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ABSTRACT 
 

Ciphertext Policy Attributed-based Encryption (CP-ABE) is considered as 

a suitable solution for supporting secure and fine-grained access control for outsourced 

data. Considering the revocation problem in cloud-based access control, existing 

revocable CP-ABE based schemes still have limitations. First, most solutions did not 

support both user and attribute revocation with auditability of revocation transactions. 

Second, they still relied on data owners or data users to generate the crypto components 

such as ciphertext update key to support the revocation process, resulting in the 

dependency of the availability of the data owner and computation overhead in both the 

data owner and the data user. Third, they did not provide the formal procedure for 

invoking the affected ciphertexts. Finally, most of them did not tackle the attributes 

hiding to support privacy-preserving policy outsourcing. To this end, we proposed a 

cloud-based access control scheme by leveraging CP-ABE, AES symmetric encryption, 

and blockchain technology to deliver an efficient user and attribute revocation with the 

ciphertext retrieval mechanism and transaction traceability. In addition, we introduced 

the attribute hiding method based on hidden vector encryption (HVE) to preserve the 

privacy of access policy content. To evaluate the efficiency of our proposed scheme, 

we conducted experiments to show that our proposed scheme is efficient and practical 

for real implementation. 

Ref. code: 25666422040060GIV



(2) 

 

Keywords: Access Control, CP-ABE, Blockchain, Attributes Hiding, Symmetric-Key 

Cryptography 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ref. code: 25666422040060GIV



(3) 

 

ACKNOWLEDGEMENTS 
 

I want to express my deepest gratitude to everyone who provided me with 

invaluable support and assistance throughout the completion of this thesis. With their 

contributions, this graduate degree is possible.  

First of all, words cannot express my gratitude to my thesis advisor, 

Dr.Somchart Fugkeaw, who provided invaluable support and technical guidance 

throughout my graduate studies. His encouragement and inspiration kept me on track 

in my research, even when I lost myself when facing many problems during the 

research. Furthermore, he has always been willing and enthusiastic to assist me in every 

way possible. He was the first person who taught me the formal methods of scientific 

research and the principles of academic paper writing. I am highly grateful for the 

opportunity he gave me to choose a research topic that can open a path for my future 

career, precisely blockchain-based access control with CP-ABE and cyber security 

awareness. I appreciate his insightful suggestions and technical guidance, which have 

significantly contributed to my research output, including this thesis and research 

papers. With his help, this thesis and my research paper were possible. 

Likewise, I would like to extend my sincere thanks to my thesis committee 

members, Dr.Suratose Tritilanunt and Dr.Somrudee Deepaisarn, for giving valuable 

suggestions on the research which were crucial for the improvement of  this thesis.  

Besides, I would like to extend my special thanks to my senior, Mr.Pattavee 

Sanchol, who helped me set up the experimentation environment, helped me debug the 

benchmark, and suggested the experimentation.   

Additionally, I would like to thank Sirindhorn International Institute of 

Technology for providing me with the Faculty Quota Scholarship for my master’s 

degree. The scholarship was an enormous contribution to my post-graduate study. 

Lastly, I would be remiss not to mention my family and friends. Their support 

has been a valuable source of keeping my spirits and motivation high during my study.  

 

 

Khanadech Worapaluk 

 

Ref. code: 25666422040060GIV



(4) 

 

TABLE OF CONTENTS 

 

Page 

ABSTRACT (1) 

 

ACKNOWLEDGEMENTS (3) 

 

LIST OF TABLES (6) 

 

LIST OF FIGURES (7) 

 

LIST OF SYMBOLS/ABBREVIATIONS (8) 

 

CHAPTER 1 INTRODUCTION 1 

1.1 Background Information 1 

1.2 Problem statement 3 

1.3 Our contributions 3 

1.4 Organization of this thesis 4 

 

CHAPTER 2 LITERATURE REVIEW 5 

2.1 Attribute-based Access Control (ABAC) 5 

2.2 Identity-based Encryption (IBE) 5 

2.3 Attribute-based Encryption (ABE) 6 

2.4 Non-Blockchain Cloud-based Access Control 7 

2.5 Cloud-based Access Control with Blockchain Integration 8 

 

CHAPTER 3 PRELIMINARIES 17 

3.1 Blockchain 17 

3.2 Smart Contract 19 

3.3 Bilinear Mapping 19 

3.4 Advance Encryption Standard (AES) 20 

Ref. code: 25666422040060GIV



(5) 

 

3.5 Rivest-Shamir-Adleman Cryptosystem (RSA) 23 

3.6 Hidden Vector Encryption (HVE) 24 

 

CHAPTER 4 OUR PROPOSED SCHEME 27 

4.1 System Overview 27 

4.2 Ciphertext-Attribute-User Ethereum Account Mapping 29 

4.3 Attributes Hiding 29 

4.4 Smart Contract Design 31 

4.5 Cryptographic Constructs 36 

 

CHAPTER 5 SECURITY ANALYSIS 47 

5.1 Security Model of our proposed scheme 47 

5.2 Security Proof of our proposed scheme 49 

5.3 Forward Security 53 

5.4 Backward Security 53 

5.5 Confidentiality of Ciphertexts on Cloud and Blockchain Storage 53 

5.6 Proxy’s Key Security 53 

 

CHAPTER 6 COMPARATIVE ANALYSIS AND EVALUATION 54 

6.1 Functionality Analysis 54 

6.2 Computation Cost Analysis 55 

6.3 Communication Cost Analysis 56 

6.4 Storage Cost Analysis 59 

6.5 Experimental Analysis 60 

 

CHAPTER 7 CONCLUSION AND FUTURE WORK 70 

 

REFERENCES 71 

 

BIOGRAPHY 76 

Ref. code: 25666422040060GIV



(6) 

 

LIST OF TABLES 

 

Tables  Page 

3.1 Attributes Vector Table Example 26 

4.1 Attributes Vector Table Example 30 

4.2 Notation used in our model 36 

6.1 Notation for comparative analysis section 54 

6.2 Functional Comparison 55 

6.3 Computation Cost Comparison 55 

6.4 Communication Cost Comparison 57 

6.5 Storage Cost Comparison 59 

  

Ref. code: 25666422040060GIV



(7) 

 

LIST OF FIGURES 

 

Figures Page 

2.1 Taxonomy of A Cloud-based Access Control with Blockchain Integration 9 

2.2 A permission-less blockchain in cloud 10 

2.3 A permission-based blockchain in cloud 14 

3.1 Blockchain Block Structure 18 

4.1 System Model 28 

4.2 Ciphertext-Attributes-User Ethereum Account Mapping Model 29 

4.3 Attribute-Tree with Attribute Hiding 31 

4.4 User Revocation Process Diagram 41 

4.5 Attribute Revocation Process Diagram 44 

6.1 Encryption Performance 62 

6.2 Decryption Performance 62 

6.3 User Revocation Performance based on number of attributes in policy 64 

6.4 Attribute Revocation Performance based on number of attributes in policy 64 

6.5 User Revocation Performance based on number of ciphertexts 66 

6.6 Attribute Revocation Performance based on number of ciphertexts 66 

6.7 Query Performance Per Attribute 68 

6.8 Revocation Performance with Query Time 68 

 

  

Ref. code: 25666422040060GIV



(8) 

 

LIST OF SYMBOLS/ABBREVIATIONS 

 

Symbols/Abbreviations Terms 

AA  Attribute-Authority 

ABE  Attribute-based Encryption 

ABAC  Attribute-based Access Control 

AES Advanced Encryption Standard 

CP-ABE  Ciphertext-Policy Attribute-base  

  Encryption 

CTM  Data Ciphertext 

CTK  Key Ciphertext 

CTSK,DU  DU’s Key Ciphertext  

DO  Data Owner 

DU  Data User 

HVE  Hidden Vector Encryption 

IBE  Identity-based Encryption 

IPFS  Interplanetary File System 

KP-ABE  Key-Policy Attribute-base 

Encryption 

MSK Master Secret Key 

PRE Proxy-Re-Encryption 

PRX Proxy 

PK Public-Key 

RSA Rivest-Shamir-Adleman Public-Key 

Cryptosystem 

RSADU,PubK Data User RSA public key 

RSADU,PrivK Data User RSA private key 

SHA Secure Hash Algorithm 

SKDU User’s Secret Key 

SKProxy Proxy’s Secret Key 

  

Ref. code: 25666422040060GIV



1 

 

 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

This chapter provides background information of cloud computing, cloud-based 

access control, problem statements, and our contributions to the thesis. 

1.1 Background Information 

Cloud computing has shifted the traditional information technology operation 

from requiring essential resources available on-premises to the service-based platform 

where the computing resources are provided by the cloud service providers. Cloud 

service offers resilient and unlimited computational resources with zero operation and 

maintenance costs. One of the key services cloud providers offer is cloud storage or 

storage as a service where enterprises or data owners can outsource and share their data 

with multiple users. Although the cloud storage service renders flexibility and 

accessibility for data sharing, security and privacy are of paramount concern. To this 

end, CSPs usually provide a basic access control system and auditing function for their 

subscribers (Z. Ying, L. Wei, Q. Li, X. Liu, and J. Cui, 2018). Nevertheless, the 

providers are still regarded as “honest but curious,” and the degree of user control of 

their data is limited. Consequently, additional security mechanisms such as encryption, 

data integrity checking, and authorization policy enforcement are essential, especially 

when the outsourced data is sensitive. 

In addition to the strong authentication generally provided by the cloud, ABAC 

access control (V. Hu et al., 2014) and cryptographic-based access control that 

integrates fine-grained authorization enforcement and encryption are desirable to 

support security and privacy for outsourced data. Implementing both an access control 

environment and encryption requires double operation and administrative costs, such 

as the expense of access policy management and key management. 

To date, CP-ABE has been regarded as an effective cryptographic-based access 

control approach for data outsourcing environments since it encompasses both 

authorization and encryption features. CP-ABE offers one-to-many encryption, 
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allowing the data owner to encrypt the data as a single ciphertext for multiple users. In 

CP-ABE, the data owner is able to define the access structure or policy constructed 

from a set of attributes through the logical gates AND, OR, M of N to encrypt the data. 

The data users with the secret key with attributes that satisfy the policy can decrypt the 

ciphertext. Here, it offers secure and fine-grained data access control. Nevertheless, 

user revocation and attribute revocation are non-trivial in CP-ABE-based access 

control. There are subsequent costs, including ciphertext re-encryption, key re-

generation, and key re-distribution, that occur from both revocation levels. 

Existing CP-ABE-based access control schemes that support revocation 

generally focus on the design and development of the revocation mechanism either by 

the ciphertext update (R. Guo, G. Yang, H. Shi, Y. Zhang, and D. Zheng, 2021; Y. 

Jiang, X. Xu, and F. Xiao, 2022) or the ciphertext re-encryption (X. Liu, Y. Zheng, and 

X. Li, 2021; X. Wang et al., 2021; S. Fugkeaw & S. Sato, 2017; S. Maiti & S. Misra, 

2020; D. Sethia, A. Shakya, R. Aggarwal, and S. Bhayana, 2019; X. Wang, Y. Chi, and 

Y. Zhang, 2020) with the proposed user key update methods. For the ciphertext update, 

the data owner and/or the data user needs to generate a ciphertext update key or a 

ciphertext transformation key and send it to the cloud to update the affected ciphertexts. 

This deals with the processing cost of bilinear pairing and the communication cost for 

transferring crypto objects. For ciphertext re-encryption, the proxy is employed to 

support ciphertext re-encryption if there is a revocation case. In this method, the proxy 

is typically given a decryption key and encryption components to use in the re-

encryption process. This deals with the handling of the secure delegation of decryption 

key and encryption components to the proxy. 

Recently, blockchain (M. Xu, X. Chen, and G. Kou, 2019) has been integrated 

into the existing access control systems (R. Kumar, B. Palanisamy, and S. Sural, 2021; 

X. Liang, N. An, D. Li, Q. Zhang, and R. Wang, 2022; S. Fugkeaw, 2022) to achieve 

the additional requirements mentioned above. It structurally stores data in a series of 

blocks where multiple blocks are chained together based on the hashing method. 

Therefore, auditability, integrity preservation, transparency, and accessibility are key 

benefits offered by the blockchain. Blockchain-as-a-Service (W. Zheng et al., 2019) 
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has become the alternative service that many cloud service providers provide to their 

customers. Empowering cloud-based access control with robust decentralized 

authentication, immutable records of access transactions, and the assisted revocation 

function is also promising. 

1.2 Problem statement 

Existing revocable cloud-based access control solutions employ CP-ABE as 

their core cryptographic construct. However, there are four major problems that have 

not been resolved in an integrated manner.  

1. Inability to support both user and attribute revocation with full traceability of 

revocation transaction.  

2. The dependency on the data owner and/or the data user to generate 

cryptographic components to support the revocation process. 

3. Lack of attributes hiding mechanism while the access policy needs to be used 

in the cloud environment. 

4. Lack of formal search or invocation of affected ciphertexts that need to be 

updated or re-encrypted when the revocation occurs. 

1.3 Our contributions 

The contributions of our proposed scheme are summarized as follows. 

1. Our proposed scheme provides the first attempt providing efficient attribute and 

user revocation with efficient key update mechanism in the blockchain-cloud 

based access control setting.  

2. We devised the policy hiding method based on hidden vector machine that 

enables privacy-preserving policy enforcement with no additional computation 

overhead compared to traditional CP-ABE scheme.  

3. Our proposed novel ciphertext-attribute-user Ethereum account mapping 

technique is practical for optimizing the ciphertext re-encryption cost when 

there is a revocation case in a large-scale data sharing. 
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4. We performed security analysis to substantiate that our proposed scheme is 

secure under the general security model as well as the proposed revocation 

technique supports both backward and forward security. 

5. We conducted the experiments in real cloud and Ethereum blockchain 

environment where there are a high number of ciphertexts and access requests. 

1.4 Organization of this thesis 

The organization of this thesis is structured as follows. Chapter 2 discusses the 

related literature. Chapter 3 presents the preliminaries. Chapter 4 shows the components 

and construction of our proposed scheme. Chapter 5 explains the security analysis of 

our proposed scheme. Chapter 6 presents the comparative analysis of our proposed 

scheme and related works. Finally, the concluding remarks regarding our proposed 

scheme and possible future work are given in Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter discusses the related literature in the area of cloud-based access 

control. This chapter includes the basic definition of Attribute-based Access Control 

(ABAC), Identity-based Encryption (IBE), Attribute-based Encryption (ABE), and the 

related literature related to our proposed system. 

