

DEVELOP A CAPACITATED VEHICLE ROUTING MODEL WITH TIME WINDOWS FOR COLD CHAIN LOGISTICS USING OPENSOLVER

BY

AK-KARATH PAISALVICHITNUTH

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS ENGINEERING) SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY THAMMASAT UNIVERSITY ACADEMIC YEAR 2023

THAMMASAT UNIVERSITY SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

INDEPENDENT STUDY

BY

AK-KARATH PAISALVICHITNUTH

ENTITLED

DEVELOP A CAPACITATED VEHICLE ROUTING MODEL WITH TIME WINDOWS FOR COLD CHAIN LOGISTICS USING OPENSOLVER

was approved as partial fulfillment of the requirements for the degree of Master of Engineering (Logistics and Supply Chain Systems Engineering)

	on July 8, 2024
Member and Advisor	R
	(Associate Professor Sun Olapiriyakul, Ph.D.)
Member	Since
	(Associate Professor Suchada Rianmora, D.Eng.)
Director	J-Rand-

(Professor Pruettha Nanakorn, D.Eng.)

Ref. code: 25666622040548ITA

Independent Study Title	DEVELOP A CAPACITATED VEHICLE		
	ROUTING MODEL WITH TIME WINDOWS		
	FOR COLD CHAIN LOGISTICS USING		
	OPENSOLVER		
Author	Ak-Karath Paisalvichitnuth		
Degree	Master of Engineering (Logistics and Supply		
	Chain Systems Engineering)		
Faculty/University	Sirindhorn International Institute of Technology/		
	Thammasat University		
Advisor	Associate Professor Sun Olapiriyakul, Ph.D.		
Academic Years	2023		

ABSTRACT

Cold Chain Logistics (CCL) is a critical aspect of supply chain management for industries that handle temperature-sensitive products, especially aquatic products. However, challenges related to transportation cost, cluster infrastructure, and temperature control requirements must be addressed. This study developed a customized CVRPTW model to improve distribution network efficiency and minimize the cost by using OpenSolver. The model was evaluated using real-world data from a Thai cold chain logistics company. The results demonstrated that the model significantly reduced total costs, the number of trucks required, and routing for each truck. These findings highlight the potential of VRP models to optimize cold chain logistics.

Keywords: VRP, Cold Chain, Freight Transport, Optimization, Logistics, Quality

ACKNOWLEDGEMENTS

Profound gratitude goes to my dissertation advisors, Dr. Sun Olapiriyakul and Dr. Suchada Rianmora, for their invaluable guidance, unwavering support, and mentorship throughout this research journey. Their dedication and expertise were instrumental in shaping my research and academic development. I am also thankful to Dr. Parthena Parthanadee, Dr. Phum Duc Tai, and Dr. Jirachai Buddhakulsomsiri for equipping me with the skills of Excel OpenSolver during my master's degree classes. These skills proved to be a valuable asset in my research. My heartfelt appreciation extends to the faculty members of the Sirindhorn International Institute of Technology for their constant encouragement and inspiration, which fueled my academic journey.

TABLE OF CONTENTS

	Page
ABSTRACT	(1)
ACKNOWLEDGEMENTS	(2)
LIST OF TABLES	(5)
LIST OF FIGURES	(6)
LIST OF SYMBOLS/ABBREVIATIONS	(7)
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 REVIEW OF LITERATURE	3
2.1 Cold Chain Logistics (CCL)	3
2.2 Vehicle Routing Problem in Cold Chain Logistic	4
CHAPTER 3 METHODOLOGY	6
3.1 Methodological Steps	6
3.2 Collecting Data	7
3.3 Model Assumption	9
3.4 Mathematical Model (CVRPTW Model)	10
3.4.1 Objective Function	11
3.4.1.1 Vehicle Operating Cost	12
3.4.1.2 Quality Loss Cost	12
3.4.1.3 Product Freshness Cost	12
3.4.1.4 Energy Cost	13
3.4.2 Constraints	14
3.5 Tools	15

	(4)
CHAPTER 4 RESULT	16
4.1 Comparison Minimize Cost and Minimize Distance	16
4.2 Optimized Routes	17
4.3 Cost Analysis	18
4.4 Impact of Demand Variability	20
4.5 Details of Optimization Execution	21
CHAPTER 5 CONCLUSION	22
CHAPTER 6 DISCUSSION	23
REFERENCES	24
APPENDIX	26
APPENDIX A	27

LIST OF TABLES

Tables	Page
2.1 Related works	5
3.1 Node and location of Figure 3.2	8
3.2 Demand for each node individual day	8
3.3 Time window for each node individual day	9
4.1 Minimize Cost vs Minimize Distance	16
4.2 Result under different demand each day	20

LIST OF FIGURES

Page
6
7
17
18
19
27
28
28
28
29
29
30
30
31
31
32
32
33
34

LIST OF SYMBOLS/ABBREVIATIONS

Terms

Symbols/Abbreviations

CAGR	Compound Annual Growth Rate				
CCL	Cold Chain Logistic				
ССР	Cold Chain Product				
DC	Distribution Center				
OSRM	Open-Source Routing Machine				
SCM	Supply Chain Management				
VRP	Vehicle Routing Problem				
CVRPTW	Capacitated Vehicle Routing				
	Problem with Time Window				

(7)

CHAPTER 1 INTRODUCTION

In today's dynamic industries, the incorporation of modern technologies and technological advances is critical to maximizing profits and improving work efficiency across multiple sectors. Supply Chain Management (SCM), which coordinates interconnected chains aimed at meeting customer demands smoothly, is at the forefront of this technological evolution (Fernando, n.d.). SCM encompasses purchasing, manufacturing, storage, distribution, and delivery, forming the foundation for efficient and responsive business operations.

Cold Chain Logistics (CCL) is an important part of supply chain management, especially in industries that handle expiring goods like food, pharmaceuticals, and certain chemicals. CCL focuses on keeping products at a suitable temperature to maintain their shelf life during the supply chain process. Despite the high costs associated with CCL, the industry has experienced significant growth, with the global cold chain logistics market projected to grow at a significant compound annual growth rate (CAGR) of 15.1% from 2021 to 2028, driven by changes in social structures, consumer habits, and increased global concerns about product safety and quality (Bio, 2023). Thailand's cold chain industry has grown significantly, emphasizing its economic importance. The country's freight and logistics market are expected to grow at a CAGR of 6.37% between 2023 and 2029 (Mordor Intelligence, n.d.). Rising consumer expectations, supply chain globalization, and stringent regulatory requirements have all contributed to an increase in demand for efficient cold chain solutions (Prapinit, Sabar, & Melan, 2019; Boonlua, 2019; Bandoophanit, Sangpukdee, Kaengaew, & Chotkawee, 2023).

