

Ref. code: 25666422040060GIV

1

CHAPTER 1

INTRODUCTION

This chapter provides background information of cloud computing, cloud-based

access control, problem statements, and our contributions to the thesis.

1.1 Background Information

Cloud computing has shifted the traditional information technology operation

from requiring essential resources available on-premises to the service-based platform

where the computing resources are provided by the cloud service providers. Cloud

service offers resilient and unlimited computational resources with zero operation and

maintenance costs. One of the key services cloud providers offer is cloud storage or

storage as a service where enterprises or data owners can outsource and share their data

with multiple users. Although the cloud storage service renders flexibility and

accessibility for data sharing, security and privacy are of paramount concern. To this

end, CSPs usually provide a basic access control system and auditing function for their

subscribers (Z. Ying, L. Wei, Q. Li, X. Liu, and J. Cui, 2018). Nevertheless, the

providers are still regarded as “honest but curious,” and the degree of user control of

their data is limited. Consequently, additional security mechanisms such as encryption,

data integrity checking, and authorization policy enforcement are essential, especially

when the outsourced data is sensitive.

In addition to the strong authentication generally provided by the cloud, ABAC

access control (V. Hu et al., 2014) and cryptographic-based access control that

integrates fine-grained authorization enforcement and encryption are desirable to

support security and privacy for outsourced data. Implementing both an access control

environment and encryption requires double operation and administrative costs, such

as the expense of access policy management and key management.

To date, CP-ABE has been regarded as an effective cryptographic-based access

control approach for data outsourcing environments since it encompasses both

authorization and encryption features. CP-ABE offers one-to-many encryption,

Ref. code: 25666422040060GIV

2

allowing the data owner to encrypt the data as a single ciphertext for multiple users. In

CP-ABE, the data owner is able to define the access structure or policy constructed

from a set of attributes through the logical gates AND, OR, M of N to encrypt the data.

The data users with the secret key with attributes that satisfy the policy can decrypt the

ciphertext. Here, it offers secure and fine-grained data access control. Nevertheless,

user revocation and attribute revocation are non-trivial in CP-ABE-based access

control. There are subsequent costs, including ciphertext re-encryption, key re-

generation, and key re-distribution, that occur from both revocation levels.

Existing CP-ABE-based access control schemes that support revocation

generally focus on the design and development of the revocation mechanism either by

the ciphertext update (R. Guo, G. Yang, H. Shi, Y. Zhang, and D. Zheng, 2021; Y.

Jiang, X. Xu, and F. Xiao, 2022) or the ciphertext re-encryption (X. Liu, Y. Zheng, and

X. Li, 2021; X. Wang et al., 2021; S. Fugkeaw & S. Sato, 2017; S. Maiti & S. Misra,

2020; D. Sethia, A. Shakya, R. Aggarwal, and S. Bhayana, 2019; X. Wang, Y. Chi, and

Y. Zhang, 2020) with the proposed user key update methods. For the ciphertext update,

the data owner and/or the data user needs to generate a ciphertext update key or a

ciphertext transformation key and send it to the cloud to update the affected ciphertexts.

This deals with the processing cost of bilinear pairing and the communication cost for

transferring crypto objects. For ciphertext re-encryption, the proxy is employed to

support ciphertext re-encryption if there is a revocation case. In this method, the proxy

is typically given a decryption key and encryption components to use in the re-

encryption process. This deals with the handling of the secure delegation of decryption

key and encryption components to the proxy.

Recently, blockchain (M. Xu, X. Chen, and G. Kou, 2019) has been integrated

into the existing access control systems (R. Kumar, B. Palanisamy, and S. Sural, 2021;

X. Liang, N. An, D. Li, Q. Zhang, and R. Wang, 2022; S. Fugkeaw, 2022) to achieve

the additional requirements mentioned above. It structurally stores data in a series of

blocks where multiple blocks are chained together based on the hashing method.

Therefore, auditability, integrity preservation, transparency, and accessibility are key

benefits offered by the blockchain. Blockchain-as-a-Service (W. Zheng et al., 2019)

Ref. code: 25666422040060GIV

3

has become the alternative service that many cloud service providers provide to their

customers. Empowering cloud-based access control with robust decentralized

authentication, immutable records of access transactions, and the assisted revocation

function is also promising.

1.2 Problem statement

Existing revocable cloud-based access control solutions employ CP-ABE as

their core cryptographic construct. However, there are four major problems that have

not been resolved in an integrated manner.

1. Inability to support both user and attribute revocation with full traceability of

revocation transaction.

2. The dependency on the data owner and/or the data user to generate

cryptographic components to support the revocation process.

3. Lack of attributes hiding mechanism while the access policy needs to be used

in the cloud environment.

4. Lack of formal search or invocation of affected ciphertexts that need to be

updated or re-encrypted when the revocation occurs.

1.3 Our contributions

The contributions of our proposed scheme are summarized as follows.

1. Our proposed scheme provides the first attempt providing efficient attribute and

user revocation with efficient key update mechanism in the blockchain-cloud

based access control setting.

2. We devised the policy hiding method based on hidden vector machine that

enables privacy-preserving policy enforcement with no additional computation

overhead compared to traditional CP-ABE scheme.

3. Our proposed novel ciphertext-attribute-user Ethereum account mapping

technique is practical for optimizing the ciphertext re-encryption cost when

there is a revocation case in a large-scale data sharing.

Ref. code: 25666422040060GIV

4

4. We performed security analysis to substantiate that our proposed scheme is

secure under the general security model as well as the proposed revocation

technique supports both backward and forward security.

5. We conducted the experiments in real cloud and Ethereum blockchain

environment where there are a high number of ciphertexts and access requests.

1.4 Organization of this thesis

The organization of this thesis is structured as follows. Chapter 2 discusses the

related literature. Chapter 3 presents the preliminaries. Chapter 4 shows the components

and construction of our proposed scheme. Chapter 5 explains the security analysis of

our proposed scheme. Chapter 6 presents the comparative analysis of our proposed

scheme and related works. Finally, the concluding remarks regarding our proposed

scheme and possible future work are given in Chapter 7.

Ref. code: 25666422040060GIV

5

CHAPTER 2

LITERATURE REVIEW

This chapter discusses the related literature in the area of cloud-based access

control. This chapter includes the basic definition of Attribute-based Access Control

(ABAC), Identity-based Encryption (IBE), Attribute-based Encryption (ABE), and the

related literature related to our proposed system.

2.1 Attribute-based Access Control (ABAC)

Attribute-based access control (S. Rouhani, R. Belchior, R. Cruz, and R. Deter,

2021; V. Hu et al., 2014), or ABAC, is based on the characteristics of the users,

resources, and policies defined for each data. The policies contain conditions,

typically “And” and “Or” operators, alongside the attributes that must be satisfied.

Users who have a set of attributes satisfying the access rule can access the resource.

Otherwise, access is denied. ABAC is considered a fine-grained access control because

policy enforcement is based on the user’s attributes and can be enforced at the

individual user level.

2.2 Identity-based Encryption (IBE)

Shamir (1985) originally proposed identity-based encryption. This scheme is

based on asymmetric key encryption. This scheme uses the public identity of the user

to generate the key pair. For example, an email address, social security number, home

address, and network address can be used to generate the private-public key pair. A

Private Key Generator (PKG) is required to generate the Identity-based key pair. PKG

is assumed to be a fully trusted third-party entity. PKG first generates a Master Private

Key (MPK), which contains the public parameters and the corresponding users’

identities. When users request to generate the key pair, they usually need to submit their

identity to the PKG, and they are registered to the system. PKG then takes the identity

from the user and MPK to generate the key pair for the user. IBE is primarily adopted

in IoT access control applications because the computation cost of IBE’s encryption

and decryption algorithm is considered lightweight and efficient.

Ref. code: 25666422040060GIV

6

However, IBE has limitations. If the PKG gets corrupted, all the user identities

and the messages encrypted by the key generated by the PKG will be exposed (D.

Anand, V. Khemchandani, and R. Sharma, 2013). In addition, the encrypted data can

only be decrypted by the users with a key containing the qualified set of identities. The

expressiveness of IBE is limited as only the set of identity attributes can be used.

2.3 Attribute-based Encryption (ABE)

Attribute-based encryption, or ABE, is a public key cryptographic primitive

where the encryption and decryption process deals with a set of attributes and an access

policy. The ABE offers fine-grained and expressive access control through the

cryptographic protocol binding with user attributes and access policy enforcement. It is

considered a one-to-many encryption since the encryptor can encrypt the message and

share the single ciphertext with multiple users. There are two major types of ABE: Key-

Policy Attribute-based Encryption (KP-ABE) (V. Goyal, O. Pandey, A. Sahai, and B.

Waters, 2006) and Ciphertext-Policy Attribute-based Encryption (CP-ABE) (J.

Bethencourt, A. Sahai, and B. Waters, 2007).

2.3.1 Key Policy Attribute-based Encryption (KP-ABE)

In KP-ABE, data is encrypted with sets of attributes, and secret keys are

associated with access structures that specify which ciphertexts a user can decrypt. In

the KP-ABE approach, data owners have no control over data because the trust

authority will be the one who assigns the access policies to the user's secret key. The

data owners can specify as many attributes as possible for the ciphertext but cannot

enforce the authorization policy on the users and the ciphertexts.

2.3.2 Ciphertext Policy Attribute-based Encryption (CP-ABE)

In CP-ABE, the user’s secret key contains the attributes used to identify each

individual in the system, and the ciphertext contains the access policies. With the CP-

ABE approach, data owners have control over their data because they can specify who

can access the data of their choice based on the access policy used for encryption. The

Ref. code: 25666422040060GIV

7

CP-ABE access policy can be expressed by “And,” “Or,” and “M-of-N” operations in

combination with a set of attributes laid on the leaf nodes of the access policy tree.

Therefore, CP-ABE allows the data owners to enforce the authorization policy through

logical rules. As defined by A. Sahai, J. Bettencourt, and B. Waters (2007), the CP-

ABE consists of four major steps: Setup, Key Generation, Encryption, and Decryption.

Setup (λ) → (PK, MK). The setup algorithm takes the security parameter λ as

the only input. The algorithm then generates a public keys PK and master key MK as

an output.

Key Generation (MK, S) → (SKDU). The algorithm takes the master key MK

and a set of attributes S to define the user in the system as an input. Its outputs as a user

secret key SKDU. The algorithm uses a bilinear mapping between MK and S to

get SKDU.

Encryption (PK, M, T) → (CT). The encryption algorithm inputs message M,

public key PK, and access policy T. And generate a ciphertext CT that contains the

access policy as an output.

Decryption (CT, SKDU) → M or ⊥. The algorithm takes a ciphertext CT, and a

user secret key SKDU as input. The algorithm then recursively checks whether the

attribute set S in the user secret key SKDU satisfied the access policy T in the ciphertext.

If satisfied, the algorithm will return message M as an output. Otherwise, return ⊥.

2.4 Non-Blockchain Cloud-based Access Control

This section reviews the cloud-based access control literature that does not use

the blockchain in its schema.

S. Fugkeaw and S. Sato (2017) proposed a scalable CP-ABE protocol with an

attribute revocation functionality. In their proposed scheme, the proxy is responsible

Ref. code: 25666422040060GIV

8

for re-encrypting ciphertexts stored in the cloud server when the attribute revocation

request occurs. This scheme proposed two-layer encryption consisting of CP-ABE

encryption and symmetric key encryption. For the encryption process, the message is

first encrypted by the CP-ABE method, and the intermediate ciphertext is encrypted

with symmetric encryption. If any attribute is revoked, the proxy must perform both the

symmetric and the CP-ABE decryption. Then, the proxy will re-encrypt the affected

ciphertexts with a new policy.

D. Sethia, A. Shakya, R. Aggarwal and S. Bhayana (2019) proposed a constant-

size CP-ABE protocol with scalable revocation for resource-constrained IoT devices.

In their work, the proxy is employed to perform partial decryption. The proxy holds a

revocation list (RL) used to generate a decryption component for the data user. To

decrypt the data, the data user must submit her secret key to the proxy server and let the

proxy generate the complete decryption component using its secret key and RL. The

correct decryption component will not be created if the data user is in RL. Later on, X.

Wang, Y. Chi and Y. Zhang (2020) applied a similar approach by focusing on re-

encrypting the RL. Only a part of the policy will be updated and re-encrypted when the

revocation occurs.

S. Maiti and S. Misra (2020) proposed a privacy-preserving Identity-based

proxy re-encryption scheme with user revocation. In their scheme, the data owner

encrypts data with identity-based encryption. Then, the owner generates a re-encryption

key containing all users’ identities in the system, and the key will be sent to the proxy.

The proxy re-encrypts the ciphertexts with the re-encryption key. If any user is revoked,

the process of re-encryption key generation and re-encryption is done by the proxy.

2.5 Cloud-based Access Control with Blockchain Integration

In this section, we introduce a taxonomy of a cloud-based access control scheme

using blockchain, which can be classified into two types: Permission-based and

Permission-less models. Figure 2.1 presents the taxonomy of the cloud-based access

control with blockchain integration. Permission-based and Permission-less models

Ref. code: 25666422040060GIV

9

leverage the blockchain to provide three functions: access transaction retention, data

search capability, and cryptographic key storage. These three features enhance the

access control requirement and its usability as the data owners do not rely on the log

files from the cloud provider. They do not need to implement their indexing mechanism

and how ciphertext is stored on the cloud. Regarding cryptographic key storage,

blockchain can retain a part of the cryptographic key, such as a hash value of ciphertext,

an encrypted symmetric key associated with the ciphertext located on the cloud. This

helps support key usage accountability by reducing the complexity of key retrieval

generally invoked from the user or the cloud.

Figure 2.1 Taxonomy of A Cloud-based Access Control with Blockchain Integration

In addition to the three common features, the blockchain primarily supports

basic access control functions in the Permission-based model, including authentication

and user privilege verification. Here, smart contracts are generally used to automate the

authentication and authorization function when the users request to access shared data

in the cloud. In addition, blockchain is used to store the access transactions in an

immutable manner for auditing purposes and to support the data search function as the

index or metadata of the ciphertexts can be obtained from the blockchain. In the

Ref. code: 25666422040060GIV

10

Permission-less model, the blockchain is not responsible for authenticating and

enforcing the authorization. These functions are based on the application or cloud

service provider and cryptographic-based method.