2.1 Attribute-based Access Control (ABAC) 

Attribute-based access control (S. Rouhani, R. Belchior, R. Cruz, and R. Deter, 

2021; V. Hu et al., 2014), or ABAC, is based on the characteristics of the users, 

resources, and policies defined for each data. The policies contain conditions, 

typically “And” and “Or” operators, alongside the attributes that must be satisfied. 

Users who have a set of attributes satisfying the access rule can access the resource. 

Otherwise, access is denied. ABAC is considered a fine-grained access control because 

policy enforcement is based on the user’s attributes and can be enforced at the 

individual user level. 

2.2 Identity-based Encryption (IBE) 

Shamir (1985) originally proposed identity-based encryption. This scheme is 

based on asymmetric key encryption. This scheme uses the public identity of the user 

to generate the key pair. For example, an email address, social security number, home 

address, and network address can be used to generate the private-public key pair. A 

Private Key Generator (PKG) is required to generate the Identity-based key pair. PKG 

is assumed to be a fully trusted third-party entity. PKG first generates a Master Private 

Key (MPK), which contains the public parameters and the corresponding users’ 

identities. When users request to generate the key pair, they usually need to submit their 

identity to the PKG, and they are registered to the system. PKG then takes the identity 

from the user and MPK to generate the key pair for the user. IBE is primarily adopted 

in IoT access control applications because the computation cost of IBE’s encryption 

and decryption algorithm is considered lightweight and efficient. 
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However, IBE has limitations. If the PKG gets corrupted, all the user identities 

and the messages encrypted by the key generated by the PKG will be exposed (D. 

Anand, V. Khemchandani, and R. Sharma, 2013). In addition, the encrypted data can 

only be decrypted by the users with a key containing the qualified set of identities. The 

expressiveness of IBE is limited as only the set of identity attributes can be used. 

2.3 Attribute-based Encryption (ABE) 

Attribute-based encryption, or ABE, is a public key cryptographic primitive 

where the encryption and decryption process deals with a set of attributes and an access 

policy. The ABE offers fine-grained and expressive access control through the 

cryptographic protocol binding with user attributes and access policy enforcement. It is 

considered a one-to-many encryption since the encryptor can encrypt the message and 

share the single ciphertext with multiple users. There are two major types of ABE: Key-

Policy Attribute-based Encryption (KP-ABE) (V. Goyal, O. Pandey, A. Sahai, and B. 

Waters, 2006) and Ciphertext-Policy Attribute-based Encryption (CP-ABE) (J. 

Bethencourt, A. Sahai, and B. Waters, 2007).  

 

2.3.1 Key Policy Attribute-based Encryption (KP-ABE) 

In KP-ABE, data is encrypted with sets of attributes, and secret keys are 

associated with access structures that specify which ciphertexts a user can decrypt. In 

the KP-ABE approach, data owners have no control over data because the trust 

authority will be the one who assigns the access policies to the user's secret key. The 

data owners can specify as many attributes as possible for the ciphertext but cannot 

enforce the authorization policy on the users and the ciphertexts. 

 

2.3.2 Ciphertext Policy Attribute-based Encryption (CP-ABE) 

In CP-ABE, the user’s secret key contains the attributes used to identify each 

individual in the system, and the ciphertext contains the access policies. With the CP-

ABE approach, data owners have control over their data because they can specify who 

can access the data of their choice based on the access policy used for encryption. The 
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CP-ABE access policy can be expressed by “And,” “Or,” and “M-of-N” operations in 

combination with a set of attributes laid on the leaf nodes of the access policy tree. 

Therefore, CP-ABE allows the data owners to enforce the authorization policy through 

logical rules. As defined by A. Sahai, J. Bettencourt, and B. Waters (2007), the CP-

ABE consists of four major steps: Setup, Key Generation, Encryption, and Decryption. 

 

Setup (λ) → (PK, MK). The setup algorithm takes the security parameter λ as 

the only input. The algorithm then generates a public keys PK and master key MK as 

an output.   

 

Key Generation (MK, S) → (SKDU). The algorithm takes the master key MK 

and a set of attributes S to define the user in the system as an input. Its outputs as a user 

secret key SKDU. The algorithm uses a bilinear mapping between MK and S to 

get SKDU.            

      

Encryption (PK, M, T) → (CT). The encryption algorithm inputs message M, 

public key PK, and access policy T. And generate a ciphertext CT that contains the 

access policy as an output. 

 

Decryption (CT, SKDU) → M or ⊥. The algorithm takes a ciphertext CT, and a 

user secret key SKDU as input. The algorithm then recursively checks whether the 

attribute set S in the user secret key SKDU satisfied the access policy T in the ciphertext. 

If satisfied, the algorithm will return message M as an output. Otherwise, return ⊥. 

 

2.4 Non-Blockchain Cloud-based Access Control 

This section reviews the cloud-based access control literature that does not use 

the blockchain in its schema.  

S. Fugkeaw and S. Sato (2017) proposed a scalable CP-ABE protocol with an 

attribute revocation functionality. In their proposed scheme, the proxy is responsible 
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for re-encrypting ciphertexts stored in the cloud server when the attribute revocation 

request occurs. This scheme proposed two-layer encryption consisting of CP-ABE 

encryption and symmetric key encryption. For the encryption process, the message is 

first encrypted by the CP-ABE method, and the intermediate ciphertext is encrypted 

with symmetric encryption. If any attribute is revoked, the proxy must perform both the 

symmetric and the CP-ABE decryption. Then, the proxy will re-encrypt the affected 

ciphertexts with a new policy. 

D. Sethia, A. Shakya, R. Aggarwal and S. Bhayana (2019) proposed a constant-

size CP-ABE protocol with scalable revocation for resource-constrained IoT devices. 

In their work, the proxy is employed to perform partial decryption. The proxy holds a 

revocation list (RL) used to generate a decryption component for the data user. To 

decrypt the data, the data user must submit her secret key to the proxy server and let the 

proxy generate the complete decryption component using its secret key and RL. The 

correct decryption component will not be created if the data user is in RL. Later on, X. 

Wang, Y. Chi and Y. Zhang (2020) applied a similar approach by focusing on re-

encrypting the RL. Only a part of the policy will be updated and re-encrypted when the 

revocation occurs. 

S. Maiti and S. Misra (2020) proposed a privacy-preserving Identity-based 

proxy re-encryption scheme with user revocation. In their scheme, the data owner 

encrypts data with identity-based encryption. Then, the owner generates a re-encryption 

key containing all users’ identities in the system, and the key will be sent to the proxy. 

The proxy re-encrypts the ciphertexts with the re-encryption key. If any user is revoked, 

the process of re-encryption key generation and re-encryption is done by the proxy. 

 

2.5 Cloud-based Access Control with Blockchain Integration 

In this section, we introduce a taxonomy of a cloud-based access control scheme 

using blockchain, which can be classified into two types: Permission-based and 

Permission-less models. Figure 2.1 presents the taxonomy of the cloud-based access 

control with blockchain integration. Permission-based and Permission-less models 
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leverage the blockchain to provide three functions: access transaction retention, data 

search capability, and cryptographic key storage. These three features enhance the 

access control requirement and its usability as the data owners do not rely on the log 

files from the cloud provider. They do not need to implement their indexing mechanism 

and how ciphertext is stored on the cloud. Regarding cryptographic key storage, 

blockchain can retain a part of the cryptographic key, such as a hash value of ciphertext, 

an encrypted symmetric key associated with the ciphertext located on the cloud. This 

helps support key usage accountability by reducing the complexity of key retrieval 

generally invoked from the user or the cloud. 

 
Figure 2.1 Taxonomy of A Cloud-based Access Control with Blockchain Integration 

 

In addition to the three common features, the blockchain primarily supports 

basic access control functions in the Permission-based model, including authentication 

and user privilege verification. Here, smart contracts are generally used to automate the 

authentication and authorization function when the users request to access shared data 

in the cloud. In addition, blockchain is used to store the access transactions in an 

immutable manner for auditing purposes and to support the data search function as the 

index or metadata of the ciphertexts can be obtained from the blockchain. In the 
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Permission-less model, the blockchain is not responsible for authenticating and 

enforcing the authorization. These functions are based on the application or cloud 

service provider and cryptographic-based method. 

 

 
Figure 2.2 A permission-less blockchain in cloud 

 

2.5.1 Permission-less Cloud-based Access Control with Blockchain Integration 

Figure 2.2 illustrates a permission-less blockchain system model that supports 

data storage and logs storage in cloud computing. In the permission-less model, 

blockchain generally provides a storage service that can be used to store transaction 

logs, ciphertext, and encrypted keys. The users in the system, such as DO and DU, must 

have a secret key issued by the Attributes Authority (AA). Typically, DO encrypts the 

data with the symmetric key and then uploads CTM to store on the cloud server. After 

that, DO invokes CP-ABE or IBE encryption to encrypt the symmetric key and produce 

the ciphertext CTK which will be generally stored on the blockchain. To access the data 

housed in the cloud, the DU must request to access CTM in the cloud server. 

Before DU is able to decrypt CTM, he/she needs to query for the appropriate CTK from 
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the blockchain. When DU gets the appropriate CTK, they can decrypt CTK to get a 

symmetric key if his/her secret key contains attributes that satisfy the policy used in the 

encryption process. Upon receiving the symmetric key, CTM can be decrypted. 

R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) proposed a cloud-

assisted revocable CP-ABE by integrating a chameleon hash function and the 

blockchain system as an integrity authority for the CT stored on cloud storage. A 

chameleon hash function is used in the key generation and update protocol for non-

revoked users in their system. In this scheme, the secret key of the data user contains 

the version attribute, which is used to determine the version of the key when the 

revocation occurs. If any user is revoked, the attribute authority will generate the key 

attributes update for all non-revoked users’ keys and send them to users. The users then 

update their keys respectively. As for the ciphertext policy, in their approach, the proxy 

will retrieve the updated secret key from the user and check the Version parameter 

based on the chameleon hash function. Suppose the Version parameter is up to date. In 

that case, the proxy performs partial decryption based on user attributes, sends the 

partial decrypt ciphertext to the user, and lets them finalize the decryption themselves. 

Otherwise, the proxy denied the policy update to the revoked user. With this approach, 

all non-revoked users must generate a new transformation key by themselves.  

X. Liu, Y. Zheng and X. Li (2021) proposed a revocable attribute-based access 

control system by implementing an additional binary tree as the attributes tree 

called KEK for each user and storing them on the blockchain system. They 

introduce Revocation Authority as an authority that generates the path key for each user 

in the system based on the built KEK. A path key is a key that is used to check the user 

status in the system. When the revocation occurs, RA will update the KEK, re-generate 

the path key for each unrevoked user in the system, and redistribute them via a trusted 

cloud service. For the old encrypted ciphertext, RA will update the KEK that attaches 

with the ciphertext and re-upload it. Their approach does not require re-encrypting the 

entire ciphertext but only updating the KEK that attaches to the ciphertext, reducing the 

cost of data encryption. However, the revocation deals with several subsequent 

operations, imposing expensive overheads. X. Wang et al. (2021) takes a similar 
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approach to handle the revocation but with a twist that the KEK tree is used only for a 

header, which is used to generate a search token for the data user. In comparison, the 

original ciphertext will be updated according to the attributes that get removed. Thus, 

they suffer from the same expensive overhead problems. 

L. Guo, X. Yang and W. -C. Yau (2021) proposed efficient traceable attribute 

encryption with a dynamic access control scheme (TABE-DAC) integrating the 

blockchain system. They introduced two additional algorithms to the traditional TABE-

DAC: Update policy and Verify policy; these two algorithms enable DO to update the 

policy with less cost. The update policy is designed on top of the CP-ABE algorithm, 

while the Verify Policy operates on the blockchain system. In their solution, DOs must 

request their signature from the attribute authority by submitting their identities to the 

attribute authority. This signature is used to update and verify the policy. This process 

allows the DU to get a secret key associated with their attribute instead of digital 

signatures. Each ciphertext stored on the blockchain system is divided into two smaller 

ciphertexts: policy and key. Policy ciphertext contains the DO signature as an 

additional parameter for checking the authenticity when there is an access policy 

update. However, their proposed protocol did not cover the revocation of users or 

attributes. 

M. Jemel and A. Serhrouchni (2021) proposed a time-based access control 

protocol combining the CP-ABE and the blockchain. In this scheme, the blockchain is 

responsible for generating a key to the data users in the system. The key contains a set 

of attributes, including the timestamps that are used for decryption. The timestamps are 

generated via the blockchain network based on block timestamps. In the 

ciphertext policy, it contains a time constraint, which is used to check the validity of the 

user key. If any user is revoked, the data owner needs to re-encrypt the ciphertexts with 

a new time constraint and update the policy on the blockchain system. However, there 

is a problem with the time-duration policy. If the revoked user’s key contains a time 

duration specified in any ciphertext, they can still access it. 

Y. Jiang, X. Xu and F. Xiao (2022) proposed a CP-ABE-based model where the 

user secret key is divided into two smaller components: a transformation key (TK) and 

Ref. code: 25666422040060GIV



13 

 

 

 

 

 

a secret key (SK)—the blockchain system as an integrity authority for the CT that is 

stored on cloud storage. The cloud server is responsible for performing partial 

decryption by taking the TK from the user and the ciphertext from data storage and 

returning a partial decryption result to the user. Then, the user can use its own SK to 

decrypt the ciphertext. As for revocation, first, the attribute authority generates an 

upgrade parameter UP that contains the revocation attributes. Then, UP is sent to the 

data owner to let them perform policy updates on the affected ciphertexts. After the 

data owner performs the policy update protocol, they must re-upload the ciphertexts 

and re-generate the hash parameter stored on the blockchain system. Lastly, the 

attribute authority generates a new upgrade key for the remaining users and sends it to 

users to update their TK and SK anytime. 