The Vehicle Routing Problem (VRP), which focuses on routing optimization, is a key challenge in logistics, particularly for trucks seeking the most effective routes for product delivery. VRP is a widely used algorithm in the cold chain market, helping businesses manage the number of trucks on the road, and thereby avoiding higher fixed costs, maintenance costs, and other expenses (Pamuar, Petrovi, & irovi, 2018). Specifically, the Vehicle Routing Problem with Time Windows (VRPTW) is crucial in cold chain logistics as it ensures that transportation routes are strategically planned to minimize costs and energy consumption while meeting strict temperature requirements for perishable goods and customer satisfaction (Pureza, Morabito, & Reimann, 2012).

The main objective of this independent study is to create and implement a customized CVRPTW model to reduce total costs within the context of cold chain management. This study aims to improve the efficiency of the distribution network by considering factors such as procurement and storage. It focuses on providing a practical and efficient approach to cold chain logistics by leveraging Excel OpenSolver to optimize algorithms and sustainable transportation solutions. This tool ensures that the method is accessible and easy to use for a wide audience, addressing the unique challenges in the transportation of aquatic goods across Thailand's provinces. By tackling these issues, this study intends to contribute valuable knowledge and solutions that align with current trends and requirements in the cold chain industry, particularly within the context of retail businesses.

This independent study paper will be structured into approximately six sections. Section 2 will explore the economic importance and growth of the cold chain industry, and the application of VRP and VRPTW in CCL, including relevant previous research. Section 3 will detail the specific objectives, mathematical model, and OpenSolver. Section 4 will present a concise overview of the algorithm's results. Section 5 will provide the conclusion, and Section 6 will include a discussion and suggestions for future work.

CHAPTER 2 REVIEW OF LITERATURE

2.1 Cold Chain Logistic

Cold chain logistics involves the transportation and storage of temperaturesensitive products, such as perishable foods, pharmaceuticals, and other goods requiring controlled environmental conditions. The primary objective is to maintain product integrity and quality from origin to destination. Maintaining the required temperature throughout the supply chain is crucial for preventing spoilage and ensuring safety. Challenges include temperature fluctuations, equipment failures, and handling delays. The complexity increases when different products require varying temperature settings.

Advancements in technology, such as real-time temperature monitoring, insulated packaging, and refrigerated transportation units, have significantly improved cold chain logistics. For instance, Chen, Liu, and Langevin (2019) highlight the importance of multi-compartment vehicles that can carry goods at different temperatures, optimizing the distribution process for various perishable items. In a similar study, researchers examined how changes in surrounding temperature and storage temperature impact the quality of seafood (Yue et al., 2013). They identified three types of water temperature variation: constant, continuous fluctuations, and non-continuous fluctuations. They also found that the outside temperature affects how much energy is needed to keep the truck cool, which can increase the overall cost.

Researchers have also studied how often the truck doors are opened during transport. This is important because it can both damage the products and raise the temperature inside the truck. Zhang et al. (2018) did experiments with a refrigerated truck to see how opening doors in different places and the number of times affects how stable the temperature stays inside.

Optimizing cold chain logistics not only ensures product quality but also reduces economic losses due to spoilage and decreases environmental impact by improving energy efficiency. Li et al. (2020) emphasizes the use of green logistics practices, which aim to minimize the carbon footprint of transportation activities.

2.2 Vehicle Routing Problem in Cold Chain Logistic

The Vehicle Routing Problem (VRP) is a fundamental issue in logistics, aiming to determine the most efficient routes for a fleet of vehicles delivering goods to various locations. When applied to cold chain logistics, VRP must consider additional constraints such as temperature control and compartmentalization (Chen et al., 2019). Several models and algorithms have been developed to address VRP in the context of cold chain logistics. Chen, Liu, and Langevin (2019) developed a multi-compartment VRP model that optimizes routes based on different temperature requirements. Similarly, Leelertkij, Parthanadee, and Buddhakulsomsiri (2021) introduced a transshipment model to enhance efficiency by allowing goods transfer between vehicles at intermediate points.

Heuristic and metaheuristic approaches, such as those proposed by Guo, Huang, and Huang (2021), provide practical solutions to complex VRP instances by approximating optimal solutions within reasonable computational times. These methods are particularly useful for handling constraints like incompatible loading and split deliveries. Yildirim and Kuvvetli (2021) and Li et al. (2020) explored hybrid and genetic algorithms to solve capacitated and heterogeneous fleet VRPs. These algorithms combine various optimization techniques to improve solution quality and computational efficiency, addressing the complexities of cold chain logistics.

Several studies, such as those by Syahputra et al. (2018) and Singhtaun and Piyapornthana (2022), provide practical applications and case studies demonstrating the effectiveness of these models and algorithms in real-world scenarios. These applications highlight the improvements in route efficiency, cost reduction, and overall performance of cold chain logistics operations.

The optimization of cold chain logistics, particularly with vehicle routing problem (VRP) methodologies, is a critical area of research. Various models and

algorithms have been developed to address the unique challenges presented by cold chain logistics, such as maintaining specific temperature ranges and managing heterogeneous fleets. Below is a summary of key studies in the field.

		Obje	ective fund	ction	Metho	dology	
Authors	Model	Min distance	Min cost	Min Carbon	Small Problem	Cold Chain Logistic	Tool
Chen, L. (2019)	MC- VRPWT	~		43		~	CPLEX
Guo, F. et al. (2021)	VRPILC- SDO	2	~	200		~	CPLEX
Yildirim, U. (2021)	OVRP	Ş	✓	0	~		Taguchi
Leelertkij et al. (2021)	VRP		~				MILP
Li et al. (2020)	GVRP			\checkmark	~~~	✓	CPLEX
(Mostafa & Eltawil, 2017)	VRP	~		82	~	₹	CPLEX
Pamuar et al. (2018)	VRPTF		~		~	×//	OpenSolver & VBA
Prapinit et al. (2019)	HFOVRP	20	~		~	//	OpenSolver & VBA
This study	CVRPTW		\checkmark	DNY	✓	\checkmark	OpenSolver

Table 2.1 Related works

CHAPTER 3 METHODOLOGY

This section outlines each methodological step. This study aims to provide a thorough framework for minimizing transportation costs in the delivery of aquatic goods. The methodology encompasses critical stages, including data collection, organization, model formulation, mathematical representation, tool selection, and scenario analysis.