Figure 2.2 A permission-less blockchain in cloud

2.5.1 Permission-less Cloud-based Access Control with Blockchain Integration

Figure 2.2 illustrates a permission-less blockchain system model that supports

data storage and logs storage in cloud computing. In the permission-less model,

blockchain generally provides a storage service that can be used to store transaction

logs, ciphertext, and encrypted keys. The users in the system, such as DO and DU, must

have a secret key issued by the Attributes Authority (AA). Typically, DO encrypts the

data with the symmetric key and then uploads CTM to store on the cloud server. After

that, DO invokes CP-ABE or IBE encryption to encrypt the symmetric key and produce

the ciphertext CTK which will be generally stored on the blockchain. To access the data

housed in the cloud, the DU must request to access CTM in the cloud server.

Before DU is able to decrypt CTM, he/she needs to query for the appropriate CTK from

Ref. code: 25666422040060GIV

11

the blockchain. When DU gets the appropriate CTK, they can decrypt CTK to get a

symmetric key if his/her secret key contains attributes that satisfy the policy used in the

encryption process. Upon receiving the symmetric key, CTM can be decrypted.

R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) proposed a cloud-

assisted revocable CP-ABE by integrating a chameleon hash function and the

blockchain system as an integrity authority for the CT stored on cloud storage. A

chameleon hash function is used in the key generation and update protocol for non-

revoked users in their system. In this scheme, the secret key of the data user contains

the version attribute, which is used to determine the version of the key when the

revocation occurs. If any user is revoked, the attribute authority will generate the key

attributes update for all non-revoked users’ keys and send them to users. The users then

update their keys respectively. As for the ciphertext policy, in their approach, the proxy

will retrieve the updated secret key from the user and check the Version parameter

based on the chameleon hash function. Suppose the Version parameter is up to date. In

that case, the proxy performs partial decryption based on user attributes, sends the

partial decrypt ciphertext to the user, and lets them finalize the decryption themselves.

Otherwise, the proxy denied the policy update to the revoked user. With this approach,

all non-revoked users must generate a new transformation key by themselves.

X. Liu, Y. Zheng and X. Li (2021) proposed a revocable attribute-based access

control system by implementing an additional binary tree as the attributes tree

called KEK for each user and storing them on the blockchain system. They

introduce Revocation Authority as an authority that generates the path key for each user

in the system based on the built KEK. A path key is a key that is used to check the user

status in the system. When the revocation occurs, RA will update the KEK, re-generate

the path key for each unrevoked user in the system, and redistribute them via a trusted

cloud service. For the old encrypted ciphertext, RA will update the KEK that attaches

with the ciphertext and re-upload it. Their approach does not require re-encrypting the

entire ciphertext but only updating the KEK that attaches to the ciphertext, reducing the

cost of data encryption. However, the revocation deals with several subsequent

operations, imposing expensive overheads. X. Wang et al. (2021) takes a similar

Ref. code: 25666422040060GIV

12

approach to handle the revocation but with a twist that the KEK tree is used only for a

header, which is used to generate a search token for the data user. In comparison, the

original ciphertext will be updated according to the attributes that get removed. Thus,

they suffer from the same expensive overhead problems.

L. Guo, X. Yang and W. -C. Yau (2021) proposed efficient traceable attribute

encryption with a dynamic access control scheme (TABE-DAC) integrating the

blockchain system. They introduced two additional algorithms to the traditional TABE-

DAC: Update policy and Verify policy; these two algorithms enable DO to update the

policy with less cost. The update policy is designed on top of the CP-ABE algorithm,

while the Verify Policy operates on the blockchain system. In their solution, DOs must

request their signature from the attribute authority by submitting their identities to the

attribute authority. This signature is used to update and verify the policy. This process

allows the DU to get a secret key associated with their attribute instead of digital

signatures. Each ciphertext stored on the blockchain system is divided into two smaller

ciphertexts: policy and key. Policy ciphertext contains the DO signature as an

additional parameter for checking the authenticity when there is an access policy

update. However, their proposed protocol did not cover the revocation of users or

attributes.

M. Jemel and A. Serhrouchni (2021) proposed a time-based access control

protocol combining the CP-ABE and the blockchain. In this scheme, the blockchain is

responsible for generating a key to the data users in the system. The key contains a set

of attributes, including the timestamps that are used for decryption. The timestamps are

generated via the blockchain network based on block timestamps. In the

ciphertext policy, it contains a time constraint, which is used to check the validity of the

user key. If any user is revoked, the data owner needs to re-encrypt the ciphertexts with

a new time constraint and update the policy on the blockchain system. However, there

is a problem with the time-duration policy. If the revoked user’s key contains a time

duration specified in any ciphertext, they can still access it.

Y. Jiang, X. Xu and F. Xiao (2022) proposed a CP-ABE-based model where the

user secret key is divided into two smaller components: a transformation key (TK) and

Ref. code: 25666422040060GIV

13

a secret key (SK)—the blockchain system as an integrity authority for the CT that is

stored on cloud storage. The cloud server is responsible for performing partial

decryption by taking the TK from the user and the ciphertext from data storage and

returning a partial decryption result to the user. Then, the user can use its own SK to

decrypt the ciphertext. As for revocation, first, the attribute authority generates an

upgrade parameter UP that contains the revocation attributes. Then, UP is sent to the

data owner to let them perform policy updates on the affected ciphertexts. After the

data owner performs the policy update protocol, they must re-upload the ciphertexts

and re-generate the hash parameter stored on the blockchain system. Lastly, the

attribute authority generates a new upgrade key for the remaining users and sends it to

users to update their TK and SK anytime.

In 2022, S. Fugkeaw (2022) proposed a novel e-KYCs framework that offers a

trust and privacy-preserving system with policy updating functionality based on fine-

grained encryption and the blockchain system. This approach uses smart contracts to

execute e-KYC registration, consent enforcement, and e-KYC verification. The

registration process registers clients to the e-KYCs services. The client must provide

credentials to the host financial institution (FI). The FI then invokes the registration

contract to generate the AES session key and lets the client encrypt credential data. The

encrypted session key and credential data are then uploaded to the IPFS using the hash

value of the client citizen ID as the indexing. FI then generates an e-consent form and

forces the client to sign—the e-KYC verification deals with the decryption of client

credential information stored in the IPFS system. In addition to the privacy of credential

data, all sensitive transactions stored in the blockchain are encrypted by the transaction

key. The CP-ABE algorithm encrypts that key for security and privacy reasons. If the

new FIs are added to the system, the policy of the transaction key ciphertext can be

easily updated by updating the policy and re-encrypting the transaction key. With the

fine-grained access control from the CP-ABE algorithm, only authorized FIs can access

this data.

Ref. code: 25666422040060GIV

14

Figure 2.3 A permission-based blockchain in cloud

2.5.2 Permission-based Cloud-based Access Control with Blockchain Integration

Figure 2.3 illustrates the system model of a permission-based blockchain that

supports access control in cloud computing. In the permission-based, the blockchain

acts as a policy enforcement point that controls the access permission of the users to

the data stored on the cloud system. A data owner (DO) encrypts the data with the

symmetric key and then uploads ciphertexts CTM to store on the cloud server. Then,

the DO typically invokes CP-ABE or IBE method to encrypt the symmetric key, and

the ciphertext of the key CTK is produced before it is stored in the blockchain. In CP-

ABE, it is assumed that the user's secret key is generated and sent by the attribute

authority (AA). The DO also specifies the assessment rule to validate the user's

permission. The data user (DU) requests the blockchain to validate the authenticity and

permission to access the ciphertexts stored in the cloud. If user authentication and

authorization are successful, the system returns CTK together with the ciphertext

address stored in the cloud to the user. The DU can then download CTM from the cloud

server. Lastly, DU can decrypt the CTK if their secret key contains a set of attributes

Ref. code: 25666422040060GIV

15

that satisfies the policy used to encrypt the symmetric key. Upon the decryption of the

symmetric key, DU uses the symmetric key to decrypt the CTM and get the data. All-

access transactions are recorded as an audit log in the blockchain.

In 2017, one of the pioneering approaches of cloud-based access control

schemes integrating blockchain systems was proposed by X. Liang, J. Zhao, S. Shetty,

J. Liu and D. Li (2017). Their proposed solution focuses on securely sharing health data

generated from patients’ wearable devices. Data from wearable devices are recorded in

a cloud database and blockchain network. Blockchain network stores distributed

transaction logs, the hash value of the medical data, and certificate authorities (CA)

who issue membership services for each entity in the system to identify who has access

to the data. However, the data stored on the cloud server is not encrypted. They chose

to hash those data and store them on the blockchain as the digital signature instead.

They use attribute-based access control as their access control model. When the user

requests to access outsourced data, the DO must verify the request and check the user’s

permission via the access control list stored in the blockchain. Finally, the access

decision is made, either granting or denying. The significant limitations of this scheme

are the need for more encryption and the dependency on DO availability to support data

access.

In 2019, D. C. Nguyen, P. N. Pathirana, M. Ding and A. Seneviratne

(2019) propose a trusted authority to perform electronic health records (EHRs)

encryption and decryption. The proposed scheme aims to minimize the user’s workload

to make the scheme as lightweight as possible. Their work focuses on EHR data access

over mobile devices. In their scheme, the data will be encrypted with a trusted authority

RSA key pair and stored on IPFS, a cloud storage service. When the user requests the

data, the trust authority will access the requested ciphertext stored in the IPFS. Then,

the ciphertexts are decrypted before they are sent to the user via a secure channel. In

this scheme, ABAC policy stored in the blockchain enforces authorization control. The

authors also applied the smart contract to manage and execute the ABAC access control

system. However, this scheme requires the trust authority to perform data encryption

Ref. code: 25666422040060GIV

16

and decryption. Hence, the compromise of the authority causes a complete security

failure.

S. Wang, Y. Zhang and Y. Zhang (2018) proposed a new secure cloud data-

sharing framework based on decentralized IPFS, Ethereum blockchain, and CP-ABE.

In this scheme, blockchain stores a CP-ABE secret key, supports keyword search, and

provides essential user account management. Their solution offers DO complete

control over data with no single point of failure in the system due to the integration of

decentralized IPFS and blockchain services used to store the cryptographic key. Later,

S. Wang, X. Wang and Y. Zhang (2019), they combine the ABAC access control

protocol with the blockchain system together by implementing the access interval of

each user in the system. As long as the duration is valid, they can access the data in the

blockchain. However, users who try to access off-limit data will be permanently banned

from the system. Therefore, their scheme offers complete control over data to DO while

maintaining the integrity and auditability of the data. Nevertheless, this scheme still

requires the availability of data owners to handle access requests and computes the hash

value upon user access.

Recently, blockchain and CP-ABE have also integrated into industrial internet-

of-things (IIOT) to help generate more secure data access with traceability features to

track down the culprit who intentionally shares their CP-ABE key (K. Yu, L. Tan, M.

Aloqaily, H. Yang, and Y. Jararweh, 2021). They presented a user revocation feature

to remove malicious users from the system when they tried to share their private key or

their right to access the system. When the system detects a user who abuses the key or

key leakage, the system automatically invokes the revocation protocol defined in the

IIOT system. The culprit key will be revoked instantly while updating the policy of all

the ciphertext in the system. The blockchain is used to store cryptographic components

for DO and Proxy. In addition, their blockchain acts as an ABAC access control point

to verify the requestor to the data in the system.

Ref. code: 25666422040060GIV

17

CHAPTER 3

PRELIMINARIES

This chapter discusses the theoretical background of theories and technologies

used in our proposed system. This includes the background information of blockchain

systems, smart contracts, bilinear mapping, access tree structure, Advanced Encryption

Standard (AES), RSA algorithm, and hidden vector encryption (HVE).

3.1 Blockchain

Blockchain technology is an immutable, distributed, transparent, and traceable

ledger that records the provenance of digital data. It is constructed and implemented

through decentralization and cryptographic hashing. The digital asset or data stored in

each block is immutable since the completed block is hashed and linked to each other

in the blockchain network. Typically, each block contains a cryptographic hash of the

previous block, a timestamp of when the transaction occurred, nonce, and transaction

data. It is usually organized in a Merkle Tree structure. The Merkel Tree (H. Liu, X.

Luo, and X. Xia, 2021) is a data collection where the leaf node contains the transaction

data while its parent node contains its hash. The higher parent nodes have a combination

of the hash value of the predecessor hash value. The topmost node of the Merkle

Tree can be treated as the digital signature of each block, and this prevents the

modification to the data that has been transacted. With this approach, a slight change to

the data in the leaf node will change all the corresponding Merkle Tree hash values.

The blockchain block structure is shown in Figure 3.1. The nonce is the number that

can be only used once in each blockchain system. Nonce serves as a unique identifier

for each block. When the blocks are linked, they are impossible to modify based on the

tamper-proof property of hashed value and Merkle Tree.

Blockchains act as a distributed database with a growing list of blocks operating

on a peer-to-peer network where nodes act as the distributed ledger. Each node in the

blockchain system contains the replication of the synchronized data transaction. With

these properties, the intervention of third-party entities is eliminated. These blocks can

Ref. code: 25666422040060GIV

18

be accessed anytime as long as they stay on the blockchain system. Blockchain adopts

a consensus algorithm to make all the nodes in the system agree on the data when the

data are being updated by using either the Proof-Of-Work protocol or the Proof-Of-

Stake protocol. As for transparency, each action in the blockchain system is recorded

as a transaction, and the blockchain network’s legitimate members can access this

information. In addition, the blockchain system provides the ability for the verification

and traceability of all access transactions or activities that occur as they are all recorded

systematically in the blockchain network. Thus, the applications that require the

integrity of the data to be able to operate on the blockchain, for example, supply chain

applications (S. Malik, V. Dedeoglu, S. S. Kanhere, and R. Jurdak, 2019), electronic

health applications (H. Wu, L. Li, H. -y Paik, and S. S. Kanhere, 2021), and financial

applications (Z. Su, H. Wang, and X. Shi, 2020; S. Nakamoto, 2009).

Figure 3.1 Blockchain Block Structure

Ref. code: 25666422040060GIV

19

3.2 Smart Contract

A smart contract (or chain code) is a self-runnable program that runs on a Turing

complete architecture system and operates on a blockchain network. The smart

contracts concept was first introduced in 1997 by Nick Szabo (1997) as a computerized

transaction protocol that executes in the manner of a contract. The code will be activated

automatically when the predefined conditions are met. The developer predefined these

conditions generally by simple “If/when…then” statements. After the execution is

finished, the details of the execution will be recorded on the blockchain network. Smart

contracts can execute and send transactions over the network. Users interact with a

smart contract through transactions that can be executed based on a specific function

constructed from rules or code.