In 2022, S. Fugkeaw (2022) proposed a novel e-KYCs framework that offers a 

trust and privacy-preserving system with policy updating functionality based on fine-

grained encryption and the blockchain system. This approach uses smart contracts to 

execute e-KYC registration, consent enforcement, and e-KYC verification. The 

registration process registers clients to the e-KYCs services. The client must provide 

credentials to the host financial institution (FI). The FI then invokes the registration 

contract to generate the AES session key and lets the client encrypt credential data. The 

encrypted session key and credential data are then uploaded to the IPFS using the hash 

value of the client citizen ID as the indexing. FI then generates an e-consent form and 

forces the client to sign—the e-KYC verification deals with the decryption of client 

credential information stored in the IPFS system. In addition to the privacy of credential 

data, all sensitive transactions stored in the blockchain are encrypted by the transaction 

key. The CP-ABE algorithm encrypts that key for security and privacy reasons. If the 

new FIs are added to the system, the policy of the transaction key ciphertext can be 

easily updated by updating the policy and re-encrypting the transaction key. With the 

fine-grained access control from the CP-ABE algorithm, only authorized FIs can access 

this data. 
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Figure 2.3 A permission-based blockchain in cloud 

 

2.5.2 Permission-based Cloud-based Access Control with Blockchain Integration 

Figure 2.3 illustrates the system model of a permission-based blockchain that 

supports access control in cloud computing. In the permission-based, the blockchain 

acts as a policy enforcement point that controls the access permission of the users to 

the data stored on the cloud system. A data owner (DO) encrypts the data with the 

symmetric key and then uploads ciphertexts CTM to store on the cloud server. Then, 

the DO typically invokes CP-ABE or IBE method to encrypt the symmetric key, and 

the ciphertext of the key CTK is produced before it is stored in the blockchain. In CP-

ABE, it is assumed that the user's secret key is generated and sent by the attribute 

authority (AA). The DO also specifies the assessment rule to validate the user's 

permission. The data user (DU) requests the blockchain to validate the authenticity and 

permission to access the ciphertexts stored in the cloud. If user authentication and 

authorization are successful, the system returns CTK together with the ciphertext 

address stored in the cloud to the user. The DU can then download CTM from the cloud 

server. Lastly, DU can decrypt the CTK if their secret key contains a set of attributes 
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that satisfies the policy used to encrypt the symmetric key. Upon the decryption of the 

symmetric key, DU uses the symmetric key to decrypt the CTM and get the data. All-

access transactions are recorded as an audit log in the blockchain.  

In 2017, one of the pioneering approaches of cloud-based access control 

schemes integrating blockchain systems was proposed by X. Liang, J. Zhao, S. Shetty, 

J. Liu and D. Li (2017). Their proposed solution focuses on securely sharing health data 

generated from patients’ wearable devices. Data from wearable devices are recorded in 

a cloud database and blockchain network. Blockchain network stores distributed 

transaction logs, the hash value of the medical data, and certificate authorities (CA) 

who issue membership services for each entity in the system to identify who has access 

to the data. However, the data stored on the cloud server is not encrypted. They chose 

to hash those data and store them on the blockchain as the digital signature instead. 

They use attribute-based access control as their access control model. When the user 

requests to access outsourced data, the DO must verify the request and check the user’s 

permission via the access control list stored in the blockchain. Finally, the access 

decision is made, either granting or denying. The significant limitations of this scheme 

are the need for more encryption and the dependency on DO availability to support data 

access. 

In 2019, D. C. Nguyen, P. N. Pathirana, M. Ding and A. Seneviratne 

(2019) propose a trusted authority to perform electronic health records (EHRs) 

encryption and decryption. The proposed scheme aims to minimize the user’s workload 

to make the scheme as lightweight as possible. Their work focuses on EHR data access 

over mobile devices. In their scheme, the data will be encrypted with a trusted authority 

RSA key pair and stored on IPFS, a cloud storage service. When the user requests the 

data, the trust authority will access the requested ciphertext stored in the IPFS. Then, 

the ciphertexts are decrypted before they are sent to the user via a secure channel. In 

this scheme, ABAC policy stored in the blockchain enforces authorization control. The 

authors also applied the smart contract to manage and execute the ABAC access control 

system. However, this scheme requires the trust authority to perform data encryption 
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and decryption. Hence, the compromise of the authority causes a complete security 

failure.   

S. Wang, Y. Zhang and Y. Zhang (2018) proposed a new secure cloud data-

sharing framework based on decentralized IPFS, Ethereum blockchain, and CP-ABE. 

In this scheme, blockchain stores a CP-ABE secret key, supports keyword search, and 

provides essential user account management. Their solution offers DO complete 

control over data with no single point of failure in the system due to the integration of 

decentralized IPFS and blockchain services used to store the cryptographic key. Later, 

S. Wang, X. Wang and Y. Zhang (2019), they combine the ABAC access control 

protocol with the blockchain system together by implementing the access interval of 

each user in the system. As long as the duration is valid, they can access the data in the 

blockchain. However, users who try to access off-limit data will be permanently banned 

from the system. Therefore, their scheme offers complete control over data to DO while 

maintaining the integrity and auditability of the data. Nevertheless, this scheme still 

requires the availability of data owners to handle access requests and computes the hash 

value upon user access. 

Recently, blockchain and CP-ABE have also integrated into industrial internet-

of-things (IIOT) to help generate more secure data access with traceability features to 

track down the culprit who intentionally shares their CP-ABE key (K. Yu, L. Tan, M. 

Aloqaily, H. Yang, and Y. Jararweh, 2021). They presented a user revocation feature 

to remove malicious users from the system when they tried to share their private key or 

their right to access the system. When the system detects a user who abuses the key or 

key leakage, the system automatically invokes the revocation protocol defined in the 

IIOT system. The culprit key will be revoked instantly while updating the policy of all 

the ciphertext in the system. The blockchain is used to store cryptographic components 

for DO and Proxy. In addition, their blockchain acts as an ABAC access control point 

to verify the requestor to the data in the system. 

 

 

 

 

Ref. code: 25666422040060GIV



17 

 

 

 

 

 

CHAPTER 3 

PRELIMINARIES 

 

This chapter discusses the theoretical background of theories and technologies 

used in our proposed system. This includes the background information of blockchain 

systems, smart contracts, bilinear mapping, access tree structure, Advanced Encryption 

Standard (AES), RSA algorithm, and hidden vector encryption (HVE). 

3.1 Blockchain 

Blockchain technology is an immutable, distributed, transparent, and traceable 

ledger that records the provenance of digital data. It is constructed and implemented 

through decentralization and cryptographic hashing. The digital asset or data stored in 

each block is immutable since the completed block is hashed and linked to each other 

in the blockchain network. Typically, each block contains a cryptographic hash of the 

previous block, a timestamp of when the transaction occurred, nonce, and transaction 

data. It is usually organized in a Merkle Tree structure. The Merkel Tree (H. Liu, X. 

Luo, and X. Xia, 2021) is a data collection where the leaf node contains the transaction 

data while its parent node contains its hash. The higher parent nodes have a combination 

of the hash value of the predecessor hash value. The topmost node of the Merkle 

Tree can be treated as the digital signature of each block, and this prevents the 

modification to the data that has been transacted. With this approach, a slight change to 

the data in the leaf node will change all the corresponding Merkle Tree hash values. 

The blockchain block structure is shown in Figure 3.1. The nonce is the number that 

can be only used once in each blockchain system. Nonce serves as a unique identifier 

for each block. When the blocks are linked, they are impossible to modify based on the 

tamper-proof property of hashed value and Merkle Tree. 

Blockchains act as a distributed database with a growing list of blocks operating 

on a peer-to-peer network where nodes act as the distributed ledger. Each node in the 

blockchain system contains the replication of the synchronized data transaction. With 

these properties, the intervention of third-party entities is eliminated. These blocks can 
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be accessed anytime as long as they stay on the blockchain system. Blockchain adopts 

a consensus algorithm to make all the nodes in the system agree on the data when the 

data are being updated by using either the Proof-Of-Work protocol or the Proof-Of-

Stake protocol. As for transparency, each action in the blockchain system is recorded 

as a transaction, and the blockchain network’s legitimate members can access this 

information. In addition, the blockchain system provides the ability for the verification 

and traceability of all access transactions or activities that occur as they are all recorded 

systematically in the blockchain network. Thus, the applications that require the 

integrity of the data to be able to operate on the blockchain, for example, supply chain 

applications (S. Malik, V. Dedeoglu, S. S. Kanhere, and R. Jurdak, 2019), electronic 

health applications (H. Wu, L. Li, H. -y Paik, and S. S. Kanhere, 2021), and financial 

applications (Z. Su, H. Wang, and X. Shi, 2020; S. Nakamoto, 2009). 

 

 

Figure 3.1 Blockchain Block Structure 
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3.2 Smart Contract 

A smart contract (or chain code) is a self-runnable program that runs on a Turing 

complete architecture system and operates on a blockchain network. The smart 

contracts concept was first introduced in 1997 by Nick Szabo (1997) as a computerized 

transaction protocol that executes in the manner of a contract. The code will be activated 

automatically when the predefined conditions are met. The developer predefined these 

conditions generally by simple “If/when…then” statements. After the execution is 

finished, the details of the execution will be recorded on the blockchain network. Smart 

contracts can execute and send transactions over the network. Users interact with a 

smart contract through transactions that can be executed based on a specific function 

constructed from rules or code.  

3.3 Bilinear Mapping 

Let G0 and G1 be two multiplicative cyclic groups of prime order p. Let g be a 

generator of G0 and e be a bilinear map, e: G0× G0→G1. The bilinear map e has the 

following properties. 

 

a) Bilinearity: ∀u,v ∈ G0 and a, b ∈Zp, e(ua, vb) = e(u, v)ab = e(ub, va) 

b) Non-degeneracy: e(g, g) ≠1 

c) Computability: ∀ u,v ∈ G0, an efficiently computation of e(u,v) exist  

 

Definition 1: Access Structure Let a set {P1, P2,…,Pn} be given attribute. A collection 

 𝔸 ⊂ 2{𝑃1,𝑃2,…,𝑃𝑛  } is monotone if ∀𝐵, 𝐶 ∶ 𝑖𝑓 𝐵 ∈ 𝔸 𝑎𝑛𝑑 𝐵 ⊂  C ⟶  C𝔸. An access 

structure is respectively be a monotone collection 𝔸 of non-empty subsets of {P1, 

P2,…,Pn}, i.e. 𝔸 ⊂ 2{𝑃1,𝑃2,…,𝑃𝑛}∕ {∅}. 

 

Definition 2: Access Tree T. Let T be a tree representing an access structure. Each non-

leaf node of the tree represents a 0-threshold gate, described by its children, and a 

threshold value. If numx is the number of children of a node x and kx is its threshold 

value, then 0 < kx ≤ numx. When kx = 1, the threshold gate is an OR gate, and when kx = 
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numx, it is an AND gate. Each leaf node x of the tree is described by an attribute and a 

threshold value kx = 1. If the k-of-n gate is allowed in T, in this case, kx = k where k is 

the threshold value determined in the k-of-n gate. 

3.4 Advance Encryption Standard (AES) 

Advance Encryption Standard, or AES, is also known as Rijndael cryptosystem. 

AES is a type of block cipher derived from the Rijndael cipher. It is a symmetric block 

cipher algorithm that securely encrypts and decrypts digital data. AES is based on 

substitution-permutation networks with a block size of 128 bits. The operation converts 

each block using the symmetric key. The difference in key size is used to determine the 

number of operations of rounds that the AES algorithm needs to perform during the 

encryption. The key size can be 128, 192, or 256 bits, with 10, 12, and 14 rounds 

performed for each respective key size. The process of encrypting these blocks involves 

combining all the blocks using the XOR operation to form the final ciphertext. A set of 

reverse rounds is applied using the same encryption key to decrypt the ciphertext back 

into the original plaintext.  

For example, a 16-byte data block can be represented as a 4 x 4 two-dimensional 

state array as follows. 

[b0,0     b0,1    b0,2    b0,3] 

[b1,0     b1,1    b1,2    b1,3] 

[b2,0     b2,1    b2,2    b2,3] 

[b3,0     b3,1    b3,2    b3,3] 

 

High-Level Algorithmic Detail 

1. Initial Add Round Key: This step in only runs once at the start of the algorithm. 

In this step, the data is passed into the state array via XOR operation with the 

respective key. Each byte in the 2-dimension data state array is combined with 

the round key using bitwise XOR operation. 

 

 

Ref. code: 25666422040060GIV



21 

 

 

 

 

 

[b0,0     b0,1    b0,2    b0,3]     [k0,0     k0,1    k0,2    k0,3] 

[b1,0     b1,1    b1,2    b1,3]         [k1,0     k1,1    k1,2    k1,3]  

[b2,0     b2,1    b2,2    b2,3]     [k2,0     k2,1    k2,2    k2,3] 

[b3,0     b3,1    b3,2    b3,3]     [k3,0     k3,1    k3,2    k3,3] 

 

2. Sub-Bytes: During this step, the state array undergoes a conversion process 

where each byte is represented in hexadecimal format and split into two halves 

for rows and columns. These values are then subjected to a substitution box (S-

Box) mapping to generate updated values for the final state array. Each location 

in the state array will be substituted with the data from the same location from 

the S-Box. 

 

[i0,0     i0,1    i0,2    i0,3]     [f0,0     f0,1    f0,2    f0,3] 

[i1,0     i1,1    i1,2    i1,3] Substitute with [4 x 4 S-Box] → [f1,0     f1,1    f1,2    f1,3]  

[i2,0     i2,1    i2,2    i2,3]     [f2,0     f2,1    f2,2    f2,3] 

[i3,0     i3,1    i3,2    i3,3]     [f3,0     f3,1    f3,2    f3,3] 

 

3. Shift-Rows: In this step, the AES algorithm manipulates the rows of the state 

array by cyclically shifting the bytes in each row by a fixed offset. Specifically, 

the first row remains unchanged, while each byte of the second row is shifted 

one position to the left. The third and fourth rows are shifted by offsets of two 

and three positions, respectively. 

 

[b0,0     b0,1    b0,2    b0,3]     [b0,0     b0,1    b0,2    b0,3] 

[b1,0     b1,1    b1,2    b1,3]         →   [b1,1     b1,2    b1,3    b1,0]  

[b2,0     b2,1    b2,2    b2,3]     [b2,2     b2,3    b2,0    b2,1] 

[b3,0     b3,1    b3,2    b3,3]     [b3,3     b3,0    b3,1    b3,2] 
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4. Mix-Columns: In this step, a fixed matrix [c] is multiplied with each column of 

the state array, generating a new column for the next state array. The same fixed 

matrix is used to multiply all the columns. The resulting state array is then 

produced, which will be utilized in the next Add Round Key step. 

 

[b0,0     b0,1    b0,2    b0,3]   [c0]  [bc0,0     bc0,1    bc0,2    bc0,3] 

[b1,0     b1,1    b1,2    b1,3]  x [c1] = [bc1,1     bc1,2    bc1,3    bc1,0] 

[b2,0     b2,1    b2,2    b2,3]   [c2]  [bc2,2     bc2,3    bc2,0    bc2,1] 

[b3,0     b3,1    b3,2    b3,3]   [c3]  [bc3,3     bc3,0    bc3,1    bc3,2] 

 

5. Add Round Key: In this step, the state array involves combining the subkey 

with the state by performing a bitwise XOR operation between each byte of the 

state and the corresponding byte of the round key. If this is the last round of the 

operation, the result state array will serve as an output ciphertext for the specific 

block. Otherwise, the result in this step will be passed as the new state array for 

the next round. 