3.1 Methodological Steps

The methodological approach, as depicted in Figure 3.1, begins with Data Collection, where pertinent information such as locations, demand volumes, time windows and vehicle details are gathered. Subsequently, the collected data undergoes meticulous organization and preparation for analysis. The next phase involves Project OSRM, utilizing the Open-Source Routing Machine (OSRM) to calculate accurate travel times and distances between locations. With these inputs, the optimization model is formulated and solved using OpenSolver, an Excel add-in for optimization. Finally, the optimized routes and associated cost savings are presented as the Result of the optimization process.

This streamlined approach guides the systematic exploration and resolution of the cold chain logistics optimization problem, ensuring a structured and rigorous approach to achieving the study objectives.

Figure 3.1 Methodological steps

3.2 Collecting Data

The study's data represents real-world cold chain logistics in Thailand, with 15 customers across locations, each with unique demands and time constraints. Samut Sakhon acts as the distribution hub, shipping goods to urban centers like Bangkok and Nonthaburi.

This dataset includes information on customer demand volumes and time window constraints as shown in Table 3.2 and Table 3.3. Demand data is represented in terms of pallets of boxes of aquatic goods, where each pallet stores 24 boxes. Time window constraints are measured in hours, with the zero hour marking the start time at 08:00 AM. By analyzing demand patterns and adhering to predefined time windows, distributors can optimize delivery schedules, minimize waiting times, and enhance overall service quality.

Additionally, the study utilizes Project OSRM (Open-Source Routing Machine) to calculate accurate travel times and distances between locations. This tool plays a crucial role in route optimization by providing essential data for efficient distribution planning to study area.

Figure 3.2 Location of nodes

Node	Location	Node	Location
0	DC Samut Sakhon	8	Central Ladprao
1	Central Bangna	9	Central Pinklao
2	Central World	10	Central Rama 2
3	Chaeng Wattana	11	Central Rama 3
4	Central Chidlom	12	Central Ramindra
5	Central EastVille	13	Central Salaya
6	Embassy	14	Silom Complex
7	Future Park	15	Central WestGate

 Table 3.1 Node and location of Figure 3.2

 Table 3.2 Demand for each node individual day

Node	Demand (Pallets)							
Node	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday		
1	1	2	1	1	1	4		
2	5	5	4	1	5	5		
3	2	3	3	3	5	1		
4	3	1	5	4	4	5		
5	2	1	5	1	3	4		
6	3	1	2	5	2	5		
7	1	5	5	3	4	5		
8	3	5	5	4	4	2		
9	4	2	3	1	5	5		
10	3	5	1	3	5	2		
11	3	4	3	3	1	1		
12	5	2	5	4	5	1		
13	2	3	5	1	2	5		
14	4	5	1	2	4	2		
15	5	2	4	1	2	2		
Total Demand	46	46	52	37	52	49		

	Time window (hr)											
	Moi	nday	Tue	sday	Wedn	lesday	Thursday		Friday		Saturday	
Node	Earliest time	Latest time										
1	3.25	5.38	0.92	3.22	6.07	8.03	1.98	4.11	1.79	3.84	2.30	4.60
2	0.67	2.60	0.57	2.50	0.37	2.14	3.38	4.98	1.98	3.50	1.98	4.00
3	1.98	4.35	1.53	3.98	1.98	4.18	2.82	5.02	3.18	5.21	3.97	6.42
4	0.11	2.26	0.54	2.37	4.99	7.06	3.35	4.76	5.32	6.89	0.75	2.82
5	0.45	2.40	3.01	5.04	6.57	8.68	1.15	2.93	2.29	4.15	3.18	5.12
6	0.16	1.49	1.08	2.91	0.34	2.08	6.21	7.95	3.69	5.43	3.52	5.59
7	4.26	7.19	0.48	3.15	1.39	3.73	5.58	8.00	1.66	4.34	1.38	4.14
8	4.71	6.55	4.37	5.79	1.84	4.02	0.20	2.12	0.28	2.29	0.58	2.42
9	0.86	3.29	4.66	6.93	0.69	2.70	0.49	2.51	0.96	3.48	0.48	3.00
10	1.42	3.53	0.68	3.30	2.91	4.70	1.91	4.03	2.42	4.21	0.85	3.47
11	1.68	3.31	0.94	2.65	2.60	3.98	2.17	3.97	0.17	2.39	2.33	3.88
12	0.19	2.36	4.10	6.44	5.45	7.29	2.75	4.84	0.47	2.56	1.69	3.69
13	2.56	4.87	1.98	5.20	3.84	6.23	4.15	6.79	4.68	7.73	3.22	5.60
14	3.27	4.87	0.44	2.62	0.44	2.28	4.86	6.37	2.71	4.64	2.22	4.48
15	2.36	4.52	3.58	5.74	4.36	6.59	3.30	5.37	0.91	3.56	2.61	4.85

 Table 3.3 Time window for each node individual day

3.3 Model Assumption

The Vehicle Routing Problem with Time Window model for cold chain logistics in Thailand is built upon several key assumptions:

- All trucks finishing delivery tasks must return to DC.
- All trucks are refrigerated trucks.
- Traffic congestion is not considered.
- The truck is traveling at a constant speed.
- Only delivery services are provided. There is no pickup pallet.
- All deliveries must arrive at the earliest time and leave before the latest time.
- Each customer site is only delivered by truck, with no exceed demand.
- The sum of capacity loaded is not greater than the limit.

The transportation fleet consists entirely of refrigerated trucks with the following specifications: Width 2.25 m, Length 6.09 m, Height 2.23 m, and a capacity weight of 5 tons. These trucks are equipped with temperature control capabilities, maintaining temperatures ranging from 25°C to -18°C. The cold air is circulated from the top of the truck to ensure uniform cooling throughout the cargo space. Each box containing aquatic goods measures Width 25 cm, Length 34 cm, and Height 47 cm, with a capacity of 20 kg of ice. These boxes are arranged on pallets, with each pallet capable of holding 24 boxes. Furthermore, each truck can accommodate up to 10 pallets, facilitating efficient loading and transportation of aquatic goods.

3.4 Mathematical Model (CVRPTW Model)

The CVRPTW model formulated for optimizing cold chain logistics in Thailand encompasses the following sets, parameters, decision variables, objective function, and constraints.