3.3 Bilinear Mapping

Let G0 and G1 be two multiplicative cyclic groups of prime order p. Let g be a

generator of G0 and e be a bilinear map, e: G0× G0→G1. The bilinear map e has the

following properties.

a) Bilinearity: ∀u,v ∈ G0 and a, b ∈Zp, e(ua, vb) = e(u, v)ab = e(ub, va)

b) Non-degeneracy: e(g, g) ≠1

c) Computability: ∀ u,v ∈ G0, an efficiently computation of e(u,v) exist

Definition 1: Access Structure Let a set {P1, P2,…,Pn} be given attribute. A collection

 𝔸 ⊂ 2{𝑃1,𝑃2,…,𝑃𝑛 } is monotone if ∀𝐵, 𝐶 ∶ 𝑖𝑓 𝐵 ∈ 𝔸 𝑎𝑛𝑑 𝐵 ⊂ C ⟶ C𝔸. An access

structure is respectively be a monotone collection 𝔸 of non-empty subsets of {P1,

P2,…,Pn}, i.e. 𝔸 ⊂ 2{𝑃1,𝑃2,…,𝑃𝑛}∕ {∅}.

Definition 2: Access Tree T. Let T be a tree representing an access structure. Each non-

leaf node of the tree represents a 0-threshold gate, described by its children, and a

threshold value. If numx is the number of children of a node x and kx is its threshold

value, then 0 < kx ≤ numx. When kx = 1, the threshold gate is an OR gate, and when kx =

Ref. code: 25666422040060GIV

20

numx, it is an AND gate. Each leaf node x of the tree is described by an attribute and a

threshold value kx = 1. If the k-of-n gate is allowed in T, in this case, kx = k where k is

the threshold value determined in the k-of-n gate.

3.4 Advance Encryption Standard (AES)

Advance Encryption Standard, or AES, is also known as Rijndael cryptosystem.

AES is a type of block cipher derived from the Rijndael cipher. It is a symmetric block

cipher algorithm that securely encrypts and decrypts digital data. AES is based on

substitution-permutation networks with a block size of 128 bits. The operation converts

each block using the symmetric key. The difference in key size is used to determine the

number of operations of rounds that the AES algorithm needs to perform during the

encryption. The key size can be 128, 192, or 256 bits, with 10, 12, and 14 rounds

performed for each respective key size. The process of encrypting these blocks involves

combining all the blocks using the XOR operation to form the final ciphertext. A set of

reverse rounds is applied using the same encryption key to decrypt the ciphertext back

into the original plaintext.

For example, a 16-byte data block can be represented as a 4 x 4 two-dimensional

state array as follows.

[b0,0 b0,1 b0,2 b0,3]

[b1,0 b1,1 b1,2 b1,3]

[b2,0 b2,1 b2,2 b2,3]

[b3,0 b3,1 b3,2 b3,3]

High-Level Algorithmic Detail

1. Initial Add Round Key: This step in only runs once at the start of the algorithm.

In this step, the data is passed into the state array via XOR operation with the

respective key. Each byte in the 2-dimension data state array is combined with

the round key using bitwise XOR operation.

Ref. code: 25666422040060GIV

21

[b0,0 b0,1 b0,2 b0,3] [k0,0 k0,1 k0,2 k0,3]

[b1,0 b1,1 b1,2 b1,3]  [k1,0 k1,1 k1,2 k1,3]

[b2,0 b2,1 b2,2 b2,3] [k2,0 k2,1 k2,2 k2,3]

[b3,0 b3,1 b3,2 b3,3] [k3,0 k3,1 k3,2 k3,3]

2. Sub-Bytes: During this step, the state array undergoes a conversion process

where each byte is represented in hexadecimal format and split into two halves

for rows and columns. These values are then subjected to a substitution box (S-

Box) mapping to generate updated values for the final state array. Each location

in the state array will be substituted with the data from the same location from

the S-Box.

[i0,0 i0,1 i0,2 i0,3] [f0,0 f0,1 f0,2 f0,3]

[i1,0 i1,1 i1,2 i1,3] Substitute with [4 x 4 S-Box] → [f1,0 f1,1 f1,2 f1,3]

[i2,0 i2,1 i2,2 i2,3] [f2,0 f2,1 f2,2 f2,3]

[i3,0 i3,1 i3,2 i3,3] [f3,0 f3,1 f3,2 f3,3]

3. Shift-Rows: In this step, the AES algorithm manipulates the rows of the state

array by cyclically shifting the bytes in each row by a fixed offset. Specifically,

the first row remains unchanged, while each byte of the second row is shifted

one position to the left. The third and fourth rows are shifted by offsets of two

and three positions, respectively.

[b0,0 b0,1 b0,2 b0,3] [b0,0 b0,1 b0,2 b0,3]

[b1,0 b1,1 b1,2 b1,3] → [b1,1 b1,2 b1,3 b1,0]

[b2,0 b2,1 b2,2 b2,3] [b2,2 b2,3 b2,0 b2,1]

[b3,0 b3,1 b3,2 b3,3] [b3,3 b3,0 b3,1 b3,2]

Ref. code: 25666422040060GIV

22

4. Mix-Columns: In this step, a fixed matrix [c] is multiplied with each column of

the state array, generating a new column for the next state array. The same fixed

matrix is used to multiply all the columns. The resulting state array is then

produced, which will be utilized in the next Add Round Key step.

[b0,0 b0,1 b0,2 b0,3] [c0] [bc0,0 bc0,1 bc0,2 bc0,3]

[b1,0 b1,1 b1,2 b1,3] x [c1] = [bc1,1 bc1,2 bc1,3 bc1,0]

[b2,0 b2,1 b2,2 b2,3] [c2] [bc2,2 bc2,3 bc2,0 bc2,1]

[b3,0 b3,1 b3,2 b3,3] [c3] [bc3,3 bc3,0 bc3,1 bc3,2]

5. Add Round Key: In this step, the state array involves combining the subkey

with the state by performing a bitwise XOR operation between each byte of the

state and the corresponding byte of the round key. If this is the last round of the

operation, the result state array will serve as an output ciphertext for the specific

block. Otherwise, the result in this step will be passed as the new state array for

the next round.

[bc0,0 bc0,1 bc0,2 bc0,3] [k0,0 k0,1 k0,2 k0,3]

[bc1,0 bc1,1 bc1,2 bc1,3]  [k1,0 k1,1 k1,2 k1,3]

[bc2,0 bc2,1 bc2,2 bc2,3] [k2,0 k2,1 k2,2 k2,3]

[bc3,0 bc3,1 bc3,2 bc3,3] [k3,0 k3,1 k3,2 k3,3]

When the algorithm finishes computing step 2 to step 5, this is considered as

completing one round of the AES algorithm. Then, the algorithm starts the next round,

starting at step 2, and continues the algorithm until the final round. The number of

rounds required to compute is indicated by the key size used to perform an encryption.

In the final round, step 4 (Mix-Columns) of the algorithm will be excluded, producing

the final ciphertext.

Ref. code: 25666422040060GIV

23

3.5 Rivest-Shamir-Adleman Cryptosystem (RSA)

Rivest-Shamir-Adleman Cryptosystem, or RSA, is a public-key cryptography

algorithm that is commonly used for secure data transmission. Its inventors, Ron Rivest,

Adi Shamir, and Leonard Adleman first publicly described it in 1977. In RSA, the

encryption key is public, meaning anyone can use it. At the same time, the decryption

key is kept secret (private). An RSA user generates a public key based on two large

prime numbers and an auxiliary value. Anyone can use the public key to encrypt

messages, but only the person who knows the prime numbers that are used to generate

private keys can decrypt them. The public key comprises the public exponent e and the

modulus n used for encryption. In contrast, the private key contains the private

exponent d, which must be kept secret as it is used for decryption.

Additionally, p, q, and λ(n) must be kept secure, as they can be used to

compute d. After computing d, these values can be discarded. RSA contains three major

steps: Key Generation, Encryption, and Decryption.

Key Generation (Large prime number p & q) → (RSAPubKey, RSAPrivKey)

The RSA key generation function inputs two large prime numbers, p and q. And

output an RSA key pair of a public and private key. The algorithm first calculates 'n = p

* q' and stores n as one of the key components. Then the algorithm process to

compute Carmichael's Totient Function where 'λ(n) = (p-1) * (q-1)' and store λ(n) as

one of the private key calculation components. Afterward, the algorithm will randomly

select the integer e that is relatively prime to λ(n) and store them as the final public key

components. Finally, the algorithm computes the private key d where d is the modular

multiplicative inverse of e mod (λ(n)) as follows ‘d ≡ e-1 mod (λ(n))’. The result RSA

key-pair can be seen as:

RSAPubKey = (e, n), RSAPrivKey= (d, n)

Encryption (M, RSAPubKey) → (CTRSA)

The encryption algorithm takes message M and recipient RSAPubKey as input.

And outputs the encrypted ciphertext CTRSA. To calculate the CTRSA, the algorithm first

Ref. code: 25666422040060GIV

24

converts message M into an integer m, which can be seen as a padded plaintext with a

condition of 0 ≤ m < n. Then the algorithm computes CTRSA using the

recipient RSAPubKey as:

CTRSA ≡ me (mod (n)).

Decryption (CTRSA, RSAPrivKey) → M or ⊥

The decryption algorithm takes ciphertext CTRSA and recipient private key

RSAPrivKey as input. The algorithm either output message M if the private key component

meets the computation restriction or Null ⊥. To perform the decryption, the algorithm

takes private key component d, raises the ciphertext CTRSA to the power of d. The

computation is as follow:

M ≡ CTRSA
d ≡ (me)d (mod (n)) ≡ m (mod (n)).

Nevertheless, the RSA cryptosystem is relatively slow when compared to

symmetric-key encryption algorithms like AES. RSA is generally used for key

exchange and digital signatures rather than directly encrypting user data. As a result, it

is more common to use RSA in combination with symmetric-key encryption, where the

RSA algorithm is used to encrypt and exchange a shared key for symmetric-key

encryption. This allows for more efficient encryption and decryption of user data while

maintaining RSA’s security benefits.

3.6 Hidden Vector Encryption (HVE)

Hidden Vector Encryption (HVE) is predicate encryption designed to provide

secure and efficient data encryption with searchability without decryption. HVE (D. V.

Veen, 2011; J. H. Park, 2011; Z. Zhang, J. Zhang, Y. Yuan, and Z. Li, 2022) is a form

of homomorphic encryption that allows computations to be performed on encrypted

data without decrypting it first. The basic idea behind HVE is to represent each plaintext

message as a high-dimensional vector and encrypt the plaintext vector by adding a

policy random vector. The resulting encrypted vector is then transformed using matrix

multiplication, and the result is sent over the network. To decrypt the ciphertext, the

Ref. code: 25666422040060GIV

25

receiver performs a matrix multiplication on the encrypted vector with a secret matrix

and subtracts the random vector added during encryption. This results in the original

plaintext vector. There are two major types of HVE: Binary-HVE and Non-Binary-

HVE.

Binary-HVE is a type of HVE where the policy used to encrypt the data is

typically a yes or no question and cannot contain a complex policy. In this type of HVE,

the attributes policy vector consists of only ‘0’, ‘1’, or ‘*.’ ‘0’ in Binary-HVE represents

no, while ‘1’ means yes. ‘*’ in HVE represents ‘ignoring’ those attributes in the

attribute policy vector. For example, a set of attributes in the system contains five

attributes: Father, Mother, Son, Daughter, and Pet.

In this case, the policy vector must contain five attribute values,

including Father, Mother, Son, Daughter, and Pet. For example, suppose the policy

specifies that the father can decrypt the data while not caring about the pet being able

to perform decryption. In that case, the construction of the policy will be [1, 0, 0, 0, *].

This remains true to the secret key for each user in the system. The key length is

propositional to the number of attributes in the system.

Non-binary-HVE is a type of HVE where the policy can be defined more

flexibly. Each vector’s space can represent different attribute values. In this case, we

can define the attribute’s value in the system based on their attributes index. We assign

each attribute value to each position in the index array based on their respective attribute

index. For ease of understanding, TABLE 3.1 provides an example of the attribute

index and attribute value mapping for non-binary-HVE. As shown in TABLE 3.1, the

attribute value usually starts at 0, as well as the index position. As for the policy

construction, if we want to define that HR department, the CEO can access the data

while gender and level marked as ‘*’ in HVE are not concerned. The policy will be as

follows: [1, *, 2, *]. We used Non-Binary-HVE as our attribute hiding protocol in our

scheme. We represent them in a vector space where each space represents each

attribute. With Non-Binary-HVE we can integrate them with the CP-ABE protocol by

indicating the index value as an alphanumeric value with the corresponding numeric

value as their corresponding attribute value.

Ref. code: 25666422040060GIV

26

TABLE 3.1 ATTRIBUTES VECTOR TABLE EXAMPLE

Index Position Index Value Value Attribute Value

0 Department 0 ICT

1 HR

2 R&D

1 Gender 0 Male

1 Female

2 Non-Binary

2 Status 0 Internship

1 Junior

2 CEO

3 Level 0 Low Level

1 High Level

One of the advantages of HVE is that it enables efficient searching and matching

of encrypted data. For example, if the system contains an extensive database of

encrypted vectors, HVE can be used for a specific vector without decrypting the entire

database. This makes HVE a valuable technique for secure information retrieval and

privacy-preserving data mining applications.

Ref. code: 25666422040060GIV

27

CHAPTER 4

OUR PROPOSED SCHEME

This section presents an overview of our proposed scheme, smart contracts

design, and the details of our proposed cryptographic construct.

4.1 System Overview

We proposed a secure, fine-grained, traceable, and revocable CP-ABE scheme

based on proxy re-encryption and our blockchain-assisted protocols. Figure 4.1

illustrates the system overview of our proposed system model and the basic workflows

of each entity in the system. The system model consists of the following entities.

1) DOs (Data Owners) are the owners of the data responsible for creating and

deploying smart contracts on the blockchain, generating symmetric keys for

data encryption, and creating the ciphertexts and uploading them to the cloud.

DOs need to have an Ethereum account to interact with the blockchain system.

2) DUs (Data Users) are authorized users with decryption capability to access

shared data and view transactions in the blockchain system. Each user needs to

have an Ethereum account to access the blockchain system.

3) AA (Attribute Authority) generates the public parameter PK and the master

secret key MSK for the data owner and proxy. AA generates the user’s secret

key based on their attributes. Then, the key is broadcast based on the public key

encryption to users in the system.

4) IPFS (Interplanetary File System) stores encrypted data. It communicates

directly with the proxy when the revocation request occurs. It maintains a

distributed hash table (DHT), keeping the addresses of the ciphertexts’ hash

values, which are also returned to store in the blockchain.

5) Blockchain stores encrypted symmetric keys, indexes, URLs of the data, and

all transactions that occur in the system. Blockchain also contains the validity

status of each user for authentication purposes. In order to interact with external

Ref. code: 25666422040060GIV

28

entities, blockchain contains smart contracts that interact with DO, DU, AA,

and proxy.

6) Smart contracts are the programmable objects that operate on the blockchain.