 

[bc0,0     bc0,1    bc0,2    bc0,3]    [k0,0     k0,1    k0,2    k0,3] 

[bc1,0     bc1,1    bc1,2    bc1,3]    [k1,0     k1,1    k1,2    k1,3]  

[bc2,0     bc2,1    bc2,2    bc2,3]    [k2,0     k2,1    k2,2    k2,3] 

[bc3,0     bc3,1    bc3,2    bc3,3]    [k3,0     k3,1    k3,2    k3,3] 

 

When the algorithm finishes computing step 2 to step 5, this is considered as 

completing one round of the AES algorithm. Then, the algorithm starts the next round, 

starting at step 2, and continues the algorithm until the final round. The number of 

rounds required to compute is indicated by the key size used to perform an encryption. 

In the final round, step 4 (Mix-Columns) of the algorithm will be excluded, producing 

the final ciphertext. 
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3.5 Rivest-Shamir-Adleman Cryptosystem (RSA) 

Rivest-Shamir-Adleman Cryptosystem, or RSA, is a public-key cryptography 

algorithm that is commonly used for secure data transmission. Its inventors, Ron Rivest, 

Adi Shamir, and Leonard Adleman first publicly described it in 1977. In RSA, the 

encryption key is public, meaning anyone can use it. At the same time, the decryption 

key is kept secret (private). An RSA user generates a public key based on two large 

prime numbers and an auxiliary value. Anyone can use the public key to encrypt 

messages, but only the person who knows the prime numbers that are used to generate 

private keys can decrypt them. The public key comprises the public exponent e and the 

modulus n used for encryption. In contrast, the private key contains the private 

exponent d, which must be kept secret as it is used for decryption. 

Additionally, p, q, and λ(n) must be kept secure, as they can be used to 

compute d. After computing d, these values can be discarded. RSA contains three major 

steps: Key Generation, Encryption, and Decryption. 

 

Key Generation (Large prime number p & q) → (RSAPubKey, RSAPrivKey)  

The RSA key generation function inputs two large prime numbers, p and q. And 

output an RSA key pair of a public and private key. The algorithm first calculates 'n = p 

* q' and stores n as one of the key components. Then the algorithm process to 

compute Carmichael's Totient Function where 'λ(n) = (p-1) * (q-1)' and store λ(n) as 

one of the private key calculation components. Afterward, the algorithm will randomly 

select the integer e that is relatively prime to λ(n) and store them as the final public key 

components. Finally, the algorithm computes the private key d where d is the modular 

multiplicative inverse of e mod (λ(n)) as follows ‘d ≡ e-1 mod (λ(n))’. The result RSA 

key-pair can be seen as: 

RSAPubKey = (e, n), RSAPrivKey= (d, n) 

 

Encryption (M, RSAPubKey) → (CTRSA) 

The encryption algorithm takes message M and recipient RSAPubKey as input. 

And outputs the encrypted ciphertext CTRSA. To calculate the CTRSA, the algorithm first 
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converts message M into an integer m, which can be seen as a padded plaintext with a 

condition of 0 ≤ m < n. Then the algorithm computes CTRSA using the 

recipient RSAPubKey as: 

CTRSA ≡ me (mod (n)). 

 

Decryption (CTRSA, RSAPrivKey) → M or ⊥ 

The decryption algorithm takes ciphertext CTRSA and recipient private key 

RSAPrivKey as input. The algorithm either output message M if the private key component 

meets the computation restriction or Null ⊥. To perform the decryption, the algorithm 

takes private key component d, raises the ciphertext CTRSA to the power of d.  The 

computation is as follow: 

M ≡ CTRSA
d ≡ (me)d (mod (n)) ≡ m (mod (n)). 

 

Nevertheless, the RSA cryptosystem is relatively slow when compared to 

symmetric-key encryption algorithms like AES. RSA is generally used for key 

exchange and digital signatures rather than directly encrypting user data. As a result, it 

is more common to use RSA in combination with symmetric-key encryption, where the 

RSA algorithm is used to encrypt and exchange a shared key for symmetric-key 

encryption. This allows for more efficient encryption and decryption of user data while 

maintaining RSA’s security benefits. 

3.6 Hidden Vector Encryption (HVE) 

Hidden Vector Encryption (HVE) is predicate encryption designed to provide 

secure and efficient data encryption with searchability without decryption. HVE (D. V. 

Veen, 2011; J. H. Park, 2011; Z. Zhang, J. Zhang, Y. Yuan, and Z. Li, 2022) is a form 

of homomorphic encryption that allows computations to be performed on encrypted 

data without decrypting it first. The basic idea behind HVE is to represent each plaintext 

message as a high-dimensional vector and encrypt the plaintext vector by adding a 

policy random vector. The resulting encrypted vector is then transformed using matrix 

multiplication, and the result is sent over the network. To decrypt the ciphertext, the 
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receiver performs a matrix multiplication on the encrypted vector with a secret matrix 

and subtracts the random vector added during encryption. This results in the original 

plaintext vector. There are two major types of HVE: Binary-HVE and Non-Binary-

HVE. 

Binary-HVE is a type of HVE where the policy used to encrypt the data is 

typically a yes or no question and cannot contain a complex policy. In this type of HVE, 

the attributes policy vector consists of only ‘0’, ‘1’, or ‘*.’ ‘0’ in Binary-HVE represents 

no, while ‘1’ means yes. ‘*’ in HVE represents ‘ignoring’ those attributes in the 

attribute policy vector. For example, a set of attributes in the system contains five 

attributes: Father, Mother, Son, Daughter, and Pet.  

In this case, the policy vector must contain five attribute values, 

including Father, Mother, Son, Daughter, and Pet. For example, suppose the policy 

specifies that the father can decrypt the data while not caring about the pet being able 

to perform decryption. In that case, the construction of the policy will be [1, 0, 0, 0, *]. 

This remains true to the secret key for each user in the system. The key length is 

propositional to the number of attributes in the system. 

Non-binary-HVE is a type of HVE where the policy can be defined more 

flexibly. Each vector’s space can represent different attribute values. In this case, we 

can define the attribute’s value in the system based on their attributes index. We assign 

each attribute value to each position in the index array based on their respective attribute 

index. For ease of understanding, TABLE 3.1 provides an example of the attribute 

index and attribute value mapping for non-binary-HVE. As shown in TABLE 3.1, the 

attribute value usually starts at 0, as well as the index position. As for the policy 

construction, if we want to define that HR department, the CEO can access the data 

while gender and level marked as ‘*’ in HVE are not concerned. The policy will be as 

follows: [1, *, 2, *]. We used Non-Binary-HVE as our attribute hiding protocol in our 

scheme. We represent them in a vector space where each space represents each 

attribute. With Non-Binary-HVE we can integrate them with the CP-ABE protocol by 

indicating the index value as an alphanumeric value with the corresponding numeric 

value as their corresponding attribute value. 
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TABLE 3.1 ATTRIBUTES VECTOR TABLE EXAMPLE 

Index Position Index Value Value Attribute Value 

0 Department 0 ICT 
  

1 HR 
  

2 R&D 

1 Gender 0 Male 
  

1 Female 
  

2 Non-Binary 

2 Status 0 Internship 
  

1 Junior 
  

2 CEO 

3 Level 0 Low Level 
  

1 High Level 

 

One of the advantages of HVE is that it enables efficient searching and matching 

of encrypted data. For example, if the system contains an extensive database of 

encrypted vectors, HVE can be used for a specific vector without decrypting the entire 

database. This makes HVE a valuable technique for secure information retrieval and 

privacy-preserving data mining applications. 
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CHAPTER 4 

OUR PROPOSED SCHEME 

 

This section presents an overview of our proposed scheme, smart contracts 

design, and the details of our proposed cryptographic construct. 

4.1 System Overview 

We proposed a secure, fine-grained, traceable, and revocable CP-ABE scheme 

based on proxy re-encryption and our blockchain-assisted protocols. Figure 4.1 

illustrates the system overview of our proposed system model and the basic workflows 

of each entity in the system. The system model consists of the following entities. 

1) DOs (Data Owners) are the owners of the data responsible for creating and 

deploying smart contracts on the blockchain, generating symmetric keys for 

data encryption, and creating the ciphertexts and uploading them to the cloud. 

DOs need to have an Ethereum account to interact with the blockchain system. 

2) DUs (Data Users) are authorized users with decryption capability to access 

shared data and view transactions in the blockchain system. Each user needs to 

have an Ethereum account to access the blockchain system. 

3) AA (Attribute Authority) generates the public parameter PK and the master 

secret key MSK for the data owner and proxy. AA generates the user’s secret 

key based on their attributes. Then, the key is broadcast based on the public key 

encryption to users in the system. 

4) IPFS (Interplanetary File System) stores encrypted data. It communicates 

directly with the proxy when the revocation request occurs. It maintains a 

distributed hash table (DHT), keeping the addresses of the ciphertexts’ hash 

values, which are also returned to store in the blockchain. 

5) Blockchain stores encrypted symmetric keys, indexes, URLs of the data, and 

all transactions that occur in the system. Blockchain also contains the validity 

status of each user for authentication purposes. In order to interact with external 
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entities, blockchain contains smart contracts that interact with DO, DU, AA, 

and proxy. 

6) Smart contracts are the programmable objects that operate on the blockchain. 

In our system, there are two major contracts: The Authentication 

contract and the CTK Management contract. Authentication Contract is used to 

authenticate DU when they request access to the blockchain system. CTK 

Management contract is used to store and fetch the ciphertexts when there is an 

access request.   

7) Proxy is a semi-trusted server located on the cloud. It is responsible for updating 

the policy that encrypts the symmetric key stored on the blockchain. The proxy 

also supports the revocation process through the ciphertext re-encryption 

technique. Proxy has its secret key and the unique Ethereum account used to 

access the ciphertexts on the blockchain system. Proxy also handles the key 

update request, user status update, and user secret key update. 

 

Figure 4.1 System Model 
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4.2 Ciphertext-Attribute-User Ethereum Account Mapping  

To enable the fast retrieval of the affected ciphertexts when there is a case of 

revocation, we introduced the ciphertext, attributes, and user’s Ethereum account 

mapping models shown in Figure 4.2. The model specifies the data mapping between 

attributes that belong to each user together with the associated CTK and their related 

component in the blockchain. Precisely, the attribute value is mapped with the index 

of CTK and the URL of CTM. Based on the mapping scheme, the set of affected 

ciphertexts stored in the cloud can be invoked efficiently when the proxy needs to be 

retrieved for re-encryption. 

 

 
Figure 4.2 Ciphertext-Attributes-User Ethereum Account Mapping Model 

 

4.3 Attributes Hiding 

To enable the secure invocation of the access policies to be used by the proxy 

for the re-encryption process, we proposed the attribute hiding method to support secure 

outsourced re-encryption. Our attribute hiding scheme is based on Hidden Vector 

Encryption (HVE) of attributes vector. In our scheme, an attribute vector is an ordered 

pair of attribute indexes and their appropriate value. The attribute vector table is 
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managed and maintained by the DO. The attribute vector index is randomly generated 

for the first four alphabets, and then the system will pad the number to it. Attributes in 

the system are assigned with the attribute index and mapped to their associated value. 

Based on the anonymous attributes contained in the policy, the content of the access 

policies is hidden while they are used to support the encryption and re-encryption 

process. Figure 4.3 presents an example of policy transformation based on our proposed 

model. TABLE 4.1 presents an example of attribute index and value mapping. As 

presented in TABLE 4.1, for example, Alice’s secret key contains the following 

attributes: {Doctor, Neurology, C9, Bangkok}, her private key is then composed of the 

set of mapped values in the vector: {Abzd01: 1, Abzd02: 2, Abzd03: 3, Abzd04: 1}. 

Technically, this attribute name and value are used for the data encryption as naturally 

done in the CP-ABE method. 

 
TABLE 4.1 ATTRIBUTES VECTOR TABLE EXAMPLE 

Index Index Value Value Attribute Value 

Abzd01 Position 1 Doctor 
  

2 Network Engineer 
  

3 HR 

Abzd02 Dep 1 IT 
  

2 Neurology 
  

3 General 

Abzd03 Lv 1 Internship 
  

2 Junior 
  

3 C9 

Abzd04 Location 1 Bangkok 
  

2 Pattaya 
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Figure 4.3 Attribute-Tree with Attribute Hiding 

 

4.4 Smart Contract Design 

This section describes the details of the smart contracts’ functions used in our 

scheme. Our smart contracts are developed in the Solidity (C. Dann en, 2017) while 

operating on the Ethereum blockchain on the Ganache Truffle Suite. Two major smart 

contracts consist of an Authentication Contract triggered by user enrollment and 

authentication requests and a CTK Management Contract triggered by the revocation 

request initiated by the data owners.  
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Precisely, the Authentication Contract consists of three primary functions: User 

enrollment, User authentication, and User attribute queries. The details of each function 

are described below. 

 

1. UserEnrollment(DUEthereumAccount, DUAttribute[ ]): This function enrolls DU 

into the system with its appropriate attributes. It takes two inputs: DU public Ethereum 

account and their associate attributes array. It maps DU’s validity status and 

associated attributes to the DU’s public Ethereum account. In our scheme, DU’s 

attributes are used as a query index for ciphertext retrieval when there is a revocation 

case. Its procedure is detailed in Algorithm 1. 

 

2. Authentication( ): This function takes no input. Instead, when DU requests access 

to the blockchain, their public Ethereum account will be set as msg.sender. This value 

will be used as a validation variable in the mapping mechanism to retrieve their validity 

status. The function will terminate the requestor’s connection and record their access 

attempt on the blockchain if their validity status is invalid. The algorithmic function of 

the authentication is presented in Algorithm 2. 

 

3. DUAttributeQuery(DUEthereumAccount): This function is run by the proxy when 

the user revocation occurs. It is used to query DU attributes from the blockchain system. 

It takes the DU public Ethereum account as input and returns an array of DU attributes 

or NULL. The algorithmic details of the DU attribute query are presented in Algorithm 

3. 