Sets

С	Set of customers	$C = \{1, 2, 3, \dots, n\}$
Ν	Set of all nodes	$N = \{0, 1, 2, \dots, n\}$

Parameters

n	Number of customers
D _i	Demand of customer i (pallets)
т	Number of (homogeneous) trucks
Q	Capacity of truck (pallets)
d_{ij}	Distance from node i to node j (km)
s _i	Service time of node i (hr)
$[e_i, l_i]$	Time window requested by node i (hr)
t _{ij}	Travel time from node i to node j (hr)
М	Massive positive number
q_j	Number of pallets that customer <i>j</i> needed
Q_i	Number of pallets that left on truck from node i

Constant Parameters

		Unit	Value
F_1	Unit cost of using trucks	Baht/truck	1000
F_2	Unit cost of cold chain product (CCP)	Baht/pallet	2500
F_3	Unit cost of refrigeration during transit	Baht/hr	50
F_4	Unit cost of refrigeration during unloading	Baht/hr	100
F_5	Unit price of fuel	Baht/L	45
<i>K</i> ₁	Constant value of CCP during transit	-	1
<i>K</i> ₂	Constant value of CCP during unloading	-	0.99
α1	Refrigeration equipment consumption of fuel during	I /br	2
	transit	L/111	2
α2	Refrigeration equipment consumption of fuel during	I /hr	25
	unloading	L/ III	2.3
U_0	Fuel consumption when truck empty	L/km	0.08
U_1	Fuel consumption when truck full load	L/km	0.102
θ	Sensitivity factor of CCP		0.002
xh	Discharge efficiency	pallet/hr	6

Decision Variables

x _{ij}	Binary variable indicating if a vehicle travels from node i to
	node <i>j</i>
Yij	Load carried by a truck when traveling from node i to node j
a _i	Arrival time to node <i>i</i> to node <i>j</i>
p_i	Departure time from node $i = a_i + s_i$ (hr)
a _i p _i	Arrival time to node <i>i</i> to node <i>j</i> Departure time from node $i = a_i + s_i$ (hr)

3.4.1 Objective Function

The objective function aims to minimize the total cost, which includes the following costs: Vehicle operating cost (C_1), Quality loss cost (C_2), Product freshness cost (C_3) and Energy cost (C_4) as in Equation 3.1 (Li et al., 2019).

$$Min \left(C_1 + C_2 + C_3 + C_4\right) \tag{3.1}$$

3.4.1.1 Vehicle Operating Cost

This cost includes the expenses related to vehicle maintenance and the salary of the personnel. It depends on the number of trucks used rather than the travel time or distance covered. The vehicle operating cost is crucial for managing the overall expenses related to fleet operations:

$$C_1 = \sum_{j \in N} F_1 \cdot x_{0j} \tag{3.2}$$

3.4.1.2 Quality Loss Cost

In cold chain logistics, quality loss costs during distribution primarily arise from two factors: the degradation of product freshness and the decline in product quality due to internal convection caused by opening the door, which allows outside air to enter:

1) The quality loss cost incurred during the transit process is:

$$C_{21} = \sum_{i \in N, i \neq 0} D_i \cdot F_2 (1 - K_1 e^{-\theta \cdot a_i})$$
(3.3)

2) The quality loss cost incurred during the unloading process is:

$$C_{22} = \sum_{i \in N, i \neq 0} Q_i \cdot F_2 (1 - K_2 e^{-\theta \cdot \frac{q_j}{xh}})$$
(3.4)

Then, the total quality loss cost is:

$$C_2 = C_{21} + C_{22} = \sum_{i \in N, i \neq 0} F_2 \left(D_i (1 - K_1 e^{-\theta \cdot a_i}) + Q_i \left(1 - K_2 e^{-\theta \cdot q_j / xh} \right) \right)$$
(3.5)

3.4.1.3 Product Freshness Cost

Maintaining the freshness of the products is essential during transportation. This cost comprises two parts:

 The cost of maintaining the temperature inside the trucks during transit to ensure the products remain fresh:

$$C_{31} = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} x_{ij} \cdot t_{ij} \cdot F_3$$
(3.6)

2) The cost incurred during the unloading process to maintain the required temperature levels:

$$C_{32} = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}, j \neq 0} x_{ij} \cdot \frac{q_j}{xh} \cdot F_4$$
(3.7)

Then, the total product freshness cost is:

$$C_{3} = C_{31} + C_{32} = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} x_{ij} \cdot t_{ij} \cdot F_{3} + \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}, j \neq 0} x_{ij} \cdot \frac{q_{j}}{xh} \cdot F_{4}$$
(3.8)

3.4.1.4 Energy Cost

Energy cost covers the fuel consumption during transportation and the energy required by the refrigeration equipment. It consists of:

1) The cost of fuel consumed by the truck during transit:

$$U(Q) = U_0 + \frac{(U_1 - U_0)}{Q} \cdot Q_i$$
(3.9)

$$C_{41} = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} x_{ij} \cdot F_5[y_{ij} \times U(Q)]$$
(3.10)

2) The cost of the fuel used by the refrigeration equipment during transportation:

$$C_{42} = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} x_{ij} \cdot F_5[\alpha_1 \cdot t_{ij} + \alpha_2 \cdot D_i]$$
(3.11)

Then, the total energy cost is:

$$C_4 = C_{41} + C_{42} = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} x_{ij} \cdot F_5([y_{ij} \times U(Q)] + [\alpha_1 \cdot t_{ij} + \alpha_2 \cdot D_i])$$
(3.12)

3.4.2 Constraints

Each customer must be visited at most once by truck:

$$\sum_{j \in N, j \neq i} x_{ij} = 1; \ \forall i \in C \tag{3.13}$$

If a vehicle truck arrives, it must leave:

$$\sum_{j \in N, j \neq i} x_{ij} - \sum_{j \in N, j \neq i} x_{ji} = 0; \ \forall i \in N$$

$$(3.14)$$

Demand elimination constraint:

$$\sum_{j \in N, j \neq i} y_{ij} - \sum_{j \in N, j \neq i} y_{ji} = D_i; \ \forall i \in C$$

$$(3.15)$$

Vehicle capacity constraint:

$$y_{ij} \le Q \times x_{ij}; \ \forall i \in N, \forall j \in N \tag{3.16}$$

Only available trucks can be dispatched from the depot.

$$\sum_{j \in \mathcal{C}} x_{0j} \le m \tag{3.17}$$

Arrival time at each customer must be greater than or equal and less than or equal to the departure time plus travel time:

$$a_j \ge (p_i + t_{ij}) - (1 - x_{ij}) \times M; \forall i \in N, \forall j \in C$$

$$(3.18)$$

$$a_j \le (p_i + t_{ij}) + (1 - x_{ij}) \times M; \forall i \in N, \forall j \in C$$

$$(3.19)$$

Arrival time, departure time, and service time are compatible with the time window constraint:

$$a_i = p_i - s_i; \ \forall i \in \mathcal{C} \tag{3.20}$$

$$e_i \le p_i \le l_i; \,\forall i \in \mathcal{C} \tag{3.21}$$

Departure time from the depot is 0:

$$p_0 = 0 \tag{3.22}$$

Binary and non-negativity conditions:

 $x_{ij} \in 0, 1; \forall i \in N, \forall j \in N$ (3.23)

3.5 Tools

The optimization process in this study leverages OpenSolver, an advanced Excel add-in designed to handle large-scale linear and integer programming problems efficiently. OpenSolver extends Excel's built-in Solver capabilities, offering a robust and accessible platform for solving the CVRPTW model.