In our system, there are two major contracts: The Authentication

contract and the CTK Management contract. Authentication Contract is used to

authenticate DU when they request access to the blockchain system. CTK

Management contract is used to store and fetch the ciphertexts when there is an

access request.

7) Proxy is a semi-trusted server located on the cloud. It is responsible for updating

the policy that encrypts the symmetric key stored on the blockchain. The proxy

also supports the revocation process through the ciphertext re-encryption

technique. Proxy has its secret key and the unique Ethereum account used to

access the ciphertexts on the blockchain system. Proxy also handles the key

update request, user status update, and user secret key update.

Figure 4.1 System Model

Ref. code: 25666422040060GIV

29

4.2 Ciphertext-Attribute-User Ethereum Account Mapping

To enable the fast retrieval of the affected ciphertexts when there is a case of

revocation, we introduced the ciphertext, attributes, and user’s Ethereum account

mapping models shown in Figure 4.2. The model specifies the data mapping between

attributes that belong to each user together with the associated CTK and their related

component in the blockchain. Precisely, the attribute value is mapped with the index

of CTK and the URL of CTM. Based on the mapping scheme, the set of affected

ciphertexts stored in the cloud can be invoked efficiently when the proxy needs to be

retrieved for re-encryption.

Figure 4.2 Ciphertext-Attributes-User Ethereum Account Mapping Model

4.3 Attributes Hiding

To enable the secure invocation of the access policies to be used by the proxy

for the re-encryption process, we proposed the attribute hiding method to support secure

outsourced re-encryption. Our attribute hiding scheme is based on Hidden Vector

Encryption (HVE) of attributes vector. In our scheme, an attribute vector is an ordered

pair of attribute indexes and their appropriate value. The attribute vector table is

Ref. code: 25666422040060GIV

30

managed and maintained by the DO. The attribute vector index is randomly generated

for the first four alphabets, and then the system will pad the number to it. Attributes in

the system are assigned with the attribute index and mapped to their associated value.

Based on the anonymous attributes contained in the policy, the content of the access

policies is hidden while they are used to support the encryption and re-encryption

process. Figure 4.3 presents an example of policy transformation based on our proposed

model. TABLE 4.1 presents an example of attribute index and value mapping. As

presented in TABLE 4.1, for example, Alice’s secret key contains the following

attributes: {Doctor, Neurology, C9, Bangkok}, her private key is then composed of the

set of mapped values in the vector: {Abzd01: 1, Abzd02: 2, Abzd03: 3, Abzd04: 1}.

Technically, this attribute name and value are used for the data encryption as naturally

done in the CP-ABE method.

TABLE 4.1 ATTRIBUTES VECTOR TABLE EXAMPLE

Index Index Value Value Attribute Value

Abzd01 Position 1 Doctor

2 Network Engineer

3 HR

Abzd02 Dep 1 IT

2 Neurology

3 General

Abzd03 Lv 1 Internship

2 Junior

3 C9

Abzd04 Location 1 Bangkok

2 Pattaya

Ref. code: 25666422040060GIV

31

Figure 4.3 Attribute-Tree with Attribute Hiding

4.4 Smart Contract Design

This section describes the details of the smart contracts’ functions used in our

scheme. Our smart contracts are developed in the Solidity (C. Dann en, 2017) while

operating on the Ethereum blockchain on the Ganache Truffle Suite. Two major smart

contracts consist of an Authentication Contract triggered by user enrollment and

authentication requests and a CTK Management Contract triggered by the revocation

request initiated by the data owners.

Ref. code: 25666422040060GIV

32

Precisely, the Authentication Contract consists of three primary functions: User

enrollment, User authentication, and User attribute queries. The details of each function

are described below.

1. UserEnrollment(DUEthereumAccount, DUAttribute[]): This function enrolls DU

into the system with its appropriate attributes. It takes two inputs: DU public Ethereum

account and their associate attributes array. It maps DU’s validity status and

associated attributes to the DU’s public Ethereum account. In our scheme, DU’s

attributes are used as a query index for ciphertext retrieval when there is a revocation

case. Its procedure is detailed in Algorithm 1.

2. Authentication(): This function takes no input. Instead, when DU requests access

to the blockchain, their public Ethereum account will be set as msg.sender. This value

will be used as a validation variable in the mapping mechanism to retrieve their validity

status. The function will terminate the requestor’s connection and record their access

attempt on the blockchain if their validity status is invalid. The algorithmic function of

the authentication is presented in Algorithm 2.

3. DUAttributeQuery(DUEthereumAccount): This function is run by the proxy when

the user revocation occurs. It is used to query DU attributes from the blockchain system.

It takes the DU public Ethereum account as input and returns an array of DU attributes

or NULL. The algorithmic details of the DU attribute query are presented in Algorithm

3.

4. UserStatusUpdate(DUEthereumAccount, ValidityStatus, UpdatedAttributes): It

takes as inputs the DU public Ethereum account, Validity Status of DU, and Updated

Attributes. It is run when any DU has been revoked from the system. The

UserStatusUpdate function is presented in Algorithm 4.

Ref. code: 25666422040060GIV

33

Algorithm 1: UserEnrollment(DUethereumAccount, DUAttribute[])

 Input: DUethereumAccount, DUAttributes[]

 Output: Bool

1 If msg.sender is not (dataOwner or Proxy) then

2 Return false and terminate the connection;

3 End if

4 If DUethereumAccount is existed in

5 User[DU Ethereum Public Account] then

6 Return false

7 Else

8 Set User[DU Ethereum Public Account].Validity = Valid;

9 Set User[DU Ethereum Public Account].Attr[] = DUAttributes[];

10 Return true

Algorithm 2: Authentication()

Input: null

Output: Bool

1 If User[msg.sender].Validity != Valid then

2 Return false and terminate the connection;

3 Else

4 Return true

Algorithm 3: DUAttribute Query(DUEthereumAccount)

Input: DUethereumAccount

Output: Attributes[] or Null

1 If msg.sender is not (dataOwner or Proxy) then

2 Return false and terminate the connection;

3 End if

4 If DUEthereumAccount is not exist then

5 Return NULL;

6 Else

7 Set Attribute[] = User[DUEthereumAccount].Attr;

8 Return Attribute[];

Algorithm 4: UserStatusUpdate(DUethereumAccount, ValidityStatus,

UpdatedAttributes)

Input: DUethereumAccount, ValidityStatus, UpdatedAttributes

Output: Bool

1 If msg.sender is not (dataOwner or proxy) then

2 Return false and terminate the connection;

3 End if

4 If DUethereumAccount is not existed then

5 Return false

6 Else

7 Set Users[DUethereumAccount].Validity = Validity Status

8 Set Users[DUethereumAccount].Attr.push(Updated Attributes)

9 Return true

Ref. code: 25666422040060GIV

34

For the CTK Management Contract, it is designed to perform three primary

functions: Key Ciphertext upload, Key Ciphertext query, and Key Ciphertext attributes

query. This contract consists of four functions: CTKUpload, SetCTKAttributes,

CTKAttributeQuery, and CTKQuery. The details of each function are described below.

5. CTKUpload(CTK, URL, Index): The function takes as inputs AES

Key ciphertext CTK, CTM URL stored on IPFS, and index. It is used to upload

the CTK and URL to the blockchain system by enabling Solidity to map

the CTK and URL to the respective index. The CTK upload function is presented in the

Algorithm 5 as follows.

6. SetCTKAttribute(AttributeValue[], Index): The function takes as inputs the attribute

Value array and the CTK index. It maps the input attributes to the corresponding CTK

index to support ciphertext queries. First, it counts the length of the Attribute

Value array and uses it as a maximum loop count. Then, the function will perform a for

loop to map the index to the attribute value and store it on the blockchain. The detail of

the function is presented in Algorithm 6.

7. CTKAttributeQuery(AttributeValue): This function is run when there is a revocation

request. It takes the attribute value to be queried and returns the array of the index of

the ciphertext corresponding to the attribute value stored on the blockchain. First, the

function checks if an attribute value exists in the blockchain; it returns the array of

indexes mapped to the attribute value. The algorithmic function of the CTK Attribute

Query is presented in Algorithm 7.

8. CTKQuery(Index): This function is used to query the index of CTk. It takes the index

as an input and returns its corresponding CTK and URL, or NULL, to the executor. The

function first checks whether the index of the requested CTk is available. If the index

exists in the system, the function will return the CTK and the URL that is mapped to the

Ref. code: 25666422040060GIV

35

Index from Algorithm 5 to the executor. Otherwise, this function returns NULL. The

procedure of CTK Query is presented in Algorithm 8.

Algorithm 5: CTK Upload (CTK, URL, Index)

 Input: CTK, URL, Index

 Output: Bool

1 If msg.sender is not (dataOwner or Proxy) then

2 Return false and terminate the connection;

3 End if

4 Set CTKIndex[Index].CTK = CTK

5 Set CTKIndex[Index].CTK_URL = URL

6 Return true

Algorithm 6: Set CTK Attribute(AttributeValue[], Index)

 Input: AttributeValue[], Index

 Output: Bool

1 If msg.sender is not (dataOwner or Proxy) then

2 Return false and terminate the connection;

3 End if

4 Set j = AttributeValue.length

5 For (i = 0; i<= j ; i++)

6 Set attr = AttributeValue[i]

7 Set x = CTKAttributes[attr].No

8 x = x+1;

9 Set CTKAttributes[attr].No = x

10 Set CTKAttributes[attr].Index.push(Index)

11 Return true

Algorithm 7: CTK Attribute Query(AttributeValue)

Input: AttributeValue

Output: Indexes[] or Null

1 If msg.sender is not (dataOwner or Proxy) then

2 Return false and terminate the connection;

3 End if

4 If AttributeValue is not exist then

5 Return NULL

6 Else

7 Set Indexes = CTKAttributes[AttributeValue].Index[]

8 Return Indexes[]

Ref. code: 25666422040060GIV

36

Algorithm 8: CTK Query(Index)

Input: Index

Output: (CTK and URL) or NULL

1 If CTKIndex[Index].CTK is not exist then

2 Return NULL

3 Else

4 Return CTKIndex[Index].CTK and CTKIndex[Index].CTK_URL

4.5 Cryptographic Constructs

This section describes the cryptographic construct of our proposed system. The

notations used in our model are shown in TABLE 4.2.

TABLE 4.2 NOTATION USED IN OUR MODEL

Notation Description

AA The attribute authority

S A set of attributes issued to data users and data owners in the system.

In this case, the attributes are hidden under HVE method

SKDU A user’s secret key issued by the AA.

SKProxy+random A Proxy’s secret key bound with a random value issued by the AA.

PK Public attribute key issued by AA.

MSK Master attribute key issued by AA for SKDU and SKDO generating.

AES_Key Symmetric AES key (256-bit) used for encrypting the data.

RSADU,PubK RSA public key of the DU

RSADU,PrivK RSA private key of the DU

M A message that the data owner needs to encryption and distribute on

the cloud storage.

CTM Ciphertext of a message.

CTK The ciphertext of AES_key

CTSK,DU RSA encrypted SKDU

AP An access policy used for CP-ABE encryption.

Our cryptographic process consists of five major phases as follows: System

Initialization, Key Generation, Encryption, Decryption, and Revocation.

Phase 1: System Initialization

CreateAttributeAuthority(λ) → PK, MSK. The algorithm takes security

parameter λ as an input and returns public key PK and master secret keys MSK. The

algorithm selects a bilinear group G0 of prime order p with generator g. After that, the

Ref. code: 25666422040060GIV

37

algorithm then chooses two random 𝛼, 𝛽𝑍𝑝 and compute a public key and master

secret key as:

PK = {𝐺0, 𝑔, ℎ = 𝑔𝛽 , 𝑓 = 𝑔
1

𝛽, 𝑒(𝑔, 𝑔)𝛼},

MSK = {𝛽, 𝑔𝛼}.

Phase 2: Key Generation

In our model, we define three key types used by DO, Proxy, and DU. The crypto

process of each key generation is described as follows:

1) AESKeyGen(RandomString) → AES_Key

The algorithm takes random string as an input to generate a 256-bit AES_key.

DO uses AES_key to encrypt the data before uploading them to cloud storage.

2) RSAKeyGen(2 RandomLargePrimeNumber) → RSADU,PubK, RSADU,PrivK

Initially, the user runs the RSAKeyGeneration algorithm, which inputs two

random large prime numbers to generate an RSA key pair. The Certification Authority

(CA) then signs each user's public key. The CA also publishes the certificate containing

the public key in the public directory.

3) UserKeyGeneration (PK, MSK, SDU, Ver) → SKDU.

This algorithm is run by the AA. The algorithm takes PK, MSK, a set of DU’s

attributes SDU, and a Version parameter Ver used to specify the key version of the SKDU.

The algorithm generates a user secret key SKDU containing the key version and user’s

attributes.

The algorithm first chooses a random r and rj ∈ Zp for each attributes j ∈ S.

Then the algorithm compute SKDU as:

SKDU = (D = g(α+r)/β, ∀ j ∈ S: Dj = gr . H(j)rj ,D′j = grj).

Ref. code: 25666422040060GIV

38

Then, AA encrypts the SKDU based on public key encrytion by using the user’s public

key RSADU,PubK. The encryption is computed as:

ENCRSA (RSADU,PubK, SKDU) → CTSK,DU

After that, AA sends the CTSK,DU to the user. The user then uses its RSA private

key to decrypt the CTSK,DU and gets the SKDU. DO then enrolls DU to the blockchain

system by running Algorithm 1.

For the proxy’s key, after the key generation algorithm is finished, the key will

be appended with a 256-bit random number and encrypted by the proxy’s public key.

Then, the encrypted key will be sent to the proxy.

Phase 3: Encryption

In our proposed scheme, we introduce a dual encryption method comprising

symmetric key encryption and CP-ABE Encryption. The encryption consists of two

following steps.

1) Encrypt Message(AES_Key, M) → CTM

The algorithm is run by DO. It takes a symmetric key AES_Key to encrypt data

M. The algorithm produces ciphertext CTM and DO stores it on the IPFS.

2) Encrypt AES_Key(PK, AP, AES_Key) → CTK.

The algorithm takes as inputs PK, access policy AP, and AES_Key. Then, it

outputs CTK. To compute CTK, the encryption algorithm encrypts a AES_Key under the

access structure AP. The algorithm then chooses a polynomial qx for each node x

(including leaves node) in AP. The polynomials are chosen in the top-down manner,

starting from root node R. For each node x in the tree, set the degree dx of the polynomial

qx to be one less than the threshold value kx of the node, dx = kx – 1. After that, starting

Ref. code: 25666422040060GIV

39

from root node R the algorithm chooses a random s ∈ Zp and set qx(0) = q-

parent(x)(index(x)) and choose dx randomly to completely define qx. Let Y be a set of leaf

nodes in AP. The result ciphertext is computed as follows:

CTK = (AP, C˜ = (AES_Key) e(g, g) αS , C = hS, ∀y ∈ Y : Cy = gq
y
(0),C′

y = att(y)q
y
(0))

The CTK is then stored on the blockchain together with its index value by initiating

Algorithm 5 and Algorithm 6 respectively.