 

4. UserStatusUpdate(DUEthereumAccount, ValidityStatus, UpdatedAttributes): It 

takes as inputs the DU public Ethereum account, Validity Status of DU, and Updated 

Attributes. It is run when any DU has been revoked from the system. The 

UserStatusUpdate function is presented in Algorithm 4. 
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Algorithm 1: UserEnrollment(DUethereumAccount, DUAttribute[ ]) 

 Input: DUethereumAccount, DUAttributes[ ] 

 Output: Bool 

1 If msg.sender is not (dataOwner or Proxy) then 

2      Return false and terminate the connection; 

3 End if 

4 If DUethereumAccount is existed in  

5       User[DU Ethereum Public Account] then 

6       Return false  

7 Else  

8      Set User[DU Ethereum Public Account].Validity = Valid; 

9      Set User[DU Ethereum Public Account].Attr[ ]  = DUAttributes[]; 

10 Return true 

 

Algorithm 2: Authentication( ) 

Input: null 

Output: Bool 

1 If User[msg.sender].Validity != Valid then 

2      Return false and terminate the connection; 

3 Else 

4 Return true 

 

Algorithm 3: DUAttribute Query(DUEthereumAccount) 

Input: DUethereumAccount 

Output: Attributes[ ] or Null 

1 If msg.sender is not (dataOwner or Proxy) then 

2    Return false and terminate the connection; 

3 End if 

4 If DUEthereumAccount is not exist then 

5   Return NULL; 

6 Else 

7     Set Attribute[] = User[DUEthereumAccount].Attr; 

8 Return Attribute[ ]; 

 

Algorithm 4: UserStatusUpdate(DUethereumAccount, ValidityStatus, 

UpdatedAttributes) 

Input: DUethereumAccount, ValidityStatus, UpdatedAttributes 

Output: Bool 

1 If msg.sender is not (dataOwner or proxy) then 

2     Return false and terminate the connection; 

3 End if 

4 If DUethereumAccount is not existed then 

5       Return false  

6 Else  

7       Set Users[DUethereumAccount].Validity = Validity Status 

8       Set Users[DUethereumAccount].Attr.push(Updated Attributes) 

9 Return true 
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For the CTK Management Contract, it is designed to perform three primary 

functions: Key Ciphertext upload, Key Ciphertext query, and  Key Ciphertext attributes 

query. This contract consists of four functions: CTKUpload, SetCTKAttributes, 

CTKAttributeQuery, and  CTKQuery. The details of each function are described below. 

 

5. CTKUpload( CTK, URL, Index): The function takes as inputs AES 

Key ciphertext CTK, CTM URL stored on IPFS, and index. It is used to upload 

the CTK and URL to the blockchain system by enabling Solidity to map 

the CTK and URL to the respective index. The CTK upload function is presented in the 

Algorithm 5 as follows.  

 

6. SetCTKAttribute(AttributeValue[ ], Index): The function takes as inputs the attribute 

Value array and the CTK index. It maps the input attributes to the corresponding CTK 

index to support ciphertext queries. First, it counts the length of the Attribute 

Value array and uses it as a maximum loop count. Then, the function will perform a for 

loop to map the index to the attribute value and store it on the blockchain. The detail of 

the function is presented in Algorithm 6. 

 

7. CTKAttributeQuery(AttributeValue): This function is run when there is a revocation 

request. It takes the attribute value to be queried and returns the array of the index of 

the ciphertext corresponding to the attribute value stored on the blockchain. First, the 

function checks if an attribute value exists in the blockchain; it returns the array of 

indexes mapped to the attribute value. The algorithmic function of the CTK Attribute 

Query is presented in Algorithm 7.   

 

8. CTKQuery(Index): This function is used to query the index of CTk. It takes the index 

as an input and returns its corresponding CTK and URL, or NULL, to the executor. The 

function first checks whether the index of the requested CTk is available. If the index 

exists in the system, the function will return the CTK and the URL that is mapped to the 

Ref. code: 25666422040060GIV



35 

 

 

 

 

 

Index from Algorithm 5 to the executor. Otherwise, this function returns NULL. The 

procedure of CTK Query is presented in Algorithm 8. 

 

Algorithm 5:  CTK Upload (CTK, URL, Index) 

 Input: CTK, URL, Index 

 Output: Bool 

1 If msg.sender is not (dataOwner or Proxy) then 

2        Return false and terminate the connection; 

3 End if 

4 Set CTKIndex[Index].CTK = CTK 

5 Set CTKIndex[Index].CTK_URL = URL 

6 Return true 

 

Algorithm 6:  Set CTK Attribute(AttributeValue[ ], Index)  

 Input: AttributeValue[ ], Index 

 Output: Bool 

1 If msg.sender is not (dataOwner or Proxy) then 

2    Return false and terminate the connection; 

3 End if 

4 Set j = AttributeValue.length 

5 For ( i = 0; i<= j ; i++) 

6    Set attr =  AttributeValue[i] 

7    Set x = CTKAttributes[attr].No 

8    x = x+1; 

9    Set CTKAttributes[attr].No = x 

10  Set CTKAttributes[attr].Index.push(Index) 

11 Return true 

 

Algorithm 7: CTK Attribute Query(AttributeValue) 

Input: AttributeValue 

Output: Indexes[ ] or Null 

1 If msg.sender is not (dataOwner or Proxy) then 

2    Return false and terminate the connection; 

3 End if 

4 If AttributeValue is not exist then 

5     Return NULL 

6 Else 

7    Set Indexes = CTKAttributes[AttributeValue].Index[] 

8    Return Indexes[]  
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Algorithm 8: CTK Query(Index) 

Input: Index 

Output: (CTK and URL) or NULL 

1 If CTKIndex[Index].CTK  is not exist then 

2      Return NULL  

3 Else 

4       Return CTKIndex[Index].CTK and CTKIndex[Index].CTK_URL 

4.5 Cryptographic Constructs 

This section describes the cryptographic construct of our proposed system. The 

notations used in our model are shown in TABLE 4.2.  

 

TABLE 4.2 NOTATION USED IN OUR MODEL  

Notation Description 

AA The attribute authority  

S A set of attributes issued to data users and data owners in the system. 

In this case, the attributes are hidden under HVE method 

SKDU A user’s secret key issued by the AA. 

SKProxy+random A Proxy’s secret key bound with a random value issued by the AA. 

PK Public attribute key issued by AA. 

MSK Master attribute key issued by AA for SKDU and SKDO generating. 

AES_Key Symmetric AES key (256-bit) used for encrypting the data. 

RSADU,PubK RSA public key of the DU 

RSADU,PrivK RSA private key of the DU 

M A message that the data owner needs to encryption and distribute on 

the cloud storage. 

CTM Ciphertext of a message. 

CTK The ciphertext of AES_key 

CTSK,DU RSA encrypted SKDU 

AP An access policy used for CP-ABE encryption. 

 

Our cryptographic process consists of five major phases as follows: System 

Initialization, Key Generation, Encryption, Decryption, and Revocation. 

Phase 1: System Initialization 

CreateAttributeAuthority(λ) → PK, MSK. The algorithm takes security 

parameter λ as an input and returns public key PK and master secret keys MSK. The 

algorithm selects a bilinear group G0 of prime order p with generator g. After that, the 
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algorithm then chooses two random 𝛼, 𝛽𝑍𝑝 and compute a public key and master 

secret key as: 

PK =  {𝐺0, 𝑔, ℎ =  𝑔𝛽 , 𝑓 = 𝑔
1

𝛽, 𝑒(𝑔, 𝑔)𝛼}, 

MSK = {𝛽, 𝑔𝛼}. 

 

Phase 2: Key Generation 

In our model, we define three key types used by DO, Proxy, and DU. The crypto 

process of each key generation is described as follows: 

 

1) AESKeyGen(RandomString) → AES_Key  

The algorithm takes random string as an input to generate a 256-bit AES_key. 

DO uses AES_key to encrypt the data before uploading them to cloud storage.  

 

2) RSAKeyGen( 2 RandomLargePrimeNumber ) → RSADU,PubK, RSADU,PrivK 

Initially, the user runs the RSAKeyGeneration algorithm, which inputs two 

random large prime numbers to generate an RSA key pair. The Certification Authority 

(CA) then signs each user's public key. The CA also publishes the certificate containing 

the public key in the public directory. 

 

3) UserKeyGeneration (PK, MSK, SDU, Ver) → SKDU.   

This algorithm is run by the AA. The algorithm takes PK, MSK, a set of DU’s 

attributes SDU, and a Version parameter Ver used to specify the key version of the SKDU. 

The algorithm generates a user secret key SKDU containing the key version and user’s 

attributes.  

The algorithm first chooses a random r and rj ∈ Zp for each attributes j ∈ S. 

Then the algorithm compute SKDU as: 

 

SKDU = (D = g(α+r)/β, ∀ j ∈ S: Dj = gr . H(j)rj ,D′j = grj ). 

 

Ref. code: 25666422040060GIV



38 

 

 

 

 

 

Then, AA encrypts the SKDU based on public key encrytion  by using the user’s public 

key RSADU,PubK. The encryption is computed as: 

 

ENCRSA (RSADU,PubK, SKDU) → CTSK,DU 

 

After that, AA sends the CTSK,DU to the user. The user then uses its RSA private 

key to decrypt the CTSK,DU and gets the SKDU. DO then enrolls DU to the blockchain 

system by running Algorithm 1.  

 

For the proxy’s key, after the key generation algorithm is finished, the key will 

be appended with a 256-bit random number and encrypted by the proxy’s public key. 

Then, the encrypted key will be sent to the proxy. 

 

Phase 3: Encryption 

In our proposed scheme, we introduce a dual encryption method comprising 

symmetric key encryption and CP-ABE Encryption. The encryption consists of two 

following steps. 

 

1) Encrypt Message(AES_Key, M) → CTM 

The algorithm is run by DO. It takes a symmetric key AES_Key to encrypt data 

M. The algorithm produces ciphertext CTM and DO stores it on the IPFS. 

 

 

2) Encrypt AES_Key(PK, AP, AES_Key) → CTK. 

The algorithm takes as inputs PK, access policy AP, and AES_Key. Then, it 

outputs CTK. To compute CTK, the encryption algorithm encrypts a AES_Key under the 

access structure AP. The algorithm then chooses a polynomial qx for each node x 

(including leaves node) in AP. The polynomials are chosen in the top-down manner, 

starting from root node R. For each node x in the tree, set the degree dx of the polynomial 

qx to be one less than the threshold value kx of the node, dx = kx – 1. After that, starting 
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from root node R the algorithm chooses a random s ∈ Zp and set qx(0) = q-

parent(x)(index(x)) and choose dx randomly to completely define qx. Let Y be a set of leaf 

nodes in AP. The result ciphertext is computed as follows: 

 

CTK = (AP, C˜ = (AES_Key) e(g, g) αS , C = hS, ∀y ∈ Y : Cy = gq
y
(0),C′

y = att(y)q
y
(0)) 

 

The CTK is then stored on the blockchain together with its index value by initiating 

Algorithm 5 and Algorithm 6 respectively.  

 

Phase 4: Decryption 

The decryption is done by the DU after the successful authentication via the 

smart contract (Algorithm 2) and retrieves appropriate key ciphertext and their 

corresponding URL (Algorithm 7) via the blockchain system. DU then downloads CTM 

from the IPFS and performs the decryption. This phase includes two algorithms: 

Decrypt CTK and Decrypt CTM. 

 

1) Decrypt CTK(SKDU, CTK) → AES_Key 

The algorithm takes as inputs DU’s secret key SKDU and CTK. The algorithm 

outputs an AES_Key which will be used in the final decryption step. The decryption 

algorithm can be specified as a recursive algorithm as follows: 

DECCP-ABE(SKDU, CTK, x) is the algorithm that takes CTK = (AP , C˜,C, ∀y ∈ Y : 

Cy,C
′
y), a secret key SKDU which associate with a set S of attributes, and a node x from 

access policy AP. If SKDU contains attributes that belong to AP, the algorithm will return 

AES_Key, otherwise it returns Null. The computation is as follows: If the node x is a 

leaf node, then we set i = att(x). If i ∈ S, then 

DECCP-ABE(SKDU, CTK, x) = 
𝑒(𝐷𝑖, 𝐶𝑥)

𝑒(𝐷′𝑖, 𝐶′𝑥)
 

               = 
𝑒(𝑔𝑟∙𝐻(𝑖)𝑟𝑖 , ℎ𝑞𝑥(0) )

𝑒(𝑔𝑟𝑖 , 𝐻(𝑖)𝑞𝑥(0))
 

               = 𝑒(𝑔, 𝑔)𝑟∙𝑞𝑥(0)       

If i ∉ S, then we set DECCP-ABE(SKDU, CTK, x) = Null.       

Ref. code: 25666422040060GIV



40 

 

 

 

 

 

As for the recursive case where x is not a leaf node. The algorithm DECCP-

ABE(SKDU, CTK, x) will proceed as follows: For all node z that are the children of node x, 

it then executes DECCP-ABE(SKDU, CTK, z) and stores the output as Fz. Then we define Sx 

as an arbitrary kx-sized set of child nodes z with the condition that Fz ≠ Null. If the set Sx 

cannot fulfill the condition before then the node was not satisfied with the policy and 

returns Null. Otherwise, we compute as follows: 

Fx = ∏ 𝐹𝑧

Δ
𝑖,𝑆′𝑥

(0)

𝑧 ∈𝑆𝑥
, 𝑤ℎ𝑒𝑟𝑒𝑆′𝑥={𝑖𝑛𝑑𝑒𝑥(𝑧)∶ 𝑧∈𝑆𝑥}

𝑖=𝑖𝑛𝑑𝑒𝑥(𝑧)
 

    = ∏ (𝑒(𝑔, 𝑔)𝑟∙𝑞𝑧(0))
Δ

𝑖,𝑆′𝑥
(0)

𝑧 ∈𝑆𝑥
 

    = ∏ (𝑒(𝑔, 𝑔)𝑟∙𝑞𝑝𝑎𝑟𝑒𝑛𝑡(𝑧)(𝑖𝑛𝑑𝑒𝑥(𝑧)))
Δ

𝑖,𝑆′𝑥
(0)

𝑧 ∈𝑆𝑥
 

    = ∏ 𝑒(𝑔, 𝑔)
𝑟∙𝑞𝑥(𝑖)∙Δ

𝑖,𝑆′𝑥
(0)

𝑧 ∈𝑆𝑥
 

    =  𝑒(𝑔, 𝑔)𝑟∙𝑞𝑥(0) 

And return the result.             

Then we define the final decryption algorithm. The algorithm initiates by calling 

the DECCP-ABE(SKDU, CTK, x) on the root node R of the access tree AP. If the access tree 

is satisfied by S, then we set A = DECCP-ABE (SKDU, CTK, r) = 𝑒(𝑔, 𝑔)𝑟∙𝑞𝑥(0) = 𝑒(𝑔, 𝑔)𝑟𝑠. 

The algorithm then performs the decryption by computing as follows:  

 

𝐶˜/(𝑒(𝐶, 𝐷)/𝐴) =  𝐶˜ /(𝑒(ℎ𝑠, 𝑔(𝛼+𝑟)/𝛽)/𝑒(𝑔, 𝑔)𝑟∙𝑠)  =  𝐴𝐸𝑆_𝐾𝑒𝑦 

 
2) Decrypt CTM(AES_Key, CTM ) → M 

The algorithm takes as inputs AES_Key and CTM. The algorithm produces data 

M by decrypting the CTM with the AES_Key.  