OpenSolver is particularly suited for this research due to its ability to handle complex constraints and large datasets, which are common in cold chain logistics. It utilizes sophisticated algorithms, including branch-and-bound and cutting planes, to explore the solution space and identify optimal or near-optimal solutions for the CVRPTW model.

The integration of OpenSolver with Excel provides a user-friendly interface for defining decision variables, constraints, and objective functions. This makes the tool highly practical for real-world applications, enabling logistics managers to easily input data, run optimization models, and interpret results without requiring extensive programming knowledge.

Additionally, the study utilizes Project OSRM (Open-Source Routing Machine) to calculate accurate travel times and distances between locations. This tool plays a crucial role in route optimization by providing essential data for efficient distribution planning to study area.

(3.24)

CHAPTER 4 RESULT

The Results section presents the outcomes of the optimization process for cold chain logistics in Thailand, specifically focusing on the delivery of aquatic goods. The findings include a comparison between minimizing total cost and minimizing total distance over six days (Monday to Saturday). Additionally, detailed examples of optimized routes, cost analysis, and the impact of varying demand are provided. This analysis aims to demonstrate the effectiveness of the optimization model and its impact on logistics efficiency and cost reduction.

4.1 Comparison Minimize Cost and Minimize Distance

The optimization process was conducted with two primary objectives: minimizing total cost and minimizing total distance. The goal is to demonstrate that minimizing cost is more optimal compared to minimizing distance. **Table 4.1** provides a comparison of the total cost and total distance achieved under each optimization criterion across six days (Monday to Saturday). This comparison highlights the differences in performance metrics between the two optimization objectives and underscores the superior outcomes achieved by focusing on cost minimization.

Day	Minimi (Main O	ze Cost bjective)	Minimize	Distance
	Total Cost	Total Distance	Total Cost	Total Distance
Monday	11003.500	547.006	11145.53	534.313
Tuesday	11284.108	567.510	11430.595	560.408
Wednesday	13184.650	663.518	13502.627	620.327
Thursday	9522.134	487.266	9726.117	486.756
Friday	12958.283	653.083	13266.314	646.959
Saturday	11561.400	602.971	11869.807	566.450

 Table 4.1 Minimize Cost vs Minimize Distance

This table clearly illustrates that while both strategies aim to optimize logistics, the cost minimization strategy consistently results in lower overall costs compared to the distance minimization strategy. The trade-offs between cost and distance are evident, highlighting the importance of selecting the appropriate optimization objective based on operational priorities.

4.2 Optimized Routes

To provide a detailed understanding of the optimization results, we present the optimized routes and cost analysis for Monday. This includes a breakdown of the routes for minimizing cost and distance.

Figure 4.1 The route of the minimize cost on Monday

Figure 4.2 The route of the minimize distance on Monday

Figure 4.1 shows the specific routes taken by vehicles when the objective is to minimize costs, planning the routes to optimize overall transportation expenses considering factors such as vehicle operating costs, quality loss cost, product freshness cost, and energy cost. In contrast, **Figure 4.2** highlights the routes when the objective is to minimize the total distance traveled. This approach focuses on covering the shortest possible distances, which may not always align with cost minimization but can provide insights into different operational efficiencies.

4.3 Cost Analysis

The cost analysis section highlights the savings achieved through the optimization process.

Figure 4.3 Comparison of costs between Min cost and Min Distance on Monday

Figure 4.3 shows a bar chart comparing different cost components for Monday under both optimization strategies. The vehicle operating cost remains constant in both strategies since the same number of vehicles are used. However, the quality loss cost is lower when minimizing cost due to better route planning that ensures quicker deliveries and reduces spoilage. The product freshness cost is slightly lower when minimizing cost, indicating that the optimized routes better preserve the freshness of the aquatic goods. Additionally, the energy cost is lower when minimizing cost, reflecting more efficient fuel usage and refrigeration. This comparison highlights that while the vehicle operating cost remains the same, other cost components significantly benefit from a cost minimization strategy. This demonstrates that minimizing total cost not only reduces expenses directly related to logistics but also indirectly improves product quality and reduces energy consumption.

4.4 Impact of Demand Variability

The optimization based on minimize cost, process was evaluated under varying demand conditions each day to assess its adaptability and efficiency in real-world scenarios. **Table 4.2** presents the results for the cost minimization strategy, detailing the cost components and total distance for each day.

Day	Trucks	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	Total Cost	Total Distance
Monday	5	5000	1532.71	720.16	3750.63	11003.50	547.00
Tuesday	5	5000	1427.30	872.45	3984.36	11284.11	567.51
Wednesday	6	6000	1366.75	1034.15	4783.75	13184.65	663.52
Thursday	4	4000	1336.55	828.59	3357.00	9522.13	487.27
Friday	6	6000	1532.55	857.21	4568.52	12958.28	653.08
Saturday	5	5000	1566.40	792.03	4202.97	11561.40	602.97

 Table 4.2 Result under different demand each day

In analyzing the results, it's evident that the number of trucks deployed each day directly influences vehicle operating costs. Quality loss costs, representing the deterioration of aquatic goods during transit, fluctuated across days. The lowest quality loss cost of 1336.55 baht was observed on Thursday, indicating efficient route planning with fewer trucks. In contrast, the highest quality loss cost of 1566.40 baht occurred on Saturday, suggesting a greater risk of spoilage, possibly due to longer or less efficient routes. Product freshness costs, reflecting expenses to maintain the freshness of aquatic goods, also varied. Wednesday saw the highest freshness cost at 1034.15 baht, potentially due to longer delivery routes or higher ambient temperatures affecting preservation efforts. In contrast, Monday recorded the lowest freshness cost of 720.16 baht, indicating more efficient routing and faster deliveries. Energy costs, including refrigeration and fuel expenses, were influenced by route efficiency and distance traveled. The highest energy cost of 4783.75 baht was observed on Wednesday, corresponding with the highest total distance of 663.52 km, indicating increased energy consumption for refrigeration and fuel. Conversely, Thursday recorded the lowest energy cost of 3357.00 baht, aligning with the lowest total distance of 487.27 km.

In summary, the cost minimization strategy effectively adapted to varying demand conditions, maintaining cost-efficiency across different days. Total costs ranged from 9522.13 baht on Thursday to 13184.65 baht on Wednesday, showcasing flexibility in handling different demand levels. Similarly, total distance traveled ranged from 487.27 km on Thursday to 663.52 km on Wednesday, highlighting the optimization model's adaptability in route planning. This adaptability to demand variability is crucial for the dynamic nature of cold chain logistics, where daily demand fluctuations can significantly impact operational efficiency.