Phase 4: Decryption

The decryption is done by the DU after the successful authentication via the

smart contract (Algorithm 2) and retrieves appropriate key ciphertext and their

corresponding URL (Algorithm 7) via the blockchain system. DU then downloads CTM

from the IPFS and performs the decryption. This phase includes two algorithms:

Decrypt CTK and Decrypt CTM.

1) Decrypt CTK(SKDU, CTK) → AES_Key

The algorithm takes as inputs DU’s secret key SKDU and CTK. The algorithm

outputs an AES_Key which will be used in the final decryption step. The decryption

algorithm can be specified as a recursive algorithm as follows:

DECCP-ABE(SKDU, CTK, x) is the algorithm that takes CTK = (AP , C˜,C, ∀y ∈ Y :

Cy,C
′
y), a secret key SKDU which associate with a set S of attributes, and a node x from

access policy AP. If SKDU contains attributes that belong to AP, the algorithm will return

AES_Key, otherwise it returns Null. The computation is as follows: If the node x is a

leaf node, then we set i = att(x). If i ∈ S, then

DECCP-ABE(SKDU, CTK, x) =
𝑒(𝐷𝑖, 𝐶𝑥)

𝑒(𝐷′𝑖, 𝐶′𝑥)

 =
𝑒(𝑔𝑟∙𝐻(𝑖)𝑟𝑖 , ℎ𝑞𝑥(0))

𝑒(𝑔𝑟𝑖 , 𝐻(𝑖)𝑞𝑥(0))

 = 𝑒(𝑔, 𝑔)𝑟∙𝑞𝑥(0)

If i ∉ S, then we set DECCP-ABE(SKDU, CTK, x) = Null.

Ref. code: 25666422040060GIV

40

As for the recursive case where x is not a leaf node. The algorithm DECCP-

ABE(SKDU, CTK, x) will proceed as follows: For all node z that are the children of node x,

it then executes DECCP-ABE(SKDU, CTK, z) and stores the output as Fz. Then we define Sx

as an arbitrary kx-sized set of child nodes z with the condition that Fz ≠ Null. If the set Sx

cannot fulfill the condition before then the node was not satisfied with the policy and

returns Null. Otherwise, we compute as follows:

Fx = ∏ 𝐹𝑧

Δ
𝑖,𝑆′𝑥

(0)

𝑧 ∈𝑆𝑥
, 𝑤ℎ𝑒𝑟𝑒𝑆′𝑥={𝑖𝑛𝑑𝑒𝑥(𝑧)∶ 𝑧∈𝑆𝑥}

𝑖=𝑖𝑛𝑑𝑒𝑥(𝑧)

 = ∏ (𝑒(𝑔, 𝑔)𝑟∙𝑞𝑧(0))
Δ

𝑖,𝑆′𝑥
(0)

𝑧 ∈𝑆𝑥

 = ∏ (𝑒(𝑔, 𝑔)𝑟∙𝑞𝑝𝑎𝑟𝑒𝑛𝑡(𝑧)(𝑖𝑛𝑑𝑒𝑥(𝑧)))
Δ

𝑖,𝑆′𝑥
(0)

𝑧 ∈𝑆𝑥

 = ∏ 𝑒(𝑔, 𝑔)
𝑟∙𝑞𝑥(𝑖)∙Δ

𝑖,𝑆′𝑥
(0)

𝑧 ∈𝑆𝑥

 = 𝑒(𝑔, 𝑔)𝑟∙𝑞𝑥(0)

And return the result.

Then we define the final decryption algorithm. The algorithm initiates by calling

the DECCP-ABE(SKDU, CTK, x) on the root node R of the access tree AP. If the access tree

is satisfied by S, then we set A = DECCP-ABE (SKDU, CTK, r) = 𝑒(𝑔, 𝑔)𝑟∙𝑞𝑥(0) = 𝑒(𝑔, 𝑔)𝑟𝑠.

The algorithm then performs the decryption by computing as follows:

𝐶˜/(𝑒(𝐶, 𝐷)/𝐴) = 𝐶˜ /(𝑒(ℎ𝑠, 𝑔(𝛼+𝑟)/𝛽)/𝑒(𝑔, 𝑔)𝑟∙𝑠) = 𝐴𝐸𝑆_𝐾𝑒𝑦

2) Decrypt CTM(AES_Key, CTM) → M

The algorithm takes as inputs AES_Key and CTM. The algorithm produces data

M by decrypting the CTM with the AES_Key.

Phase 5: Revocation

This phase consists of two cases: user revocation and attribute revocation. In

our scheme, the revocation task is executed by the proxy server located in the cloud. At

the same time, the DO only generates a new access policy AP’ and sends the revocation

Ref. code: 25666422040060GIV

41

request to the proxy. The algorithmic details of each case are described as follows.

Figure 4.4 User Revocation Process Diagram

Case 1: User Revocation

If any user is revoked from the system, the DO sends a revocation request

containing new access Policy AP’, revoked DU’s Ethereum Account ACCDU, revoked

DU information, and new version parameter Ver’ to the proxy. Figure 4.4 presents the

workflow between each entity in the system. User revocation cases contain four major

steps as follows.

Step 1: Query for affected CTK

The proxy queries for attributes of the revoked DU and then queries for the

ciphertexts that can be accessed by the revoked user as the affectedCTk array by

executing the attributeCTqueryFunction. The affected ciphertexts are stored in the

IPFS, while their corresponding keys are stored in the blockchain system. The function

takes as input a revoked DU’s Ethereum Account ACCDU. It outputs an array of key

ciphertexts CTK that contains the corresponding URL path to their respective CTM that

needs to be re-encrypted with a new symmetric key. The processes for invoking the

Ref. code: 25666422040060GIV

42

DU’s attributes and CTK are done through Algorithm 3, Algorithm 7, and Algorithm 8,

respectively. The function is defined as follows:

attributeCTqueryFunction(ACCDU) return (Array[CTKi, URLCTMi, Indexi]){

 string DUattr[];

 string affectedCTkIndex[];

 affectedCTk[];

 string temporyIndex;

 DUattr = DUAttributeQuery(ACCDU);

 For (i = 0; i <= len(DUattr) ; i++) {

 temporaryIndex = CTKAttributeQuery(DUattr[i]);

 affectedCTkIndex.push(temporaryIndex);

 temporaryIndex = “ ”;

 }

 removeDuplicate(affectedCTkIndex);

 For (j = 0; j <= len(affectedCTkIndex); j++){

 affectedCTk.push(CTKQuery(affectedCTkIndex[j])), affectedCTkIndex[j]);

 }

 Return affectedCTk;

}

Step 2: Re-generate a Symmetric Key

The proxy generates a new symmetric key corresponding to the affected

ciphertext. The function is defined as follows:

Re-GenSymKey (Rs, r) → (AES_KeyR)

The algorithm takes as inputs a random string Rs and a random parameter r.

Then, the algorithm generates a new AES_KeyR, a symmetric key perturbed by a

random parameter.

Step 3: Re-encrypt ciphertexts

The proxy then runs the Re-Encryption function to update the policy of the

affected ciphertexts. The function takes as inputs an array of affectedCTk, a proxy secret

key SKProxy+Random, AES_KeyR, the public key PK, and a new access policy AP’. Then,

it returns the re-encrypted ciphertexts array to the proxy. The function is defined as

follows:

Ref. code: 25666422040060GIV

43

Re-Encryption(affectedCTk[], SKProxy+Random, AES_KeyR, PK, AP’) return (Array[CTKi,

URLCTMi, Indexi]) {

 SKProxy = ExtractRandom(KProxy+Random);

 For (i = 0 ; i <= len(affectedCTk) ; i++){

CTK = affectedCTk [i][0];

CTM = Download(affectedCTk [i][1]);

AES_Key = DECCP-ABE(SKProxy, CTKi);

M = DECAES(CTM, AES);

AES’ = AES_KeyR – r;

CTM’ = ENCAES(M, AES’);

CTM’URL = Upload(CTM’);

CT’Ki = ENCCP-ABE(PK, AP’, AES’);

affectedCTk [i][0] = CT’Ki;

affectedCTk [i][1] = CTM’URL;

}

SKProxy = “0”;

Return affectedCTk;

}

After the algorithm returns the array of affectedCTk to the proxy, the proxy then

runs a recursive function based on the number of key ciphertexts in the affectedCTk

array. The proxy then runs Algorithm 5 to update their respective value.

Step 4: Key Update

In this step, the proxy sends the key update request, the Revoked DU

information, and the new Ver’ to the AA. AA then invokes the key update function to

update all non-revoked users’ keys. The key update steps are as follows:

1) AA generates an update parameter UP based on Ver’ parameter.

UP = g(rj’ - rj)/β where rj = Ver, rj’= Ver’

2) AA applies an UP to all non-revoked users in the system. The update secret key

function is as follows:

SK’DU = (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj, D’j’ = D’j ∙ UP where rj = Ver, rj’=

Ver’)

Ref. code: 25666422040060GIV

44

3) AA then encrypts the new SK’DU with user’s public key and sends to the users.

After finishing the key update, the proxy updates the access permission list

(APL) on the blockchain system with the revoked DU’s Ethereum account to prevent

further access from the revoked user by invoking Algorithm 4 from the Authentication

Contract. The reason behind this is that the blockchain will check the validity status of

the user account before they can access it. If their account is valid, they can access the

blockchain system. Otherwise, the blockchain will terminate the connection to the

requestor.

Figure 4.5 Attribute Revocation Process Diagram

Case 2: Attribute Revocation

To revoke the attribute, DO sends the revocation requests with parameters: a

new access Policy AP’, and revoked Attribute information Attr to the proxy. Figure 4.5

presents the attribute revocation process.

Step 1: Query for affected key ciphertext CTK

In this case, the proxy queries the key ciphertexts that contain the revocation

attribute by executing the attributeCTqueryFunction. In this case, the algorithm only

Ref. code: 25666422040060GIV

45

re-encrypts the key ciphertexts that contain the revoked attribute. The function takes as

input a revoked attribute Attr. It outputs an array of key ciphertexts that need to be re-

encrypted with a new policy AP’. The function is defined as follows:

attributeCTqueryFunction(Attr) return (Array[CTKi, URLCTMi, Indexi]) {

string affectedCTkIndex[];

 affectedCTk[];

 affectedCTkIndex = CTKAttributeQuery(Attr);

For (i = 0; i <= len(affectedCTkIndex); i++){

 affectedCTk.push(CTKQuery(affectedCTkIndex[i])),affectedCTkIndex[i]);

}

Return affectedCTk;

}

Step 2: Re-encrypt key ciphertexts

The function takes as inputs an array of affectedCTk, a proxy secret key

SKProxy+Random, public key PK, and a new access policy AP’. Then, it returns the re-

encrypted ciphertexts array to the proxy. The function is defined as follows:

Re-Encryption(affectedCTk[], SKProxy+Random, PK, AP’) return (Array[CTKi, URLCTMi,

Indexi]) {

 SKProxy = ExtractRandom(SKProxy+Random);

 For (i = 0 ; i <= len(affectedCTk) ; i++){

CTK = affectedCTk [i][0];

AES_Key = DECCP-ABE(SKProxy, CTKi);

CT’Ki = ENCCP-ABE(PK, AP’, AES_Key);

affectedCTk [i][0] = CT’Ki;

}

SKProxy = “0”;

Return affectedCTk;

}

After the algorithm returns the resulting array of ciphertext re-encryption affectedCTk

to the proxy. The proxy then runs a recursive function based on the number of key

ciphertexts in the array and runs the Algorithm 5 function from the CTKManagement

Contract to update their respective value.

Ref. code: 25666422040060GIV

46

Step 3: Key Update

In this step, the proxy sends the key update request to the AA. The AA runs the

key update function as follows:

1) AA generates an update parameter UP based on the Attr parameter.

UP = g(rj’ - rj)/β where rj = Attr

2) AA runs UP to update a set of attributes for all active DUs in the system. The update

secret key is done through the following function:

SK’DU = (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj, D’j’ = D’j ∙ UP where rj = Attr)

3) AA then encrypts the new SK’DU with user’s public key and sends to the users.

Ref. code: 25666422040060GIV

47

CHAPTER 5

SECURITY ANALYSIS

This section explains the security analysis of our scheme based on security

assumptions, security games, and cryptographic constructs given in Chapters 3 and 4.

5.1 Security Model of our proposed scheme

In our proposed scheme, the security is proven in a game-based theory. Our

scheme is based on CP-ABE (J. Bethencourt, A. Sahai, and B. Waters, 2007), AES

symmetric key encryption, and RSA public key encryption scheme. Detailed proof of

its security can be referred to the original CP-ABE paper, the AES (Announcing the

ADVANCED ENCRYPTION STANDARD (AES), 2001), and the Rivest-Shamir-

Adleman cryptosystem (P. Meelu & S. Malik, 2010).

Our security assumption is based on the IND-CPA security assumption. The

security model of our proposed scheme is defined by the security game with the

assumption that only the data owner is fully trusted. At the same time, the data users

are assumed to be dishonest. Also, the adversary may corrupt the authorities. However,

the key queries can be adaptive. In our proposed model, there are two types of

adversaries:

• Type-A adversary is the one who has no permission to access the data from

the beginning.

• Type-B adversary is the data user previously revoked from the system.

Consequently, the implementation of a key update algorithm is essential.

Furthermore, it is essential to note that the Type-B adversary faces challenges in

accurately updating the key version.

The security game is conducted between adversary A and challenger B is

defined as follows:

Ref. code: 25666422040060GIV

48

Setup: First, challenger B runs System Initialization algorithm to generate

master secret key MSK, public key PK. After that, B sent PK to A.

Phase 1: This phase contains three cases based on the type of adversary.

Adversary A repeatedly generates secret key queries SK corresponding to sets of

attributes S. Challenger B then performs Key Generation Algorithm and Key Update

Algorithm to the recently generated SK before returning SK to A.

Challenge Phase: Adversary A generates two messages, M1 and M2, with an

equal length such that |M1|=|M2|. In addition, A generates two random 256-bit symmetric

keys, AES_Key1 and AES_Key2, and access policy AP*. Access policy AP* must not

contain the attributes that appear in set S of adversary A’s secret key. Then adversary

A submits the randomly generate symmetric key to challenger B. Challenger B

randomly selected b, where b ∈ {1,2} with an equal chance to get both values. B

computes AESEncrypt(AES_Keyb, Mb) → CTM* and Encrypt(PK,AP*, AES_Keyb) →

CTK*. After that, CTM* and CTK* are given to A.