 

Phase 5: Revocation 

This phase consists of two cases: user revocation and attribute revocation. In 

our scheme, the revocation task is executed by the proxy server located in the cloud. At 

the same time, the DO only generates a new access policy AP’ and sends the revocation 
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request to the proxy. The algorithmic details of each case are described as follows.

 

Figure 4.4 User Revocation Process Diagram 

 

Case 1: User Revocation  

If any user is revoked from the system, the DO sends a revocation request 

containing new access Policy AP’, revoked DU’s Ethereum Account ACCDU, revoked 

DU information, and new version parameter Ver’ to the proxy. Figure 4.4 presents the 

workflow between each entity in the system. User revocation cases contain four major 

steps as follows. 

Step 1: Query for affected CTK 

The proxy queries for attributes of the revoked DU and then queries for the 

ciphertexts that can be accessed by the revoked user as the affectedCTk array by 

executing the attributeCTqueryFunction. The affected ciphertexts are stored in the 

IPFS, while their corresponding keys are stored in the blockchain system. The function 

takes as input a revoked DU’s Ethereum Account ACCDU. It outputs an array of key 

ciphertexts CTK that contains the corresponding URL path to their respective CTM that 

needs to be re-encrypted with a new symmetric key. The processes for invoking the 
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DU’s attributes and CTK are done through Algorithm 3, Algorithm 7, and Algorithm 8, 

respectively. The function is defined as follows: 

attributeCTqueryFunction(ACCDU) return (Array[CTKi, URLCTMi, Indexi]){ 

 string DUattr[ ]; 

 string affectedCTkIndex[ ]; 

 affectedCTk[ ]; 

 string temporyIndex; 

 DUattr = DUAttributeQuery(ACCDU);  

 For ( i = 0; i <= len(DUattr) ; i++) { 

      temporaryIndex = CTKAttributeQuery(DUattr[ i ]);  

      affectedCTkIndex.push(temporaryIndex); 

      temporaryIndex = “ ”;  

 } 

 removeDuplicate(affectedCTkIndex);  

 For ( j = 0; j <= len(affectedCTkIndex); j++){ 

 affectedCTk.push(CTKQuery(affectedCTkIndex[ j ])),  affectedCTkIndex[ j ]);  

 } 

 Return affectedCTk; 

} 

 

Step 2: Re-generate a Symmetric Key  

The proxy generates a new symmetric key corresponding to the affected 

ciphertext. The function is defined as follows: 

 

Re-GenSymKey (Rs, r) → (AES_KeyR) 

 

The algorithm takes as inputs a random string Rs and a random parameter r. 

Then, the algorithm generates a new AES_KeyR, a symmetric key perturbed by a 

random parameter. 

 

Step 3: Re-encrypt ciphertexts 

The proxy then runs the Re-Encryption function to update the policy of the 

affected ciphertexts. The function takes as inputs an array of affectedCTk, a proxy secret 

key SKProxy+Random, AES_KeyR, the public key PK, and a new access policy AP’. Then, 

it returns the re-encrypted ciphertexts array to the proxy. The function is defined as 

follows: 
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Re-Encryption(affectedCTk[ ], SKProxy+Random, AES_KeyR, PK, AP’) return (Array[CTKi, 

URLCTMi, Indexi]) { 

 SKProxy = ExtractRandom(KProxy+Random); 

 For ( i = 0 ; i <= len(affectedCTk) ; i++){ 

CTK = affectedCTk [i][0];  

CTM = Download(affectedCTk [i][1]);  

AES_Key = DECCP-ABE(SKProxy, CTKi); 

M = DECAES(CTM, AES); 

AES’ = AES_KeyR – r; 

CTM’ = ENCAES(M, AES’); 

CTM’URL = Upload(CTM’); 

CT’Ki = ENCCP-ABE(PK, AP’, AES’); 

affectedCTk [i][0] = CT’Ki; 

affectedCTk [i][1] = CTM’URL; 

} 

SKProxy = “0”; 

Return affectedCTk; 

} 
 

After the algorithm returns the array of affectedCTk to the proxy, the proxy then 

runs a recursive function based on the number of key ciphertexts in the affectedCTk 

array. The proxy then runs Algorithm 5 to update their respective value. 

 

Step 4: Key Update 

In this step, the proxy sends the key update request, the Revoked DU 

information, and the new Ver’ to the AA. AA then invokes the key update function to 

update all non-revoked users’ keys. The key update steps are as follows: 

 

1) AA generates an update parameter UP based on Ver’ parameter.  

 

UP = g(rj’ - rj)/β where rj = Ver, rj’= Ver’ 

 

2) AA applies an UP to all non-revoked users in the system. The update secret key 

function is as follows: 

 

SK’DU = (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj, D’j’ = D’j ∙ UP where rj = Ver, rj’= 

Ver’) 
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3) AA then encrypts the new SK’DU with user’s public key and sends to the users.  

After finishing the key update, the proxy updates the access permission list 

(APL) on the blockchain system with the revoked DU’s Ethereum account to prevent 

further access from the revoked user by invoking Algorithm 4 from the Authentication 

Contract. The reason behind this is that the blockchain will check the validity status of 

the user account before they can access it. If their account is valid, they can access the 

blockchain system. Otherwise, the blockchain will terminate the connection to the 

requestor. 

 

Figure 4.5 Attribute Revocation Process Diagram 

 

Case 2: Attribute Revocation 

To revoke the attribute, DO sends the revocation requests with parameters: a 

new access Policy AP’, and revoked Attribute information Attr to the proxy. Figure 4.5 

presents the attribute revocation process. 

Step 1: Query for affected key ciphertext CTK 

In this case, the proxy queries the key ciphertexts that contain the revocation 

attribute by executing the attributeCTqueryFunction. In this case, the algorithm only 
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re-encrypts the key ciphertexts that contain the revoked attribute. The function takes as 

input a revoked attribute Attr. It outputs an array of key ciphertexts that need to be re-

encrypted with a new policy AP’. The function is defined as follows: 

attributeCTqueryFunction(Attr) return (Array[CTKi, URLCTMi, Indexi]) { 

string affectedCTkIndex[ ]; 

 affectedCTk[ ]; 

 affectedCTkIndex = CTKAttributeQuery(Attr); 

For ( i = 0; i <= len(affectedCTkIndex); i++){ 

     affectedCTk.push(CTKQuery(affectedCTkIndex[i])),affectedCTkIndex[i]);  

} 

Return affectedCTk; 

} 

 

Step 2: Re-encrypt key ciphertexts 

The function takes as inputs an array of affectedCTk, a proxy secret key 

SKProxy+Random, public key PK, and a new access policy AP’. Then, it returns the re-

encrypted ciphertexts array to the proxy. The function is defined as follows: 

Re-Encryption(affectedCTk[ ], SKProxy+Random, PK, AP’) return (Array[CTKi, URLCTMi, 

Indexi]) { 

 SKProxy = ExtractRandom(SKProxy+Random); 

 For ( i = 0 ; i <= len(affectedCTk) ; i++){ 

CTK = affectedCTk [i][0];  

AES_Key = DECCP-ABE(SKProxy, CTKi); 

CT’Ki = ENCCP-ABE(PK, AP’, AES_Key); 

affectedCTk [i][0] = CT’Ki; 

} 

SKProxy = “0”;  

Return affectedCTk; 

} 

After the algorithm returns the resulting array of ciphertext re-encryption affectedCTk 

to the proxy. The proxy then runs a recursive function based on the number of key 

ciphertexts in the array and runs the Algorithm 5 function from the CTKManagement 

Contract to update their respective value. 
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Step 3: Key Update 

In this step, the proxy sends the key update request to the AA. The AA runs the 

key update function as follows: 

 

1) AA generates an update parameter UP based on the Attr parameter.  

 
UP = g(rj’ - rj)/β where rj = Attr 

 

2) AA runs UP to update a set of attributes for all active DUs in the system. The update 

secret key is done through the following function: 

 

SK’DU = (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj, D’j’ = D’j ∙ UP where rj = Attr) 

 

3) AA then encrypts the new SK’DU with user’s public key and sends to the users. 
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CHAPTER 5 

SECURITY ANALYSIS 

 

This section explains the security analysis of our scheme based on security 

assumptions, security games, and cryptographic constructs given in Chapters 3 and 4.  

5.1 Security Model of our proposed scheme 

In our proposed scheme, the security is proven in a game-based theory. Our 

scheme is based on CP-ABE (J. Bethencourt, A. Sahai, and B. Waters, 2007), AES 

symmetric key encryption, and RSA public key encryption scheme. Detailed proof of 

its security can be referred to the original CP-ABE paper, the AES (Announcing the 

ADVANCED ENCRYPTION STANDARD (AES), 2001), and the Rivest-Shamir-

Adleman cryptosystem (P. Meelu & S. Malik, 2010).  

Our security assumption is based on the IND-CPA security assumption. The 

security model of our proposed scheme is defined by the security game with the 

assumption that only the data owner is fully trusted. At the same time, the data users 

are assumed to be dishonest. Also, the adversary may corrupt the authorities. However, 

the key queries can be adaptive. In our proposed model, there are two types of 

adversaries: 

 

• Type-A adversary is the one who has no permission to access the data from 

the beginning. 

• Type-B adversary is the data user previously revoked from the system. 

 

Consequently, the implementation of a key update algorithm is essential. 

Furthermore, it is essential to note that the Type-B adversary faces challenges in 

accurately updating the key version.  

The security game is conducted between adversary A and challenger B is 

defined as follows: 
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Setup: First, challenger B runs System Initialization algorithm to generate 

master secret key MSK, public key PK. After that, B sent PK to A. 

 

Phase 1: This phase contains three cases based on the type of adversary. 

Adversary A repeatedly generates secret key queries SK corresponding to sets of 

attributes S. Challenger B then performs Key Generation Algorithm and Key Update 

Algorithm to the recently generated SK before returning SK to A.   

 

Challenge Phase: Adversary A generates two messages, M1 and M2, with an 

equal length such that |M1|=|M2|. In addition, A generates two random 256-bit symmetric 

keys, AES_Key1 and AES_Key2, and access policy AP*. Access policy AP* must not 

contain the attributes that appear in set S of adversary A’s secret key.  Then adversary 

A submits the randomly generate symmetric key to challenger B. Challenger B 

randomly selected b, where b ∈ {1,2} with an equal chance to get both values. B 

computes AESEncrypt(AES_Keyb, Mb) → CTM* and Encrypt(PK,AP*, AES_Keyb) → 

CTK*. After that, CTM* and CTK* are given to A. 

 

Phase 2: Repeat step 1 with the condition that each attribute set S that use to 

construct the secret key cannot contain the attributes in the access policy AP*. 

 

Guess Phase: Adversary A outputs a guess b’ of b. The adversary wins if b’ = 

b and the advantage of the adversary A is equal to | Pr[b’ = b] -1/2 | 

 

Definition 3 Our scheme is secure against polynomial time adversaries in an IND-CPA 

security assumption who have, at most, negligible advantages in the above game with 

the probabilistic advantage value of |Pr[b’ = b] -1/2|.  
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5.2 Security Proof of our proposed scheme 

Theorem 1: There are no polynomial-time advantages for an adversary, suppose that 

IND-CPA security assumption holds, who can break the security of AES symmetric 

encryption/decryption and CP-ABE with non-negligible advantage. 

 

Proof: Suppose the Adversary A possesses probabilistic polynomial time 

advantages and can break the security scheme with a non-negligible advantage against 

our proposed scheme. In that case, we can simulate the following game, enabling A to 

break our scheme with non-negligible advantage. 

 

Initialization: Suppose Adversary A has non-negligible advantage against our 

scheme. 

Setup: Adversary A submits system initialization request to Challenger B. 

Challenger B then runs the System Initialization algorithm. This algorithm selects a 

bilinear group G0 of prime order p with generator g, chooses two random values α and 

β from ZP to compute a public key, and sends the resulting PK to A. 

 

PK =  {𝐺0, 𝑔, ℎ =  𝑔𝛽 , 𝑓 = 𝑔
1

𝛽, 𝑒(𝑔, 𝑔)𝛼},MSK={𝛽, 𝑔𝛼}. 

 

Phase 1: A then requests secret key generation queries to B.  

 

Type-A Adversary: Suppose B generates a set of attributes S with the condition 

that S cannot satisfy access policy AP*. B then generate a secret key SKA. The SKA is 

constructed as follows: 

 

SKA = (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj ) 

 

After constructing a SKA, Challenger B has to perform a key update mechanism 

to update the key version parameter in the SKA. In this case, B generates the update 
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parameter UPA that contains the latest key version parameter and applies the UPA to 

SKA*. Then B sent the newly updated SKA*to A. The construction of UPA and newly 

updated SKA*is as follows: 

 

UPA = g(rj’ - rj)/β where rj = Ver, rj’= Ver’ 

 

SKA*= (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj, D’j’ = D’j ∙ UP where rj = Ver, 

rj’= Ver’) 

 

Type-B Adversary: Suppose B generates a set of attributes S with the condition 

that S does not contain the right key Version parameter Ver’ thus they cannot satisfy 

access policy AP*. B then generates a secret key SKA. The SKA is constructed as 

follows: 

 

SKA = (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj ) 

 

After constructing a SKA, Challenger B has to perform a key update mechanism 

to update the key version parameter in the SKA. In this case, B generates the update 

parameter UPA that does not contain the latest key version parameter and applies the 

UPA to SKA. Then B sent the newly updated SKA* to A. The construction of UPA and 

newly updated SKA* is as follows: 

 

UPA = g(rj’ - rj)/β where rj = Ver, rj’!= Ver’ 

 

SKA*= (D = g(α+r)/β, ∀ j ∈ S : Dj = gr . H(j)rj ,D′j = grj, D’j’ = D’j ∙ UP where rj = Ver, 

rj’!= Ver’) 

 

Challenge Phase: A generates two messages, M1 and M2, with equal length such 

that |M1|=|M2|. In addition, A generates two random 256-bit symmetric keys, AES_Key1 
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and AES_Key2, and access policy AP*. Then submit those to challenger B. Challenger 

B randomly selected b, where b ∈ {1,2} with an equal chance to get both values. B then 

encrypts Mb with symmetric key encryption AES_Keyb. Afterward, B encrypts 

AES_Keyb with the CP-ABE algorithm. Furthermore, B sends the result CTM* and CTK* 

to A. The CTM* and CTK* is constructed as follows: 

 

CTM* = AESEncrypt(AES_Keyb, Mb)  

CTK* = (AP*, C˜ = (AES_Keyb)e(g,g) αS ,C = hS, ∀y ∈ Y : Cy = gq
y
(0),C′

y = 

att(y)q
y
(0)) 

 

Phase 2: A continuously generates secret key queries. The process is the same 

as phase 1, with the same restriction for different adversary types. For Type-A 

Adversary, each attribute set S cannot contain the attributes that satisfy access policy 

AP*. As for Type-B Adversary, their secret key must not contain the right Version 

parameter.  