4.5 Details of Optimization Execution

The optimization model was executed using OpenSolver version 2.9.3 on a computer equipped with Processor: AMD Ryzen 7 3750H with Radeon Vega Mobile Gfx 2.30 GHz. The model execution time averaged around 5 minutes per run.

CHAPTER 5 CONCLUSION

One of the critical findings of this study is the superiority of minimizing overall costs over merely minimizing travel distances in cold chain logistics. While traditional logistics optimization often focuses on minimizing the total distance traveled, this study has shown that such an approach may not be optimal for cold chain operations. By shifting the objective from minimizing distance to minimizing a comprehensive cost function, the study encapsulated various cost components, including vehicle operating costs, quality loss costs, product freshness costs, and energy costs. This costminimization approach resulted in substantial savings across these components. Specifically, the optimization model reduced fuel consumption and maintenance costs by selecting routes that balance distance with fewer stops and smoother traffic conditions. Additionally, by optimizing delivery routes to ensure timely deliveries within the specified time windows, the model minimized the degradation of aquatic goods, reducing costs associated with spoiled products and ensuring that products remained fresh upon delivery. This not only improved customer satisfaction by reducing the likelihood of returns but also lowered energy consumption and costs related to maintaining the required cold temperatures within the refrigerated vehicles.

CHAPTER 6 DISCUSSION

The findings of this study underscore the effectiveness of a customized CVRPTW model in optimizing cold chain logistics by minimizing total transportation costs. This approach significantly enhances the efficiency of the distribution network by considering a comprehensive set of factors, such as fuel consumption, vehicle maintenance, and energy costs, rather than merely focusing on minimizing travel distances. By prioritizing cost reduction across the transportation process, the model ensures a more economically sustainable approach to delivering aquatic goods across Thailand's provinces.

In real-world scenarios, drivers may need to adapt to changing circumstances, such as customer urgency or traffic disruptions, which may require deviations from the optimized routes provided by the model. Despite this flexibility, the model serves as a valuable tool for guiding decision-making and providing insights into the most cost-effective routing options. However, it's essential to acknowledge that the time required to run the model may sometimes pose challenges in dynamic situations where immediate action is necessary. In such cases, drivers may rely on their experience and judgment to make timely adjustments to the routing sequence, prioritizing customer satisfaction and operational efficiency.

Moving forward, future research could enhance the mathematical model by incorporating additional factors such as greenhouse gas emissions and penalty costs for deviations from optimal routes. Furthermore, exploring the integration of advanced tools and technologies could further improve the model's accuracy and applicability in dynamic logistics environments. By continually refining and expanding upon these models, the cold chain logistics industry can continue to evolve towards more sustainable, efficient, and customer-centric practices.

REFERENCES

- Awad, M., Ndiaye, M., & Osman, A. (2021). Vehicle routing in cold food supply chain logistics: a literature review. *The International Journal of Logistics Management*, 32(2), 592-617.
- Bandoophanit, T., Sangpukdee, W., Kaengaew, W., & Chotkawee, S. (2023). The future of Thailand's international logistics: A literature review. Kasetsart Journal of Social Sciences, 44(2), 355-364.
- Bio, A. (2023). Retrieved from https://www.upperinc.com/guides/cold-chain-logistics/
- Boonlua, S. (2019). Learning and growth for sustainable development of logistics companies in Thailand. *Polish Journal of Management Studies*, 20(1), 92-102.
- Chen, L., Liu, Y., & Langevin, A. (2019). A multi-compartment vehicle routing problem in cold-chain distribution. *Computers & Operations Research*, 111, 58-66.
- Feng, T., Ji, J., & Zhang, X. (2023). Research progress of phase change cold energy storage materials used in cold chain logistics of aquatic products. *Journal of Energy Storage*, 60, 106568.
- Fernando, J. (n.d.). Supply Chain Management (SCM): How it works & why it's important. Retrieved from https://www.investopedia.com/terms/s/scm.asp
- Guo, F., Huang, Z., & Huang, W. (2021). Heuristic approaches for a vehicle routing problem with an incompatible loading constraint and splitting deliveries by order. *Computers & Operations Research*, 134, 105379.
- Leelertkij, T., Parthanadee, P., & Buddhakulsomsiri, J. (2021). Vehicle routing problem with transshipment: mathematical model and algorithm. *Journal of Advanced Transportation*, 2021, 1-15.
- Li, D., Cao, Q., Zuo, M., & Xu, F. (2020). Optimization of green fresh food logistics with heterogeneous fleet vehicle route problem by improved genetic algorithm. *Sustainability*, 12(5), 1946.
- Li, Y., Lim, M. K., & Tseng, M. L. (2019). A green vehicle routing model based on modified particle swarm optimization for cold chain logistics. *Industrial Management & Data Systems*, 119(3), 473-494.

- Mordor Intelligence. (n.d.). Thailand freight and logistics market size & share analysis - industry research report - growth trends. Retrieved from
 - https://www.mordorintelligence.com/industry-reports/thailand-freight-and-logistics-market
- Mostafa, N., & Eltawil, A. (2017, April). Solving the heterogeneous capacitated vehicle routing problem using K-means clustering and valid inequalities. *In Proceedings of the international conference on industrial engineering and operations management* (pp. 2239-2249).
- Pamuar, D., Petrovi, I., & irovi, G. (2018). Modification of the Best-Worst and MABAC methods. *Expert Systems with Applications*, 91, 89–106. https://doi.org/10.1016/j.eswa.2017.08.042
- Prapinit, P., Sabar, R., & Melan, M. (2019). Demand for logistics management studies in North Eastern Thailand. *International Journal of Supply Chain Management*, 8(5), 481.
- Pureza, V., Morabito, R., & Reimann, M. (2012). Vehicle routing with multiple deliverymen: Modeling and heuristic approaches for the VRPTW. *European Journal of Operational Research*, 218(3), 636-647.
- Qin, G., Tao, F., & Li, L. (2019). A vehicle routing optimization problem for cold chain logistics considering customer satisfaction and carbon emissions. *International Journal of Environmental Research and Public Health*, 16(4), 576.
- Singhtaun, C., & Piyapornthana, H. (2022). A mathematical model and solution approach for a heterogeneous fleet open vehicle routing problem. *GEOMATE Journal*, 22(90), 17-23.
- Syahputra, R. H., Komarudin, K., & Destyanto, A. R. (2018, July). Optimization of distribution route with vehicle routing problem with transshipment facilities (VRPTF). In 2018 3rd International Conference on Computational Intelligence and Applications (ICCIA) (pp. 11-15). IEEE.
- Yildirim, U., & Kuvvetli, Y. (2021). Solution of capacitated vehicle routing problem with invasive weed and hybrid algorithms. *International Journal of Industrial Engineering Computations*, 12(4).