Phase 2: Repeat step 1 with the condition that each attribute set S that use to

construct the secret key cannot contain the attributes in the access policy AP*.

Guess Phase: Adversary A outputs a guess b’ of b. The adversary wins if b’ =

b and the advantage of the adversary A is equal to | Pr[b’ = b] -1/2 |

Definition 3 Our scheme is secure against polynomial time adversaries in an IND-CPA

security assumption who have, at most, negligible advantages in the above game with

the probabilistic advantage value of |Pr[b’ = b] -1/2|.

Ref. code: 25666422040060GIV

49

5.2 Security Proof of our proposed scheme

Theorem 1: There are no polynomial-time advantages for an adversary, suppose that

IND-CPA security assumption holds, who can break the security of AES symmetric

encryption/decryption and CP-ABE with non-negligible advantage.

Proof: Suppose the Adversary A possesses probabilistic polynomial time

advantages and can break the security scheme with a non-negligible advantage against

our proposed scheme. In that case, we can simulate the following game, enabling A to

break our scheme with non-negligible advantage.

Initialization: Suppose Adversary A has non-negligible advantage against our

scheme.

Setup: Adversary A submits system initialization request to Challenger B.

Challenger B then runs the System Initialization algorithm. This algorithm selects a

bilinear group G0 of prime order p with generator g, chooses two random values α and

β from ZP to compute a public key, and sends the resulting PK to A.

PK = {𝐺0, 𝑔, ℎ = 𝑔𝛽 , 𝑓 = 𝑔
1

𝛽, 𝑒(𝑔, 𝑔)𝛼},MSK={𝛽, 𝑔𝛼}.

Phase 1: A then requests secret key generation queries to B.

Type-A Adversary: Suppose B generates a set of attributes S with the condition

that S cannot satisfy access policy AP*. B then generate a secret key SKA. The SKA is

constructed as follows:

SKA = (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj)

After constructing a SKA, Challenger B has to perform a key update mechanism

to update the key version parameter in the SKA. In this case, B generates the update

Ref. code: 25666422040060GIV

50

parameter UPA that contains the latest key version parameter and applies the UPA to

SKA*. Then B sent the newly updated SKA*to A. The construction of UPA and newly

updated SKA*is as follows:

UPA = g(rj’ - rj)/β where rj = Ver, rj’= Ver’

SKA*= (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj, D’j’ = D’j ∙ UP where rj = Ver,

rj’= Ver’)

Type-B Adversary: Suppose B generates a set of attributes S with the condition

that S does not contain the right key Version parameter Ver’ thus they cannot satisfy

access policy AP*. B then generates a secret key SKA. The SKA is constructed as

follows:

SKA = (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj)

After constructing a SKA, Challenger B has to perform a key update mechanism

to update the key version parameter in the SKA. In this case, B generates the update

parameter UPA that does not contain the latest key version parameter and applies the

UPA to SKA. Then B sent the newly updated SKA* to A. The construction of UPA and

newly updated SKA* is as follows:

UPA = g(rj’ - rj)/β where rj = Ver, rj’!= Ver’

SKA*= (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj, D’j’ = D’j ∙ UP where rj = Ver,

rj’!= Ver’)

Challenge Phase: A generates two messages, M1 and M2, with equal length such

that |M1|=|M2|. In addition, A generates two random 256-bit symmetric keys, AES_Key1

Ref. code: 25666422040060GIV

51

and AES_Key2, and access policy AP*. Then submit those to challenger B. Challenger

B randomly selected b, where b ∈ {1,2} with an equal chance to get both values. B then

encrypts Mb with symmetric key encryption AES_Keyb. Afterward, B encrypts

AES_Keyb with the CP-ABE algorithm. Furthermore, B sends the result CTM* and CTK*

to A. The CTM* and CTK* is constructed as follows:

CTM* = AESEncrypt(AES_Keyb, Mb)

CTK* = (AP*, C˜ = (AES_Keyb)e(g,g) αS ,C = hS, ∀y ∈ Y : Cy = gq
y
(0),C′

y =

att(y)q
y
(0))

Phase 2: A continuously generates secret key queries. The process is the same

as phase 1, with the same restriction for different adversary types. For Type-A

Adversary, each attribute set S cannot contain the attributes that satisfy access policy

AP*. As for Type-B Adversary, their secret key must not contain the right Version

parameter.

Guess Phase: A output a guess statement b’, where b’∈ {1,2}. A win the game

by outputting the guess statement where b’ = b. Hence, the advantage of Adversary A

against our proposed scheme is as follows:

ADVA = | Pr[b’ = b] -1/2 |

Since A has a nonnegligible advantage against our scheme, we have successfully

proven the theorem.

The full proof of CP-ABE can be referred to the original paper (J. Bethencourt,

A. Sahai, and B. Waters, 2007).

Theorem 2: SKDU from corrupted attribute authorities alone cannot be used to decrypt

all the components of the ciphertexts stored on the cloud storage.

Ref. code: 25666422040060GIV

52

Proof: In our scheme, the ciphertexts stored on the cloud storage are encrypted

by symmetric key encryption. Moreover, the CP-ABE mechanism encrypts the

symmetric key and stores it securely on the blockchain system.

To perform full decryption on the ciphertext stored on the cloud storage, the

adversary needs to know the key ciphertext’s index and pass the authentication process

from the blockchain system to retrieve the key ciphertext. With this method, SKDU from

the corrupted authorities alone cannot be used to decrypt the ciphertext stored on the

cloud.

Theorem 3: After the DUs have been revoked from the system, access to the data

stored on the blockchain and IPFS is no longer available to revoked DUs. In the event

that revoked DUs find a way to access the data stored on both blockchain and IPFS,

they will not be able to utilize their secret key and the old AES key to access the data.

Proof: In our proposed approach, when the DO initiates the user revocation

protocol, a new secret key version parameter, Ver’, and a new Access Policy, AP’,

which includes Ver’ as a mandatory policy, are generated. This means that DUs lacking

the specific Ver’ attribute in their SKDU cannot decrypt the CTK’ store on the blockchain.

Additionally, for each key ciphertext CTK accessible by the revoked DU, the proxy

generates a new AES key. It performs symmetric key re-encryption for the data

ciphertext component, CTM, residing on the IPFS. The updated CTM’, resulting from

the re-encryption, replaces the old CTM on the IPFS. Alongside this, the newly

generated AES key is re-encrypted using the new access policy AP’ to form a new key

ciphertext, CTK’. The proxy then updates the URL of the newly updated CTM and its

corresponding CTK’ on the blockchain. Subsequently, the proxy employs Algorithm 4

from the smart contract to revoke the DU’s access privileges within the blockchain

system. This ensures that the revoked DU can no longer query or retrieve data stored

on the blockchain system. Through the ciphertext and symmetric key re-encryption

Ref. code: 25666422040060GIV

53

process, the revoked user is effectively blocked from using their holding keys to access

the data.

5.3 Forward Security

Forward security refers to the concept that the revoked user cannot access the

data subsequently. In our scheme, this security property is assured by the key update

mechanism. Essentially, the key update done by the AA will not be issued to the

revoked user as of the verification of the access permission list and the update parameter

verification.

5.4 Backward Security

Backward security refers to the concept that the revoked user cannot decrypt

previously encrypted shared data. Our scheme guarantees this security property based

on the ciphertext re-encryption. In our scheme, when the user is revoked, all the

ciphertexts ever accessed by the revoked user will be re-encrypted by a new AES key,

which is encrypted by a new access policy.

5.5 Confidentiality of Ciphertexts on Cloud and Blockchain Storage

The ciphertexts stored on a cloud storage are encrypted by symmetric key

encryption algorithms with 256-bit key length, while their AES key is encrypted by CP-

ABE encryption and stored on the blockchain system. With both encryptions, by their

security protocol, the ciphertexts cannot be cracked in polynomial time-space. In

addition, without valid blockchain credentials, the key ciphertexts cannot be retrieved.

5.6 Proxy’s Key Security

In our scheme, we allow the proxy to keep its key in a secure manner. During

the key generation method, we added a 256-bit random number to obfuscate the proxy’s

secret key after generating the key. Without the knowledge of the padding number

policy, the attacker cannot use the proxy’s secret key. In addition to padded random

numbers, all attributes in our scheme are hidden via an HVE method. Even if the

attacker can gain the proxy’s secret key, they cannot use it to decrypt the ciphertext or

have knowledge of what attributes are used to construct the key.

Ref. code: 25666422040060GIV

54

CHAPTER 6

COMPARATIVE ANALYSIS AND EVALUATION

In this section, we evaluate our proposed scheme by presenting the comparative

functional analysis and computation cost analysis of our scheme and related works. In

addition, we conducted experiments to measure the performance of the encryption,

decryption, re-encryption, and ciphertext querying processes of our scheme and related

works. For ease of understanding, we provide the notation used in the comparative

analysis, as shown in TABLE 6.1.

TABLE 6.1 NOTATION FOR COMPARATIVE ANALYSIS SECTION

Notation Description

PRX Proxy Server

BC Blockchain

CS Cloud Storage

G0 Exponential operation in group G0

G1 Exponential operation in group G1

E Bilinear pairing operation

|G0| Size of element in G0

|G1| Size of element in G1

|E| Size of element that use in bilinear pairing

|AP| Number of attributes in access policy

|UA| Number of attributes in user secret key

AESEnc AES encryption operation

AESDec AES decryption operation

|AESKey| AES key size

|M| Data size

|CTM| Encrypted data size

|PK| CP-ABE Public key size

|RSADU| RSA Private key size

|APL| Access Permission list size

6.1 Functionality Analysis

TABLE 6.2 illustrates the functionality comparison of our proposed scheme and

three related literature, including R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng

(2021), Y. Jiang, X. Xu and F. Xiao (2022), and K. Yu, L. Tan, M. Aloqaily, H. Yang

Ref. code: 25666422040060GIV

55

and Y. Jararweh (2021). The functionality comparison is analyzed based on the aspect

of the attribute hiding functionality, revocation capability, and ciphertext querying

functionality. In general, only our scheme supports attribute-hiding functionality. As

for the revocation aspect, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and

K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) only support user

revocation, while Y. Jiang, X. Xu and F. Xiao (2022) only supports attribute revocation.

In our proposed scheme, we support both users and attribute revocation levels. Lastly,

our proposed scheme is the only scheme that provides the formal method for querying

the affected ciphertexts when the revocation occurs.

TABLE 6.2 FUNCTIONAL COMPARISON

 Attributes Hiding

Revocation Ciphertext

Querying

Functionality
User. Attr.

R. Guo et al. x ✓ x x

Y. Jiang et

al.

x x ✓ x

K. Yu et al. x ✓ x x

Our ✓ ✓ ✓ ✓

TABLE 6.3 COMPUTATION COST COMPARISON

Computation Cost

Encryption Cost Decryption Cost

R. Guo et al. (3|AP| + 1)G0 (2|AP|+ |UA|)G1 +2|AP|E

Y. Jiang et

al.

(4|AP| + 2)G0 + E (|UA|+ 2)E +(2|AP|)G1

K. Yu et al. (2|AP| + 4)G0 + 3G1 (2|AP| + |UA|)E + (|UA| + 2)G1

Our
(2|AP| + 1)G0 + 2G1+

AESEnc

(2|UA| + 1)E + (2|AP| + 2)G1 +

AESDec

6.2 Computation Cost Analysis

The computation cost of cryptographic operations is crucial to evaluate the

access control system’s efficiency, scalability, and practicality. As shown in TABLE

6.3, the encryption cost of all schemes is subject to the number of attributes in the policy

Ref. code: 25666422040060GIV

56

that need to be encrypted with the data together with the exponential operation of the

prime order group G0. In schemes R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng

(2021), Y. Jiang, X. Xu and F. Xiao (2022), and K. Yu, L. Tan, M. Aloqaily, H. Yang

and Y. Jararweh (2021) their data encryption methods are done through the CP-ABE

mechanism. Y. Jiang, X. Xu and F. Xiao (2022) scheme deals with a bilinear pairing

operation, which results in higher computation costs than the other schemes. While in

our scheme, we utilized a 2-step encryption operation that contains AES and CP-ABE

algorithms. Our AES cryptosystem is used to encrypt/decrypt the desired data, while

CP-ABE is used to encrypt/decrypt the AES key. The computation cost of the AES

algorithm is relatively small compared to the CP-ABE method due to the smaller key

size and lighter crypto operation costs. As a result, our encryption cost yields the least

execution time compared to the others. For the decryption cases, the computation cost

is subject to the number of attributes in the policy and the number of attributes contained

in the user secret key, together with the exponential operation of prime order group G1

and bilinear pairing operation, are the major costs. In R. Guo, G. Yang, H. Shi, Y. Zhang

and D. Zheng (2021) scheme, the computation cost is based on both pairing and

exponential operation of prime order group G1, which yields more computation cost

than Y. Jiang, X. Xu and F. Xiao (2022), K. Yu, L. Tan, M. Aloqaily, H. Yang and Y.

Jararweh (2021), and ours. Y. Jiang, X. Xu and F. Xiao (2022) and our scheme only

deals with the exponential operation on group G1, while K. Yu, L. Tan, M. Aloqaily,

H. Yang and Y. Jararweh (2021) relies on pairing operation. Specifically, our scheme

yielded a smaller decryption cost than other schemes because the decryption was done

over the encrypted AES key, while other schemes worked directly with the encrypted

data.

6.3 Communication Cost Analysis

Communication cost is the cost that occurs when there is data communication

between different entities in the system. This section will focus on the ciphertext or data

communication between entities, and the access request will not be accounted for in

Ref. code: 25666422040060GIV

57

this comparison. Here, we consider the size of security parameters sent to and forth

between the entities in the systems.