 

Guess Phase: A output a guess statement b’, where b’∈ {1,2}. A win the game 

by outputting the guess statement where b’ = b. Hence, the advantage of Adversary A 

against our proposed scheme is as follows:  

 

ADVA = | Pr[b’ = b] -1/2 | 

 

Since A has a nonnegligible advantage against our scheme, we have successfully 

proven the theorem. 

The full proof of CP-ABE can be referred to the original paper (J. Bethencourt, 

A. Sahai, and B. Waters, 2007). 

 

Theorem 2: SKDU from corrupted attribute authorities alone cannot be used to decrypt 

all the components of the ciphertexts stored on the cloud storage. 
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Proof: In our scheme, the ciphertexts stored on the cloud storage are encrypted 

by symmetric key encryption. Moreover, the CP-ABE mechanism encrypts the 

symmetric key and stores it securely on the blockchain system.  

 

To perform full decryption on the ciphertext stored on the cloud storage, the 

adversary needs to know the key ciphertext’s index and pass the authentication process 

from the blockchain system to retrieve the key ciphertext. With this method, SKDU from 

the corrupted authorities alone cannot be used to decrypt the ciphertext stored on the 

cloud. 

 

Theorem 3:  After the DUs have been revoked from the system, access to the data 

stored on the blockchain and IPFS is no longer available to revoked DUs. In the event 

that revoked DUs find a way to access the data stored on both blockchain and IPFS, 

they will not be able to utilize their secret key and the old AES key to access the data. 

 

Proof: In our proposed approach, when the DO initiates the user revocation 

protocol, a new secret key version parameter, Ver’, and a new Access Policy, AP’, 

which includes Ver’ as a mandatory policy, are generated. This means that DUs lacking 

the specific Ver’ attribute in their SKDU cannot decrypt the CTK’ store on the blockchain. 

Additionally, for each key ciphertext CTK accessible by the revoked DU, the proxy 

generates a new AES key. It performs symmetric key re-encryption for the data 

ciphertext component, CTM, residing on the IPFS. The updated CTM’, resulting from 

the re-encryption, replaces the old CTM on the IPFS. Alongside this, the newly 

generated AES key is re-encrypted using the new access policy AP’ to form a new key 

ciphertext, CTK’. The proxy then updates the URL of the newly updated CTM and its 

corresponding CTK’ on the blockchain. Subsequently, the proxy employs Algorithm 4 

from the smart contract to revoke the DU’s access privileges within the blockchain 

system. This ensures that the revoked DU can no longer query or retrieve data stored 

on the blockchain system. Through the ciphertext and symmetric key re-encryption 
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process, the revoked user is effectively blocked from using their holding keys to access 

the data. 

5.3 Forward Security 

Forward security refers to the concept that the revoked user cannot access the 

data subsequently. In our scheme, this security property is assured by the key update 

mechanism. Essentially, the key update done by the AA will not be issued to the 

revoked user as of the verification of the access permission list and the update parameter 

verification. 

5.4 Backward Security 

Backward security refers to the concept that the revoked user cannot decrypt 

previously encrypted shared data. Our scheme guarantees this security property based 

on the ciphertext re-encryption. In our scheme, when the user is revoked, all the 

ciphertexts ever accessed by the revoked user will be re-encrypted by a new AES key, 

which is encrypted by a new access policy.  

5.5 Confidentiality of Ciphertexts on Cloud and Blockchain Storage 

The ciphertexts stored on a cloud storage are encrypted by symmetric key 

encryption algorithms with 256-bit key length, while their AES key is encrypted by CP-

ABE encryption and stored on the blockchain system. With both encryptions, by their 

security protocol, the ciphertexts cannot be cracked in polynomial time-space. In 

addition, without valid blockchain credentials, the key ciphertexts cannot be retrieved. 

5.6 Proxy’s Key Security  

In our scheme, we allow the proxy to keep its key in a secure manner. During 

the key generation method, we added a 256-bit random number to obfuscate the proxy’s 

secret key after generating the key. Without the knowledge of the padding number 

policy, the attacker cannot use the proxy’s secret key. In addition to padded random 

numbers, all attributes in our scheme are hidden via an HVE method. Even if the 

attacker can gain the proxy’s secret key, they cannot use it to decrypt the ciphertext or 

have knowledge of what attributes are used to construct the key. 
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CHAPTER 6 

COMPARATIVE ANALYSIS AND EVALUATION 

 
In this section, we evaluate our proposed scheme by presenting the comparative 

functional analysis and computation cost analysis of our scheme and related works. In 

addition, we conducted experiments to measure the performance of the encryption, 

decryption, re-encryption, and ciphertext querying processes of our scheme and related 

works. For ease of understanding, we provide the notation used in the comparative 

analysis, as shown in TABLE 6.1. 

 
TABLE 6.1 NOTATION FOR COMPARATIVE ANALYSIS SECTION 

Notation Description 

PRX Proxy Server 

BC Blockchain 

CS Cloud Storage 

G0 Exponential operation in group G0 

G1 Exponential operation in group G1 

E Bilinear pairing operation  

|G0| Size of element in G0   

|G1| Size of element in G1  

|E| Size of element that use in bilinear pairing 

|AP| Number of attributes in access policy 

|UA| Number of attributes in user secret key 

AESEnc AES encryption operation 

AESDec AES decryption operation 

|AESKey| AES key size 

|M| Data size 

|CTM| Encrypted data size  

|PK| CP-ABE Public key size 

|RSADU|  RSA Private key size 

|APL| Access Permission list size 

 

6.1 Functionality Analysis 

TABLE 6.2 illustrates the functionality comparison of our proposed scheme and 

three related literature, including R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng 

(2021), Y. Jiang, X. Xu and F. Xiao (2022), and K. Yu, L. Tan, M. Aloqaily, H. Yang 
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and Y. Jararweh (2021). The functionality comparison is analyzed based on the aspect 

of the attribute hiding functionality, revocation capability, and ciphertext querying 

functionality. In general, only our scheme supports attribute-hiding functionality. As 

for the revocation aspect, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and 

K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) only support user 

revocation, while Y. Jiang, X. Xu and F. Xiao (2022) only supports attribute revocation. 

In our proposed scheme, we support both users and attribute revocation levels. Lastly, 

our proposed scheme is the only scheme that provides the formal method for querying 

the affected ciphertexts when the revocation occurs. 

 

TABLE 6.2  FUNCTIONAL COMPARISON 

 Attributes Hiding 

Revocation Ciphertext 

Querying 

Functionality 
User. Attr. 

R. Guo et al. x ✓ x x 

Y. Jiang et 

al. 

x x ✓ x 

K. Yu et al. x ✓ x x 

Our ✓ ✓ ✓ ✓ 

 
TABLE 6.3  COMPUTATION COST COMPARISON 

 
Computation Cost  

Encryption Cost Decryption Cost 

R. Guo et al. (3|AP| + 1)G0 (2|AP|+ |UA|)G1 +2|AP|E 

Y. Jiang et 

al. 

(4|AP| + 2)G0 + E (|UA|+ 2)E +(2|AP|)G1 

K. Yu et al. (2|AP| + 4)G0 + 3G1 (2|AP| + |UA|)E + (|UA| + 2)G1 

Our 
(2|AP| + 1)G0 + 2G1+ 

AESEnc 

(2|UA| + 1)E + (2|AP| + 2)G1 + 

AESDec 

 

6.2 Computation Cost Analysis 

The computation cost of cryptographic operations is crucial to evaluate the 

access control system’s efficiency, scalability, and practicality. As shown in TABLE 

6.3, the encryption cost of all schemes is subject to the number of attributes in the policy 
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that need to be encrypted with the data together with the exponential operation of the 

prime order group G0. In schemes R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng 

(2021), Y. Jiang, X. Xu and F. Xiao (2022), and K. Yu, L. Tan, M. Aloqaily, H. Yang 

and Y. Jararweh (2021) their data encryption methods are done through the CP-ABE 

mechanism. Y. Jiang, X. Xu and F. Xiao (2022) scheme deals with a bilinear pairing 

operation, which results in higher computation costs than the other schemes. While in 

our scheme, we utilized a 2-step encryption operation that contains AES and CP-ABE 

algorithms. Our AES cryptosystem is used to encrypt/decrypt the desired data, while 

CP-ABE is used to encrypt/decrypt the AES key. The computation cost of the AES 

algorithm is relatively small compared to the CP-ABE method due to the smaller key 

size and lighter crypto operation costs. As a result, our encryption cost yields the least 

execution time compared to the others. For the decryption cases, the computation cost 

is subject to the number of attributes in the policy and the number of attributes contained 

in the user secret key, together with the exponential operation of prime order group G1 

and bilinear pairing operation, are the major costs. In R. Guo, G. Yang, H. Shi, Y. Zhang 

and D. Zheng (2021) scheme, the computation cost is based on both pairing and 

exponential operation of prime order group G1, which yields more computation cost 

than Y. Jiang, X. Xu and F. Xiao (2022), K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. 

Jararweh (2021), and ours. Y. Jiang, X. Xu and F. Xiao (2022) and our scheme only 

deals with the exponential operation on group G1, while K. Yu, L. Tan, M. Aloqaily, 

H. Yang and Y. Jararweh (2021) relies on pairing operation. Specifically, our scheme 

yielded a smaller decryption cost than other schemes because the decryption was done 

over the encrypted AES key, while other schemes worked directly with the encrypted 

data. 

6.3 Communication Cost Analysis 

Communication cost is the cost that occurs when there is data communication 

between different entities in the system. This section will focus on the ciphertext or data 

communication between entities, and the access request will not be accounted for in 

Ref. code: 25666422040060GIV



57 

 

 

 

 

 

this comparison. Here, we consider the size of security parameters sent to and forth 

between the entities in the systems. 

 

TABLE 6.4 COMMUNICATION COST COMPARISON 

 Scheme 

 R. Guo et al. Y. Jiang et al. K. Yu et al. Our 

DO & DU - |M|, Signature - |RSADU| 

DO & BC - 
URL + 

Hash(CTM) + 
Signature 

|PK| 

[(2|AP|+1)|G0| + 
2|G1|+ |AESKey|],  
Index, CTKAttr& 

URL 

DO & CS - 
[(4|AP|+2)|G0|+ 

|E|+|M|] 
[(2|AP|+4)|G0|+ 

3|G1|+|M|] 
|CTM| 

DO & 
PRX 

[(3|AP|+1) |G0|+|M|] - - 
[(2|UA|)|G0| + 

|G1|] 

PRX & 
CS 

[(3|AP|+1)|G0|+|M|] 
[(4|AP|+2)|G0|+ 

|E|+|M|] 
[(2|AP|+4)|G0|+ 

3|G1|+|M|] 
|CTM| 

PRX & 
BC 

Hash(CTM) - 

|PK|, 
Signature(SKDU) 

[(2|AP|+1)|G0| + 
2|G1|+|AESKey|], 

Index, CTKAttr& 
URL 

DU & BC - - - 
[(2|AP|+1)|G0| + 
2|G1|+ |AESKey|], 

Index, URL 

DU & CS - - - |CTM| 

DU & 
PRX 

[(|UA|+2)|G0|], 
[|G1|+|M|] 

[(|UA|+3)|G0|], 
[|G1|+|M|] 

[2|G1|+|M|] 
- 

 

As shown in TABLE 6.4, in R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng 

(2021), the communication cost occurs at the proxy server and other entities such as 

data owners and users in the system. In their system, after the DO performs CP-ABE 

encryption, the DO needs to upload the ciphertext to the proxy before it is uploaded to 

the cloud storage. Then, the proxy hashes the ciphertext and uses its values as the index 

to be stored on the blockchain system. In Y. Jiang, X. Xu and F. Xiao (2022), the doctor 

has to send EHR data, the hash value, and their digital signature to the patient to let 
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them perform CP-ABE encryption on the EHR data and upload the encrypted data to 

the cloud storage. With this approach, the communication cost between DO and DU 

tends to be larger than the other approach. The data’s signature and hash value are then 

uploaded to the blockchain by DO. For R. Guo, G. Yang, H. Shi, Y. Zhang and D. 

Zheng (2021) and Y. Jiang, X. Xu and F. Xiao (2022) when DU wants to access the 

ciphertext, they need to send the request with the transformation key to the proxy. With 

this, each time DU wants to access the data, the communication cost of sending the 

transformation key occurs. The proxy then fetches the ciphertext from the cloud storage 

and performs partial decryption before the intermediate ciphertext is sent to the DU. 

In K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021), there are no 

communication costs between DO and DU because, in their scheme, the cryptographic 

component is generated by trusted authorities and a trusted proxy and stored those 

components on the blockchain and on the proxy itself. When DO wants to encrypt the 

data, they need to make an access request to the blockchain system to receive the PK. 

This renders the same communication overhead as in R. Guo, G. Yang, H. Shi, Y. 

Zhang and D. Zheng (2021) and Y. Jiang, X. Xu and F. Xiao (2022) when the DU wants 

to access the data. The proxy invokes the ciphertext from the cloud storage, performs 

partial decryption, and sends the result to the DU.  

In our scheme, the communication cost between DO and DU is only the 

DU RSA key pair transmission. In contrast, the communication between DO and Proxy 

involves transferring the proxy’s CP-ABE key. For the blockchain system, the 

communication between it and the DO and Proxy is the key ciphertext, its respective 

index, URL, and its attributes. Even though blockchain and other entities communicate 

by transmitting such cryptographic elements, their size is relatively small. In our 

scheme, DU can access the data stored on the cloud and blockchain directly, compared 

to other schemes where DU must send their data access request to a proxy and let the 

proxy fetch the data for them. 
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6.4 Storage Cost Analysis 

Storage cost refers to the cost of storing cryptographic keys, ciphertexts, hash 

value of the ciphertexts, digital signature, index value, and, in some cases, ciphertexts 

attributes at their respective entities.  

 

TABLE 6.5  STORAGE COST COMPARISON 

 Scheme 

 R. Guo et al. Y. Jiang et al. K. Yu et al. Our 

DO |PK| |PK| - |PK| 

DU 
[(|UA|+2) |G0|+ 

|G1|]] 
[(|UA|+3) |G0|+ 

|G1|]] 
[(2|UA|+1) |G0| + 

|G1|] 
[(2|UA|) |G0| + 
|G1|], |RSADU| 

PRX - - [(2|UA|+1) |G0|] 
[(2|UA|) |G0| + 

|G1|] 

BC Hash(CTM) 
Hash(CTM), 
Signature 

PK, 
Signature(SKDU) 

[(2|AP|+1)|G0| + 
2|G1|+|AESKey|], 

Index, Attributes[], 
|APL| 

CS 
[(3|AP|+1)|G0|+|M|] [(4|AP|+2)|G0|+ 

|E|+|M|] 
[(2|AP|+4)|G0|+ 

3|G1|+|M|] 
|CTM| 

 

As shown in TABLE 6.5, most works share the exact storage cost for storing 

public keys at DO, CP-ABE secret key at DU, and CP-ABE encrypted ciphertexts at 

cloud storage. For our scheme, cloud storage stored the symmetric encryption 

ciphertext instead. For proxy, in our scheme, the proxy holds its secret key, while in K. 

Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) it holds the DU 

transformation key. On the blockchain side, schemes R. Guo, G. Yang, H. Shi, Y. 

Zhang and D. Zheng (2021) and Y. Jiang, X. Xu and F. Xiao (2022) are closely similar; 

the blockchain stores the ciphertexts’ hash values as the integrity tampered-proof 

certificates. If their ciphertexts have been altered, their hash value will be different from 

the hash value of their respective ciphertexts in the blockchain system. In Y. Jiang, X. 

Xu and F. Xiao (2022), they also stored the digital signature of the DU with the hash 

value of the ciphertext. For K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh 
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(2021), their blockchain system holds the public key of the system and the digital 

signature of DU’s secret key. With their approach, when DO wants to encrypt the data, 

they need to request the blockchain system for the PK. In our scheme, blockchain stores 

CP-ABE encrypted AES keys with their index and attributes. With our approach, the 

proxy can retrieve the corresponding cryptographic component directly from the 

blockchain system and cloud storage without external interference when the revocation 

occurs. Moreover, DU can access the data directly with the blockchain system as long 

as their account status is still valid on the blockchain. In addition to storing the 

ciphertext, our scheme also stored the access permission list of the DU in the system 

for authentication. 

6.5 Experimental Analysis 

To evaluate the performance of our proposed system, we conducted 

experiments to compare the encryption time, decryption time, revocation time, and 

query time of our scheme and the related works, including schemes R. Guo, G. Yang, 

H. Shi, Y. Zhang and D. Zheng (2021), Y. Jiang, X. Xu and F. Xiao (2022), and K. Yu, 

L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021). These three works were chosen 

because they all deployed blockchain as their immutable record for data integrity, 

implemented the revocation protocol, and used CP-ABE as their core cryptography. 

For the experiment setting, we utilized Open SSL as a core PKI system for 

generating key pairs to users and the proxy in our system. The CP-ABE Toolkit, Java-

Pairing based Cryptography (PBC Library, 2022; A. De Caro & V. Iovino, 2011), 

and AES Toolkits (Packetizer, 2023) are used to simulate the cryptographic operation 

of our scheme, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021), Y. Jiang, X. 

Xu and F. Xiao (2022), and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh 

(2021). As for blockchain simulation, we used Ethereum on Ganache Truffle Suite 

(2023) with the help of Web3.js as a communication interface. For decentralized 

storage services, we used the IPFS application. The experiment environment for DO is 

as follows: AMD Ryzen 5 5600G (3.90 GHz), 16 GB of RAM, and a 64-bit Windows 

11 Operating System. As for the proxy environment, we use the Google Cloud platform 
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with computer engine ‘E2-Micro’ with Intel Xeon 2.20 GHz, 1 GB of RAM, and 

Ubuntu 20.04.5 LTS OS. The proxy server runs the IPFS and the essential 

cryptographic protocol to support the revocation, such as AES symmetric key 

encryption and CP-ABE encryption. 

In our experiment, the user secret key contains five attributes, and the 300-KB 

file was used to test the encryption, decryption, and revocation operation. 

6.5.1 Encryption and Decryption Performance 

We measured the encryption and decryption time by varying the size of the 

access policy. The experiments were done to measure the processing time used for data 

encryption and decryption between our scheme, R. Guo, G. Yang, H. Shi, Y. Zhang 

and D. Zheng (2021) scheme, Y. Jiang, X. Xu and F. Xiao (2022) scheme, and K. Yu, 

L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) scheme. Figure 6.1 and Figure 

6.2 present the encryption and decryption performance, respectively. For the encryption 

performance, our scheme and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh 

(2021) grew linearly with the size of the access policy, while the graphs of scheme R. 

Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and scheme Y. Jiang, X. Xu and 

F. Xiao (2022) tend to increase sharply when the higher number of attributes in the 

policy was applied. This is because R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng 

(2021) and Y. Jiang, X. Xu and F. Xiao (2022) schemes deal with more complexity of 

computation that relates to the number of attributes in the policy than ours and K. Yu, 

L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021). Their scheme requires more 

policy instances to be computed with a prime order group. Specifically, in the scheme 

Y. Jiang, X. Xu and F. Xiao (2022), the encryption cost was also subject to additional 

bilinear pairing operation. As for the decryption performance, the performance of all 

schemes was subject to the size of the access policy. R. Guo, G. Yang, H. Shi, Y. Zhang 

and D. Zheng (2021) yielded the highest decryption cost since its decryption function 

requires both exponential and bilinear pairing operations on the number of attributes in 

the policy. For Y. Jiang, X. Xu and F. Xiao (2022) scheme and our scheme, the 
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decryption process deals with the exponential operation on group G1, while K. Yu, L. 

Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) relies on pairing operation. 

 

Figure 6.1 Encryption Performance 

 

 

Figure 6.2 Decryption Performance 
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6.5.2 Revocation Performance 

To evaluate the revocation performance, we measured the revocation time by 

varying the size of the access policy used for re-encryption and/or ciphertext update. 

The experiments were done to measure the processing time used for user revocation 

between our scheme, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) scheme, 

and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) scheme. For the 

attribute revocation, we measured the revocation time between our scheme and Y. 

Jiang, X. Xu and F. Xiao (2022) scheme. 

For the user revocation case, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng 

(2021) and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) require the 

transformation of the ciphertext based on the policy update. The operations related to 

exponential and bilinear pairing operation of CP-ABE and user key transformation 

generation were major overheads. In our scheme, the number of attributes that need to 

be updated is subject to an exponential with constant pairing and AES encryption. In 

R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and K. Yu, L. Tan, M. 

Aloqaily, H. Yang and Y. Jararweh (2021), the proxy needed to perform partial CP-

ABE decryption for each user in the system to update the ciphertexts to suit each user’s 

attributes fully. Moreover, transform them into smaller ciphertext. Then, the user uses 

their secret key to complete the decryption. Their decryption processes were subject to 

an exponential pairing of both user attributes and policy attributes. As shown in Figure 

6.3, our scheme delivered the processing time used for the user revocation on par with 

schemes R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and K. Yu, L. Tan, 

M. Aloqaily, H. Yang and Y. Jararweh (2021).  

In the attribute revocation case, Y. Jiang, X. Xu and F. Xiao (2022) relied on 

the policy update protocol, reducing the cost of re-encryption of the entire ciphertexts. 

However, the proxy also needs to perform partial decryption for each user whose 

attributes were removed. As shown in Figure 6.4, the performance of Y. Jiang, X. Xu 

and F. Xiao (2022) contains both policy update protocol and partial decryption, which 

are used to update the revocation attributes. Our scheme only requires the re-encryption 
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of the AES key, which is much smaller than the ciphertext produced from the data 

encryption.   

 

Figure 6.3 User Revocation Performance based on number of attributes in policy 

 

 

Figure 6.4 Attribute Revocation Performance based on number of attributes in policy 
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In addition to measuring the performance based on the number of attributes, we 

conducted experiments to measure the user revocation and attribute revocation time 

based on the number of ciphertexts that need to be re-encrypted when there is a case of 

revocation. The experiments were done to measure the processing time used for user 

revocation between our scheme, R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng 

(2021) scheme, and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) 

scheme. For the attribute revocation, we compared the performance between our 

scheme and Y. Jiang, X. Xu and F. Xiao (2022) scheme. In the experiments, the access 

policy size containing five attributes was used. To measure the revocation time, we took 

the ciphertexts query time into the final revocation cost. The total number of ciphertexts 

in the experiment setting varied up to 1000 ciphertexts. Figure 6.5 and Figure 6.6 

represent the total processing time used to re-encrypt the ciphertexts for user and 

attribute revocation, respectively. 

When any user is revoked from the system, we need to ensure that the revoked 

user cannot access each ciphertext in the system that contains the user-revoked 

attributes. As shown in Figure 6.5, our scheme took less time to complete the user 

revocation process. R. Guo, G. Yang, H. Shi, Y. Zhang and D. Zheng (2021) and K. 

Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh (2021) yielded the same 

performance since they had the common process for policy update and partial 

decryption of the ciphertexts affected by the policy update. The cost of searching for 

the affected also contributed to the significant overhead of the overall processing time. 

In our scheme, the re-encryption cost was mainly subject to the cost of AES re-

encryption and AES key re-encryption, which yields a relatively small computation cost 

compared to ciphertext re-encryption. Significantly, the cost of retrieving the affected 

ciphertexts was optimized based on our proposed ciphertext attributes and user 

mapping mechanism. When the number of ciphertexts was increased, the efficiency of 

our proposed mechanism obviously outperformed the related works. 
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Figure 6.5 User Revocation Performance based on number of ciphertexts 

 

 

Figure 6.6 Attribute Revocation Performance based on number of ciphertexts 

 

For attribute revocation cases, it generally took less cost than the user revocation 

because only ciphertexts affected with the revoked attribute will be re-encrypted. As 

shown in Figure 6.6, our scheme experienced a lower execution time than Y. Jiang, X. 
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Xu and F. Xiao (2022). The cost of our attribute revocation is similar to the user 

revocation since our scheme only required the re-encryption of the AES key. 

Furthermore, our attributes mapping scheme enabled faster retrieval of affected 

ciphertexts without checking all the ciphertexts in the system. At the same time, Y. 

Jiang, X. Xu and F. Xiao (2022) contains policy update protocol, partial decryption, 

and traditional ciphertext query on the ciphertexts, which yield more overhead than 

ours. 

6.5.3 Ciphertext Query and Revocation performance  

In Figure 6.7, we experimented with ciphertexts querying performance based 

on the number of ciphertexts in the system. The query is conducted via a smart contract 

that operates on the blockchain system. The query performance in Figure 6.7 is the 

average query time per attribute for all affected ciphertexts that require revocation. The 

traditional query, which is typically based on an exhaustive search, requires checking 

all ciphertexts where the revoked attribute resides. In our case, our attribute mapping 

scheme on the blockchain system minimizes the cost of checking all individual 

ciphertexts. Instead, it directly retrieves the affected ciphertexts based on the execution 

of the smart contract working over the index source retained in the blockchain mapped 

to the attributes. As a result, our proposed scheme significantly improves the ciphertext 

retrieval required in the re-encryption step. 

In addition to querying performance results, we provided a detailed revocation 

cost analysis by measuring the re-encryption time and ciphertext query time for the 

given revocation case. In this experiment, we fixed the number of attributes in the 

policy and user’s secret key attributes at five, and 50 ciphertexts need to be re-encrypted 

out of 1,000 ciphertexts in the system. The querying process was done via a smart 

contract on the blockchain for both the proposed scheme and the traditional query. 

Figure 6.8 exhibits the performance result of the ciphertext query and re-encryption 

cost of the user revocation between our proposed scheme, R. Guo, G. Yang, H. Shi, Y. 

Zhang and D. Zheng (2021) scheme, and K. Yu, L. Tan, M. Aloqaily, H. Yang and Y. 
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Jararweh (2021) scheme, and the attribute revocation cost between our scheme and Y. 

Jiang, X. Xu and F. Xiao (2022) scheme. 

 

Figure 6.7 Query Performance Per Attribute  

 

 

Figure 6.8 Revocation Performance with Query Time 
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As shown in Figure 6.8, the re-encryption performance of each scheme was not 

quite much different because the re-encryption process of R. Guo, G. Yang, H. Shi, Y. 

Zhang and D. Zheng (2021), Y. Jiang, X. Xu and F. Xiao (2022), and K. Yu, L. Tan, 

M. Aloqaily, H. Yang and Y. Jararweh (2021) requires a policy update protocol to 

update each ciphertext and partial ciphertext decryption to enable all non-revoked users 

to get their key updated. In our scheme, we need to perform new AES key generation 

and re-encryption to fully update the affected ciphertexts when user revocation occurs. 

For the attribute revocation case, our scheme only requires symmetric key re-encryption 

with a new policy. As for the ciphertext query performance, our scheme significantly 

outperforms other works for both user and attribute revocation. For the user revocation 

case, the ciphertext query time was indicated by the amount of the user’s secret key 

attributes. This is because when the user is revoked, we need to ensure that each 

ciphertext in the system that contains the user-revoked attributes cannot be accessed by 

the revoked user. In this experiment, the user’s secret key contains five attributes. Thus, 

retrieving the affected ciphertexts must query five attributes based on the number of 

attributes the revoked user’s secret key contains. This is to mitigate the error of not 

retrieving all the ciphertexts that the revoked user can access directly from IPFS if any 

revoked users hold the symmetric key for accessing the files. For attribute revocation 

cases, the cost was also subject to the number of attributes revoked. This is because our 

proposed attribute mapping mechanism and the ciphertext query function reduce the 

query time on the blockchain system. Our proposed scheme can retrieve the affected 

ciphertext without checking all the ciphertexts in the system. In contrast, all related 

works relied on exhaustive searches over all ciphertext and retrieved the affected ones. 

As a result, the overall performance of our scheme yields the least execution time than 

the others. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

In this thesis, we have proposed a revocable CP-ABE protocol supporting 

efficient ciphertexts querying and proxy re-encryption technique with the policy hiding 

capability. In cloud computing, we integrated a blockchain system to empower the 

decentralized access control functions such as user enrollment, user authentication, 

cryptographic elements retention, and ciphertext indexing. Specifically, we proposed a 

ciphertext querying method by leveraging the smart contract to efficiently minimize the 

cost of ciphertext re-encryption when there is a revocation case. Moreover, most of the 

revocation process is offloaded to the proxy server to reduce the execution and 

communication cost of DO when the revocation occurs. Finally, we conducted a 

comparative analysis to display the functionality, and computation cost, and to conduct 

the experiments to measure the performance of our scheme and related works. Based 

on the comprehensive analysis and performance evaluation, our scheme has been 

proven for its novelty and practicality of the proposed access control protocol and the 

revocation algorithms.  

For future works, we will tackle the proxy signcryption approach for 

blockchain-based cloud systems to enable anonymous authentication and data integrity 

validation. In addition, we will investigate the searchable encryption algorithms and 

design the mechanism that integrates with blockchain to support the efficient search 

over a collection of encrypted documents or files in the IPFS. 
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