APPENDIX

APPENDIX A MANUAL

Step 1: Input Latitude and Longitude

Begin by plugging in the latitude and longitude of the Distribution Center (DC) and all customer locations. This data is essential for generating the distance and time matrices required for the optimization process.

Step 2: Generate Distance and Time Matrices

Next, input the location data into the OSRM_dist_mat_and_time colab. This script will generate the distance matrix and time matrix needed for further calculations. (Insert picture of the code, distance matrix, and time matrix here)

Figure A.1 OSRM_dist_mat_and_time colab code in first part

Figure A.2 OSRM_dist_mat_and_time colab code in second part

Step 3: Insert Matrices into Excel

Once you have the distance and time matrices, place them into the corresponding sheets labeled "Distance" and "Time" within your Excel workbook.

C Samut Sakhon	Central Bangna	Central World	Chaengwattana	Chidlom	EastVille	Embassy	Future Park	Ladprao	Pinklao	Rama 2	Rama 3	Ramindra	Salaya	Silom Complex	WestGate
0	45.7741	39.5438	56.2091	38.9535	48.5054	37.8606	68.136	46.1385	35.8985	18.3354	31.178	54.39	46.6938	37.0643	41.5367
46.1318	0	19.3968	40.1895	18.8065	20.1643	15.4531	47.989	26.3084	26.91	31.1994	17.9461	31.301	50.7277	16.9439	47.6017
38.5984	17.3693	0	22.1363	2.0385	13.969	1.1517	31.434	9.8137	8.9068	21.7619	10.0656	18.0652	32.7245	2.544	30.4434
59.3456	39.3627	24.7715	0	24.9656	22.9826	25.2304	22.9211	20.3095	22.9036	42.5091	30.6734	11.6674	41.2699	26.4858	19.2146
39.5417	16.7557	1.3474	21.5957	0	13.0889	0.4538	31.8711	9.9271	9.5445	22.7052	9.4519	18.1786	33.3622	2.6172	29.9028
52.8278	22.611	16.3773	20.2125	15.7871	0	15.7438	30.1722	11.5186	23.8906	35.9913	22.7379	12.5224	46.3595	18.2785	29.7306
39.0878	16.3018	1.4838	23.6178	1.1747	12.6351	0	31.4173	9.7367	9.681	22.2514	8.998	17.9882	33.4987	2.7537	31.03
67.097	44.311	29.9143	21.9346	30.9241	25.676	30.1786	0	21.08	33.391	50.2605	37.0072	14.3608	56.1524	34.1788	31.3664
46.7682	23.9822	9.5855	15.8458	10.6806	9.1291	9.8498	24.2804	0	15.1108	29.9317	16.6784	8.8133	37.9668	13.85	23.1723
39.2668	27.636	12.5078	22.7191	13.2119	24.9119	12.9846	35.5016	16.2518	0	22.0229	18.2893	23.4966	24.4277	13.7482	20.5342
23.5107	27.654	21.4237	38.089	20.8335	30.3853	19.7405	50.0159	28.0184	17.7784	0	13.0579	36.2699	33.3419	18.9443	29.0116
32.5489	14.9136	8.6833	29.476	8.0931	17.6449	7.3782	37.2755	15.5949	16.1965	15.7124	0	23.8464	38.4957	4.8542	36.8882
56.9603	30.8266	20.8243	11.4723	20.5335	11.5593	20.042	21.432	12.4379	23.0003	40.1238	26.8705	0	45.7617	22.0547	30.3884
46.1205	46.3238	31.1956	42.2867	31.8997	43.6177	31.6724	54.2074	34.9576	23.853	34.6616	36.9771	42.2024	0	32.436	25.6657
35.6371	15.0039	4.135	24.9605	4.9394	16.1151	3.701	35.7978	12.4235	11.4145	18.8006	5.9078	20.675	35.2322	0	33.2676
42.0746	44.0539	29.4628	20.1104	29.6569	28.2113	29.9216	35.5744	21.1157	20.2408	30.6157	35.3646	24.3634	27.363	31.177	(

Figure A.3 Distance Matrices

Central World	Chaengwattana	Chidlom	EastVille	Embassy	Future Park	Ladprao	Pinklao	Rama 2	Rama 3	Ramindra	Salaya	Silom Complex	WestGate
0.661	0.834	0.630	0.788	0.628	0.970	0.731	0.628	0.385	0.542	0.823	0.833	0.615	0.784
0.341	0.544	0.311	0.356	0.299	0.650	0.412	0.436	0.498	0.300	0.493	0.828	0.291	0.750
0.000	0.305	0.058	0.245	0.031	0.426	0.167	0.161	0.364	0.167	0.259	0.553	0.068	0.510
0.388	0.000	0.369	0.341	0.354	0.339	0.282	0.364	0.601	0.414	0.170	0.716	0.371	0.305
0.056	0.304	0.000	0.235	0.014	0.411	0.164	0.166	0.355	0.156	0.256	0.558	0.064	0.509
0.332	0.352	0.302	0.000	0.300	0.505	0.253	0.427	0.592	0.393	0.260	0.797	0.349	0.568
0.052	0.290	0.045	0.221	0.000	0.397	0.158	0.162	0.340	0.142	0.250	0.554	0.060	0.496
0.444	0.305	0.437	0.384	0.395	0.000	0.309	0.488	0.682	0.484	0.213	0.863	0.452	0.553
0.195	0.214	0.180	0.169	0.146	0.343	0.000	0.254	0.434	0.235	0.128	0.617	0.203	0.423
0.285	0.401	0.285	0.446	0.264	0.568	0.333	0.000	0.445	0.355	0.398	0.443	0.291	0.422
0.316	0.489	0.286	0.443	0.283	0.625	0.386	0.283	0.000	0.197	0.478	0.652	0.270	0.572
0.183	0.386	0.152	0.309	0.147	0.492	0.254	0.277	0.291	0.000	0.346	0.666	0.124	0.591
0.309	0.158	0.291	0.192	0.275	0.311	0.177	0.342	0.562	0.363	0.000	0.717	0.318	0.429
0.477	0.590	0.477	0.637	0.456	0.760	0.524	0.326	0.488	0.548	0.590	0.000	0.483	0.414
0.131	0.340	0.127	0.300	0.086	0.474	0.228	0.218	0.336	0.133	0.321	0.610	0.000	0.545
0.490	0.331	0.472	0.477	0.456	0.540	0.385	0.362	0.468	0.516	0.389	0.503	0.473	0.000

Figure A.4 Time Matrices

Step 4: Input Interval Time and Demand Data

Now, input the interval time for each customer in hours and their respective demands for each day from Monday to Saturday. This data should be entered into the designated section of the Excel sheet.