TABLE 6.4 COMMUNICATION COST COMPARISON

 Scheme

 R. Guo et al. Y. Jiang et al. K. Yu et al. Our

DO & DU - |M|, Signature - |RSADU|

DO & BC -
URL +

Hash(CTM) +
Signature

|PK|

[(2|AP|+1)|G0| +
2|G1|+ |AESKey|],
Index, CTKAttr&

URL

DO & CS -
[(4|AP|+2)|G0|+

|E|+|M|]
[(2|AP|+4)|G0|+

3|G1|+|M|]
|CTM|

DO &
PRX

[(3|AP|+1) |G0|+|M|] - -
[(2|UA|)|G0| +

|G1|]

PRX &
CS

[(3|AP|+1)|G0|+|M|]
[(4|AP|+2)|G0|+

|E|+|M|]
[(2|AP|+4)|G0|+

3|G1|+|M|]
|CTM|

PRX &
BC

Hash(CTM) -

|PK|,
Signature(SKDU)

[(2|AP|+1)|G0| +
2|G1|+|AESKey|],

Index, CTKAttr&
URL

DU & BC - - -
[(2|AP|+1)|G0| +
2|G1|+ |AESKey|],

Index, URL

DU & CS - - - |CTM|

DU &
PRX

[(|UA|+2)|G0|],
[|G1|+|M|]

[(|UA|+3)|G0|],
[|G1|+|M|]

[2|G1|+|M|]
-

As shown in TABLE 6.4, in R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng

(2021), the communication cost occurs at the proxy server and other entities such as

data owners and users in the system. In their system, after the DO performs CP-ABE

encryption, the DO needs to upload the ciphertext to the proxy before it is uploaded to

the cloud storage. Then, the proxy hashes the ciphertext and uses its values as the index

to be stored on the blockchain system. In Y. Jiang, X. Xu and F. Xiao (2022), the doctor

has to send EHR data, the hash value, and their digital signature to the patient to let

Ref. code: 25666422040060GIV

58

them perform CP-ABE encryption on the EHR data and upload the encrypted data to

the cloud storage. With this approach, the communication cost between DO and DU

tends to be larger than the other approach. The data’s signature and hash value are then

uploaded to the blockchain by DO. For R. Guo, G. Yang, H. Shi, Y. Zhang and D.

Zheng (2021) and Y. Jiang, X. Xu and F. Xiao (2022) when DU wants to access the

ciphertext, they need to send the request with the transformation key to the proxy. With

this, each time DU wants to access the data, the communication cost of sending the

transformation key occurs. The proxy then fetches the ciphertext from the cloud storage

and performs partial decryption before the intermediate ciphertext is sent to the DU.

In K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021), there are no

communication costs between DO and DU because, in their scheme, the cryptographic

component is generated by trusted authorities and a trusted proxy and stored those

components on the blockchain and on the proxy itself. When DO wants to encrypt the

data, they need to make an access request to the blockchain system to receive the PK.

This renders the same communication overhead as in R. Guo, G. Yang, H. Shi, Y.

Zhang and D. Zheng (2021) and Y. Jiang, X. Xu and F. Xiao (2022) when the DU wants

to access the data. The proxy invokes the ciphertext from the cloud storage, performs

partial decryption, and sends the result to the DU.

In our scheme, the communication cost between DO and DU is only the

DU RSA key pair transmission. In contrast, the communication between DO and Proxy

involves transferring the proxy’s CP-ABE key. For the blockchain system, the

communication between it and the DO and Proxy is the key ciphertext, its respective

index, URL, and its attributes. Even though blockchain and other entities communicate

by transmitting such cryptographic elements, their size is relatively small. In our

scheme, DU can access the data stored on the cloud and blockchain directly, compared

to other schemes where DU must send their data access request to a proxy and let the

proxy fetch the data for them.

Ref. code: 25666422040060GIV

59

6.4 Storage Cost Analysis

Storage cost refers to the cost of storing cryptographic keys, ciphertexts, hash

value of the ciphertexts, digital signature, index value, and, in some cases, ciphertexts

attributes at their respective entities.

TABLE 6.5 STORAGE COST COMPARISON

 Scheme

 R. Guo et al. Y. Jiang et al. K. Yu et al. Our

DO |PK| |PK| - |PK|

DU
[(|UA|+2) |G0|+

|G1|]]
[(|UA|+3) |G0|+

|G1|]]
[(2|UA|+1) |G0| +

|G1|]
[(2|UA|) |G0| +
|G1|], |RSADU|

PRX - - [(2|UA|+1) |G0|]
[(2|UA|) |G0| +

|G1|]

BC Hash(CTM)
Hash(CTM),
Signature

PK,
Signature(SKDU)

[(2|AP|+1)|G0| +
2|G1|+|AESKey|],

Index, Attributes[],
|APL|

CS
[(3|AP|+1)|G0|+|M|] [(4|AP|+2)|G0|+

|E|+|M|]
[(2|AP|+4)|G0|+

3|G1|+|M|]
|CTM|

As shown in TABLE 6.5, most works share the exact storage cost for storing

public keys at DO, CP-ABE secret key at DU, and CP-ABE encrypted ciphertexts at

cloud storage. For our scheme, cloud storage stored the symmetric encryption

ciphertext instead. For proxy, in our scheme, the proxy holds its secret key, while in K.

Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) it holds the DU

transformation key. On the blockchain side, schemes R. Guo, G. Yang, H. Shi, Y.

Zhang and D. Zheng (2021) and Y. Jiang, X. Xu and F. Xiao (2022) are closely similar;

the blockchain stores the ciphertexts’ hash values as the integrity tampered-proof

certificates. If their ciphertexts have been altered, their hash value will be different from

the hash value of their respective ciphertexts in the blockchain system. In Y. Jiang, X.

Xu and F. Xiao (2022), they also stored the digital signature of the DU with the hash

value of the ciphertext. For K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh

Ref. code: 25666422040060GIV

60

(2021), their blockchain system holds the public key of the system and the digital

signature of DU’s secret key. With their approach, when DO wants to encrypt the data,

they need to request the blockchain system for the PK. In our scheme, blockchain stores

CP-ABE encrypted AES keys with their index and attributes. With our approach, the

proxy can retrieve the corresponding cryptographic component directly from the

blockchain system and cloud storage without external interference when the revocation

occurs. Moreover, DU can access the data directly with the blockchain system as long

as their account status is still valid on the blockchain. In addition to storing the

ciphertext, our scheme also stored the access permission list of the DU in the system

for authentication.

6.5 Experimental Analysis

To evaluate the performance of our proposed system, we conducted

experiments to compare the encryption time, decryption time, revocation time, and

query time of our scheme and the related works, including schemes R. Guo, G. Yang,

H. Shi, Y. Zhang and D. Zheng (2021), Y. Jiang, X. Xu and F. Xiao (2022), and K. Yu,

L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021). These three works were chosen

because they all deployed blockchain as their immutable record for data integrity,

implemented the revocation protocol, and used CP-ABE as their core cryptography.

For the experiment setting, we utilized Open SSL as a core PKI system for

generating key pairs to users and the proxy in our system. The CP-ABE Toolkit, Java-

Pairing based Cryptography (PBC Library, 2022; A. De Caro & V. Iovino, 2011),

and AES Toolkits (Packetizer, 2023) are used to simulate the cryptographic operation

of our scheme, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021), Y. Jiang, X.

Xu and F. Xiao (2022), and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh

(2021). As for blockchain simulation, we used Ethereum on Ganache Truffle Suite

(2023) with the help of Web3.js as a communication interface. For decentralized

storage services, we used the IPFS application. The experiment environment for DO is

as follows: AMD Ryzen 5 5600G (3.90 GHz), 16 GB of RAM, and a 64-bit Windows

11 Operating System. As for the proxy environment, we use the Google Cloud platform

Ref. code: 25666422040060GIV

61

with computer engine ‘E2-Micro’ with Intel Xeon 2.20 GHz, 1 GB of RAM, and

Ubuntu 20.04.5 LTS OS. The proxy server runs the IPFS and the essential

cryptographic protocol to support the revocation, such as AES symmetric key

encryption and CP-ABE encryption.

In our experiment, the user secret key contains five attributes, and the 300-KB

file was used to test the encryption, decryption, and revocation operation.

6.5.1 Encryption and Decryption Performance

We measured the encryption and decryption time by varying the size of the

access policy. The experiments were done to measure the processing time used for data

encryption and decryption between our scheme, R. Guo, G. Yang, H. Shi, Y. Zhang

and D. Zheng (2021) scheme, Y. Jiang, X. Xu and F. Xiao (2022) scheme, and K. Yu,

L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) scheme. Figure 6.1 and Figure

6.2 present the encryption and decryption performance, respectively. For the encryption

performance, our scheme and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh

(2021) grew linearly with the size of the access policy, while the graphs of scheme R.

Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and scheme Y. Jiang, X. Xu and

F. Xiao (2022) tend to increase sharply when the higher number of attributes in the

policy was applied. This is because R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng

(2021) and Y. Jiang, X. Xu and F. Xiao (2022) schemes deal with more complexity of

computation that relates to the number of attributes in the policy than ours and K. Yu,

L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021). Their scheme requires more

policy instances to be computed with a prime order group. Specifically, in the scheme

Y. Jiang, X. Xu and F. Xiao (2022), the encryption cost was also subject to additional

bilinear pairing operation. As for the decryption performance, the performance of all

schemes was subject to the size of the access policy. R. Guo, G. Yang, H. Shi, Y. Zhang

and D. Zheng (2021) yielded the highest decryption cost since its decryption function

requires both exponential and bilinear pairing operations on the number of attributes in

the policy. For Y. Jiang, X. Xu and F. Xiao (2022) scheme and our scheme, the

Ref. code: 25666422040060GIV

62

decryption process deals with the exponential operation on group G1, while K. Yu, L.

Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) relies on pairing operation.

Figure 6.1 Encryption Performance

Figure 6.2 Decryption Performance

Ref. code: 25666422040060GIV

63

6.5.2 Revocation Performance

To evaluate the revocation performance, we measured the revocation time by

varying the size of the access policy used for re-encryption and/or ciphertext update.

The experiments were done to measure the processing time used for user revocation

between our scheme, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) scheme,

and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) scheme. For the

attribute revocation, we measured the revocation time between our scheme and Y.

Jiang, X. Xu and F. Xiao (2022) scheme.

For the user revocation case, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng

(2021) and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) require the

transformation of the ciphertext based on the policy update. The operations related to

exponential and bilinear pairing operation of CP-ABE and user key transformation

generation were major overheads. In our scheme, the number of attributes that need to

be updated is subject to an exponential with constant pairing and AES encryption. In

R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and K. Yu, L. Tan, M.

Aloqaily, H. Yang and Y. Jararweh (2021), the proxy needed to perform partial CP-

ABE decryption for each user in the system to update the ciphertexts to suit each user’s

attributes fully. Moreover, transform them into smaller ciphertext. Then, the user uses

their secret key to complete the decryption. Their decryption processes were subject to

an exponential pairing of both user attributes and policy attributes. As shown in Figure

6.3, our scheme delivered the processing time used for the user revocation on par with

schemes R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and K. Yu, L. Tan,

M. Aloqaily, H. Yang and Y. Jararweh (2021).

In the attribute revocation case, Y. Jiang, X. Xu and F. Xiao (2022) relied on

the policy update protocol, reducing the cost of re-encryption of the entire ciphertexts.

However, the proxy also needs to perform partial decryption for each user whose

attributes were removed. As shown in Figure 6.4, the performance of Y. Jiang, X. Xu

and F. Xiao (2022) contains both policy update protocol and partial decryption, which

are used to update the revocation attributes. Our scheme only requires the re-encryption

Ref. code: 25666422040060GIV

64

of the AES key, which is much smaller than the ciphertext produced from the data

encryption.

Figure 6.3 User Revocation Performance based on number of attributes in policy

Figure 6.4 Attribute Revocation Performance based on number of attributes in policy

Ref. code: 25666422040060GIV

65

In addition to measuring the performance based on the number of attributes, we

conducted experiments to measure the user revocation and attribute revocation time

based on the number of ciphertexts that need to be re-encrypted when there is a case of

revocation. The experiments were done to measure the processing time used for user

revocation between our scheme, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng

(2021) scheme, and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021)

scheme. For the attribute revocation, we compared the performance between our

scheme and Y. Jiang, X. Xu and F. Xiao (2022) scheme. In the experiments, the access

policy size containing five attributes was used. To measure the revocation time, we took

the ciphertexts query time into the final revocation cost. The total number of ciphertexts

in the experiment setting varied up to 1000 ciphertexts. Figure 6.5 and Figure 6.6

represent the total processing time used to re-encrypt the ciphertexts for user and

attribute revocation, respectively.

When any user is revoked from the system, we need to ensure that the revoked

user cannot access each ciphertext in the system that contains the user-revoked

attributes. As shown in Figure 6.5, our scheme took less time to complete the user

revocation process. R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and K.

Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) yielded the same

performance since they had the common process for policy update and partial

decryption of the ciphertexts affected by the policy update. The cost of searching for

the affected also contributed to the significant overhead of the overall processing time.

In our scheme, the re-encryption cost was mainly subject to the cost of AES re-

encryption and AES key re-encryption, which yields a relatively small computation cost

compared to ciphertext re-encryption. Significantly, the cost of retrieving the affected

ciphertexts was optimized based on our proposed ciphertext attributes and user

mapping mechanism. When the number of ciphertexts was increased, the efficiency of

our proposed mechanism obviously outperformed the related works.

Ref. code: 25666422040060GIV

66

Figure 6.5 User Revocation Performance based on number of ciphertexts

Figure 6.6 Attribute Revocation Performance based on number of ciphertexts

For attribute revocation cases, it generally took less cost than the user revocation

because only ciphertexts affected with the revoked attribute will be re-encrypted. As

shown in Figure 6.6, our scheme experienced a lower execution time than Y. Jiang, X.

Ref. code: 25666422040060GIV

67

Xu and F. Xiao (2022). The cost of our attribute revocation is similar to the user

revocation since our scheme only required the re-encryption of the AES key.

Furthermore, our attributes mapping scheme enabled faster retrieval of affected

ciphertexts without checking all the ciphertexts in the system. At the same time, Y.

Jiang, X. Xu and F. Xiao (2022) contains policy update protocol, partial decryption,

and traditional ciphertext query on the ciphertexts, which yield more overhead than

ours.

6.5.3 Ciphertext Query and Revocation performance

In Figure 6.7, we experimented with ciphertexts querying performance based

on the number of ciphertexts in the system. The query is conducted via a smart contract

that operates on the blockchain system. The query performance in Figure 6.7 is the

average query time per attribute for all affected ciphertexts that require revocation. The

traditional query, which is typically based on an exhaustive search, requires checking

all ciphertexts where the revoked attribute resides. In our case, our attribute mapping

scheme on the blockchain system minimizes the cost of checking all individual

ciphertexts. Instead, it directly retrieves the affected ciphertexts based on the execution

of the smart contract working over the index source retained in the blockchain mapped

to the attributes. As a result, our proposed scheme significantly improves the ciphertext

retrieval required in the re-encryption step.

In addition to querying performance results, we provided a detailed revocation

cost analysis by measuring the re-encryption time and ciphertext query time for the

given revocation case. In this experiment, we fixed the number of attributes in the

policy and user’s secret key attributes at five, and 50 ciphertexts need to be re-encrypted

out of 1,000 ciphertexts in the system. The querying process was done via a smart

contract on the blockchain for both the proposed scheme and the traditional query.

Figure 6.8 exhibits the performance result of the ciphertext query and re-encryption

cost of the user revocation between our proposed scheme, R. Guo, G. Yang, H. Shi, Y.

Zhang and D. Zheng (2021) scheme, and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y.

Ref. code: 25666422040060GIV

68

Jararweh (2021) scheme, and the attribute revocation cost between our scheme and Y.

Jiang, X. Xu and F. Xiao (2022) scheme.

Figure 6.7 Query Performance Per Attribute

Figure 6.8 Revocation Performance with Query Time

Ref. code: 25666422040060GIV

69

As shown in Figure 6.8, the re-encryption performance of each scheme was not

quite much different because the re-encryption process of R. Guo, G. Yang, H. Shi, Y.

Zhang and D. Zheng (2021), Y. Jiang, X. Xu and F. Xiao (2022), and K. Yu, L. Tan,

M. Aloqaily, H. Yang and Y. Jararweh (2021) requires a policy update protocol to

update each ciphertext and partial ciphertext decryption to enable all non-revoked users

to get their key updated. In our scheme, we need to perform new AES key generation

and re-encryption to fully update the affected ciphertexts when user revocation occurs.

For the attribute revocation case, our scheme only requires symmetric key re-encryption

with a new policy. As for the ciphertext query performance, our scheme significantly

outperforms other works for both user and attribute revocation. For the user revocation

case, the ciphertext query time was indicated by the amount of the user’s secret key

attributes. This is because when the user is revoked, we need to ensure that each

ciphertext in the system that contains the user-revoked attributes cannot be accessed by

the revoked user. In this experiment, the user’s secret key contains five attributes. Thus,

retrieving the affected ciphertexts must query five attributes based on the number of

attributes the revoked user’s secret key contains. This is to mitigate the error of not

retrieving all the ciphertexts that the revoked user can access directly from IPFS if any

revoked users hold the symmetric key for accessing the files. For attribute revocation

cases, the cost was also subject to the number of attributes revoked. This is because our

proposed attribute mapping mechanism and the ciphertext query function reduce the

query time on the blockchain system. Our proposed scheme can retrieve the affected

ciphertext without checking all the ciphertexts in the system. In contrast, all related

works relied on exhaustive searches over all ciphertext and retrieved the affected ones.

As a result, the overall performance of our scheme yields the least execution time than

the others.

Ref. code: 25666422040060GIV

70

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we have proposed a revocable CP-ABE protocol supporting

efficient ciphertexts querying and proxy re-encryption technique with the policy hiding

capability. In cloud computing, we integrated a blockchain system to empower the

decentralized access control functions such as user enrollment, user authentication,

cryptographic elements retention, and ciphertext indexing. Specifically, we proposed a

ciphertext querying method by leveraging the smart contract to efficiently minimize the

cost of ciphertext re-encryption when there is a revocation case. Moreover, most of the

revocation process is offloaded to the proxy server to reduce the execution and

communication cost of DO when the revocation occurs. Finally, we conducted a

comparative analysis to display the functionality, and computation cost, and to conduct

the experiments to measure the performance of our scheme and related works. Based

on the comprehensive analysis and performance evaluation, our scheme has been

proven for its novelty and practicality of the proposed access control protocol and the

revocation algorithms.

For future works, we will tackle the proxy signcryption approach for

blockchain-based cloud systems to enable anonymous authentication and data integrity

validation. In addition, we will investigate the searchable encryption algorithms and

design the mechanism that integrates with blockchain to support the efficient search

over a collection of encrypted documents or files in the IPFS.

Ref. code: 25666422040060GIV

71

REFERENCES

Anand, D., Khemchandani, V., & Sharma, R. (2013). Identity-Based Cryptography

Techniques and Applications (A Review). Proceedings - 5th International

Conference on Computational Intelligence and Communication Networks.

CICN 2013, 343-348. doi: 10.1109/CICN.2013.78.

Announcing the ADVANCE ENCRYPTION STANDARD (AES). (2001). Federal

Information Processing Standards Publication 197. United States National

Institute of Standards and Technology (NIST).

Bethencourt, J., Sahai, A., & Waters, B. (2007). Ciphertext-policy attribute-based

encryption. Proc. of IEEE Symposium on Security and Privacy, 321–334.

Dann en, C. (2017). Introducing Ethereum and Solidity: Foundations of

Cryptocurrency and Blockchain Programming for Beginner, New York, NY,

USA, Apress.

De Caro, A., & Iovino, V. (2011). jPBC: Java pairing based cryptography, 2011

IEEE Symposium on Computers and Communications (ISCC) (pp. 850-

855). doi: 10.1109/ISCC.2011.5983948.

Fugkeaw, S., & Sato, S. (2017). Achieving Scalable and Optimized Attribute

Revocation in Cloud Computing. IEICE Transactions on Information and

Systems, E100.D(5), 973-983.

Fugkeaw, S. (2022). Enabling Trust and Privacy-Preserving e-KYC System Using

Blockchain. IEEE Access, 10, 49028-49039. doi:

10.1109/ACCESS.2022.3172973.

Ganache Truffle Suite (2023, Jan 27). Personal Blockchain Environment [Online].

Retrieved from https://trufflesuite.com/ganache/

Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2016). Attribute-Based Encryption for

Fine-grained Access Control of Encrypted Data. Proceedings of CCS’06,

Alexandria, Virginia, USA.

Ref. code: 25666422040060GIV

72

Guo, R., Yang, G., Shi, H., Zhang, Y., & Zheng, D. (2021). O3-R-CP-ABE: An

Efficient and Revocable Attribute-Based Encryption Scheme in the Cloud-

Assisted IoMT System. IEEE Internet of Things Journal, 8(11), 8949-8963. doi:

10.1109/JIOT.2021.3055541.

Guo, L., Yang, X., & Yau, W. -C. (2021). TABE-DAC: Efficient Traceable Attribute-

Based Encryption Scheme With Dynamic Access Control Based on Blockchain.

IEEE Access, 9, 8479-8490. doi: 10.1109/ACCESS.2021.3049549.

Hu, V., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandling, K., Miller, R., & Scarfone, K.

(2014). Guide to Attribute Based Access Control (ABAC) Definition and

Considerations. NIST Special Publication, SP 800-162.

Jemel, M., & Serhrouchni, A. (2017). Decentralized Access Control Mechanism with

Temporal Dimension Based on Blockchain. 2017 IEEE 14th International

Conference on e-Business Engineering (ICEBE), 177-182. doi:

10.1109/ICEBE.2017.35

Jiang, Y., Xu, X., & Xiao, F. (2022). Attribute-based Encryption with Blockchain

Protection Scheme for Electronic Health Records, IEEE Transactions on

Network and Service Management. doi: 10.1109/TNSM.2022.3193707.

Kumar, R., Palanisamy, B., & Sural, S. (2021). BEAAS: Blockchain Enabled Attribute-

Based Access Control as a Service. 2021 IEEE International Conference on

Blockchain and Cryptocurrency (ICBC), Sydney, Australia. doi:

10.1109/ICBC51069.2021.9461151.

Liang, X., An, N., Li, D., Zhang, Q., & Wang, R. (2022). A Blockchain and ABAC

Based Data Access Control Scheme in Smart Grid. 2022 International

Conference on Blockchain Technology and Information Security (ICBCTIS),

Huaihua City, China. doi: 10.1109/ICBCTIS55569.2022.00023.

Liang, X., Zhao, J., Shetty, S., Liu, J., & Li, D. (2017). Integrating blockchain for data

sharing and collaboration in mobile healthcare applications. 2017 IEEE 28th

Annual International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC), 1-5. doi: 10.1109/PIMRC.2017.8292361.

Ref. code: 25666422040060GIV

73

Liu, H., Luo, X., Liu, H., & Xia, X. (2021). Merkle Tree: A Fundamental Component

of Blockchains. 2021 International Conference on Electronic Information

Engineering and Computer Science (EIECS), Changchun, China. doi:

10.1109/EIECS53707.2021.9588047.

Liu, X., Zheng, Y., & Li, X. (2021). A revocable attribute-based access control system

using blockchain. Journal of Physics: Conference Series.

Malik, S., Dedeoglu, V., Kanhere, S. S., & Jurdak, R. (2019). TrustChain: Trust

Management in Blockchain and IoT Supported Supply Chains. 2019 IEEE

International Conference on Blockchain (Blockchain), 184-193. doi:

10.1109/Blockchain.2019.00032.

Maiti, S., & Misra, S. (2020), P2B: Privacy Preserving Identity-Based Broadcast Proxy

Re-Encryption. IEEE Transactions on Vehicular Technology, 69(5), 5610-

5617. doi: 10.1109/TVT.2020.2982422.

Meelu, P., & Malik, S. (2010). RSA and its Correctness through Modular

Arithmetic RSA and its Correctness through Modular Arithmetic. AIP

Conf. Proc., 1324, 463–466. doi: 10.1063/1.3526259.

Nakamoto, S. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System.

Nguyen, D. C., Pathirana, P. N., Ding, M., & Seneviratne, A. (2019). Blockchain for

Secure EHRs Sharing of Mobile Cloud Based E-Health Systems. IEEE Access,

7, 66792-66806. doi: 10.1109/ACCESS.2019.2917555.

Packetizer (2023, Jan 19). AES application and Source code page [Online]. Retrieved

from https://www.aescrypt.com/download/

PBC library. (2022, October 14). Pairing-Based Cryptography [Online]. Retrieved from

https://crypto.stanford.edu/pbc/

Park, J. H. (2011). Efficient Hidden Vector Encryption for Conjunctive Queries on

Encrypted Data. IEEE Transactions on Knowledge and Data Engineering,

23(10), 1483-1497. doi: 10.1109/TKDE.2010.206.

Ref. code: 25666422040060GIV

74

Rouhani, S., Belchior, R., Cruz, R., & Deters, R. (2021). Distributed Attribute-Based

Access Control System Using a Permissioned Blockchain. World Wide Web 24,

1617–1644. doi: 10.1007/s11280-021-00874-7.

Sethia, D., Shakya, A., Aggarwal, R., & Bhayana, S. (2019). Constant Size CP-ABE

with Scalable Revocation for Resource-Constrained IoT Devices. 2019 IEEE

10th Annual Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON) (pp. 0951-0957). doi:

10.1109/UEMCON47517.2019.8993103.

Shamir, A. (1985). Identity-Based Cryptosystems and Signature Schemes. In G.R.

Blakley & D. Chaum (Eds.), Advances in Cryptology: CRYPTO 1984 (Lecture

Notes in Computer Science, 196, 47-53). doi: 10.1007/3-540-39568-7_5.

Su, Z., Wang, H., Wang, H., & Shi, X. (2020). A Financial data security sharing

solution based on blockchain technology and proxy re-encryption technology.

2020 IEEE 3rd International Conference of Safe Production and

Informatization (IICSPI), 462-465. doi: 10.1109/IICSPI51290.2020.9332363.

Szabo, N. (1997). The idea of smart contracts. Nick Szabos Papers and Concise

Tutorials, 6.

Veen, D. V. (2011) Secure searching through encrypted data - Creating an efficient

Hidden Vector Encryption construction using Inner Product Encryption.

Master’s Thesis, University of Twente. https://essay.utwente.nl/61033/.

Wang, X., Chi, Y., & Zhang, Y. (2020). Traceable Ciphertext Policy Attribute-based

Encryption Scheme with User Revocation for Cloud Storage. 2020

International Conference on Computer Engineering and Application (ICCEA),

Guangzhou, China. doi: 10.1109/ICCEA50009.2020.00026.

Wang, S., Wang, X., & Zhang, Y. (2019). A Secure Cloud Storage Framework With

Access Control Based on Blockchain. IEEE Access, 7, 112713-112 725. doi:

10.1109/ACCESS.2019.2929205.

Wang, S., Zhang, Y., & Zhang, Y. (2018). A Blockchain-Based Framework for Data

Sharing With Fine-Grained Access Control in Decentralized Storage Systems.

IEEE Access, 6, 38437-38450. doi: 10.1109/ACCESS.2018.2851611.

Ref. code: 25666422040060GIV

75

Wang, X., Zhou, Z., Luo, X., Xu, Y., Bai, Y., & Luo, F. (2021). A Blockchain-Based

Fine-Grained Access Data Control Scheme With Attribute Change Function.

2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &

Trusted Computing, Scalable Computing & Communications, Internet of

People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/IOP/SCI), Atlanta, GA, USA. doi:

10.1109/SWC50871.2021.00054.

Wu, H., Li, L., Paik, H. -y., & Kanhere, S. S. (2021). MB-EHR: A Multilayer

Blockchain-based EHR. 2021 IEEE International Conference on Blockchain

and Cryptocurrency (ICBC), 1-3. doi: 10.1109/ICBC51069.2021.9461075.

Xu, M., Chen, X. & Kou, G. (2019). A systematic review of blockchain. Financ Innov

5, 27. doi: 10.1186/s40854-019-0147-z.

Ying, Z., Wei, L., Li, Q., Liu, X., & Cui, J. (2018). A Lightweight Policy Preserving

EHR Sharing Scheme in the Cloud. IEEE Access, 6, 53698-53708. doi:

10.1109/ACCESS.2018.2871170.

Yu, K., Tan, L., Aloqaily, M., Yang, H., & Jararweh, Y. (2021). Blockchain-Enhanced

Data Sharing With Traceable and Direct Revocation in IIoT. IEEE Transactions

on Industrial Informatics, 17(11), 7669-7678. doi: 10.1109/TII.2021.3049141.

Zhang, Z., Zhang, J., Yuan, Y., & Li, Z. (2022). An Expressive Fully Policy-Hidden

Ciphertext Policy Attribute-Based Encryption Scheme With Credible

Verification Based on Blockchain. IEEE Internet of Things Journal, 9(11),

8681-8692. doi: 10.1109/JIOT.2021.3117378.

Zheng, W., Zheng, Z., Chen, X., Dai, K., Li, P., & Chen, R. (2019). NutBaaS: A

Blockchain-as-a-Service Platform. IEEE Access, 7, 134422-134433. doi:

10.1109/ACCESS.2019.2941905.

Ref. code: 25666422040060GIV

76

BIOGRAPHY

Name Khanadech Worapaluk

Education 2021: Bachelor of Engineering (Computer Engineering)

Sirindhorn International Institute of Technology

Thammasat University

Publication

Worapaluk, K. & Fugkeaw, S. (2023). An Efficiently Revocable Cloud-based Access

Control Using Proxy Re-encryption and Blockchain. 2023 20th International

Joint Conference on Computer Science and Software Engineering (JCSSE),

Phitsanulok, Thailand (pp. 178-183). doi:

10.1109/JCSSE58229.2023.10202130.

Ref. code: 25666422040060GIV