								T	ime win	dow							LTL De	emand (Rer	naining Pa	allets)	
	blodo			Mon	day	Tues	day	Wednes	day	Thurs	əday	Fride	зy	Saturo	day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	Noue	Latitude	Longitude	Earliest	Latest	Earliest	Latest	Earliest	Latest	Earliest	Latest	Earliest	Latest	Earliest	Latest						
				time	time	time	time	time	time	time	time	time	time	time	time						
1	Central Bangna	13.669778	100.634714	3.25	5.38	0.92	3.22	6.07	8.03	1.98	4.11	1.79	3.84	2.30	4.60	1	2	1	1	1	6
2	Central World	13.746686	100.539354	0.67	2.60	0.57	2.50	0.37	2.14	3.38	4.98	1.98	3.50	1.98	4.00	3	5	4	1	5	5 5
3	Chaengwattana	13.903515	100.528268	1.98	4.35	1.53	3.98	1.98	4.18	2.82	5.02	3.18	5.21	3.97	6.42	2	3	7	3	5	5 1
4	Chidlom	13.744542	100.544490	0.11	2.26	0.54	2.37	4.99	7.06	3.35	4.76	5.32	6.89	0.75	2.82	3	1	5	4	4	
- 5	EastVille	13.802698	100.614656	0.45	2.40	3.01	5.04	6.57	8.68	1.15	2.93	2.29	4.15	3.18	5.12	2	1	5	1	3	3 4
б	Embassy	13.743757	100.546602	0.16	1.49	1.08	2.91	0.34	2.08	6.21	7.95	3.69	5.43	3.52	5.59	3	1	2	5	2	2 5
7	Future Park	13.987869	100.618455	4.26	7.19	0.48	3.15	1.39	3.73	5.58	8.00	1.66	4.34	1.38	4.14	1	5	5	3	4	1 5
8	Ladprao	13.816315	100.561016	4.71	6.55	4.37	5.79	1.84	4.02	0.20	2.12	0.28	2.29	0.58	2.42	3	6	5	4	4	1 2
9	Pinklao	13.777992	100.476543	0.86	3.29	4.66	6.93	0.69	2.70	0.49	2.51	0.96	3.48	0.48	3.00	1	2	3	1	5	5 5
10	Rama 2	13.663791	100.439211	1.42	3.53	0.68	3.30	2.91	4.70	1.91	4.03	2.42	4.21	0.85	3.47	3	5	1	3	5	5 2
	Rama 3	13.697539	100.537054	1.68	3.31	0.94	2.65	2.60	3.98	2.17	3.97	0.17	2.39	2.33	3.88	3	4	7	3	1	1
	Ramindra	13.872171	100.601954	0.19	2.36	4.10	6.44	5.45	7.29	2.75	4.84	0.47	2.56	1.69	3.69	5	2	5	4	5	5 1
	Salaya	13.786709	100.276096	2.56	4.87	1.98	5.20	3.84	6.23	4.15	6.79	4.68	7.73	3.22	5.60	2	3	5	1	2	2
14	Silom Complex	13.727879	100.535081	3.27	4.87	0.44	2.62	0.44	2.28	4.86	6.37	2.71	4.64	2.22	4.48	4	5	1	2	4	1 1
	WestGate	13.876693	100.412101	2.36	4.52	3.58	5.74	4.36	6.59	3.30	5.37	0.91	3.56	2.61	4.85	5	2	4	1	4	1 1
	DC Samut Sakhon	13.566830	100.339418																		

Figure A.5 Time window and demand (pallets)

Step 5: Select the Day for Calculation

In the calculation section, choose the day you wish to solve for. This selection will set up the specific parameters and data for that day's optimization.

Step 6: Set Parameters According to the Mathematical Model

Enter the necessary parameters based on the mathematical equations of this independent study. These parameters will guide the OpenSolver in finding the optimal solution.

Figure A.6 Excel calculation section 1

	ahoma		∧ ∧ =	= = »	- 2¢	Wrap Te	set	Gene	ral			tional Ec	urmat as		incart Dalata	Eormat	∑ Auto:	Sum č ŽV	O Find &	Addring	Analyze		
× 3	R I D ~	H ~ <mark>~</mark> ~	<u>A</u> ~ =		** 🖽	Merge 8	k Center	~ \$ ·	· % ?	100 -20	Form	atting ~ T	able ~ Styl	les ~	· ·	*	🖉 Clear	✓ Filter ¥	Select ~		Data		
Clipboard Fy	Fo	ant	G,		Alignment			F3	Number		5	Sty	les		Cells		•	Editing		Add-ins			~
W28 🗸 I	$\times \checkmark f_x$																						~
A	В	С	D	E	F	G	н	1	1	К	L	м	N	0	P	Q	R	s	т		U	v	14
53 54 0*xii																							
		Central Bangna	Central Work	Chaengwattana	Chidlom	EastVille	Embassy	Future Park	Ladorao	Pinklao	Rama 2	Rama 3	Ramindra	Salava	Silom Complex	WestGate	1						
55 Location	DC Samut Sakhon			10	10			0		10	10				0 0								
50 DC Samut Sathon	10			0 10	10	0	0	0	0	10	10			1	0 0								
58 Central World	10			0 0	0	0	10	0	0		0				0 0								
59 Chaengwattana	0		n i	n 0	ő	0	0	10	0		0	0	0		0 0								
60 Chidlom	0		1	0 0	0	0	0	0	0	0	0	0	0		0 0								
61 East//ile	10	0	0 1	0 0	0	0	0	0	0	0	D	0	0		0 0		5						
62 Embassy	0	10	DI	0 0	0	0	0	0	0	0	0	0	0		0 0	(0						
63 Future Park	0	0	0 0	0 0	0	0	0	0	0	0	D	0	10		0 0	0							
64 Ladprao	10	0	0 1	0 0	0	0	0	0	0	0	D	0	0		0 0		1						
65 Pinklao	0		0 1	0 0	0	0	0	0	10	6	0	C	0		0 0								-11
66 Rama 2	0		0 1	0 0	0	0	0	0	0	0	0	10	0		0 0		2						61
67 Rama 3				0	0	10	0	0	0		0		0		0 10	-							61
60 Calava	0			0 0	0	10	0	0	0		0		0		0 0		-						H.
70 Silom Complex	10			0 0	0	0	0	0	0		0	0	0		0 0								11
71 WestGate	10			n n	0	0	0	0	0		0				0 0								
72																							CH.
73																							
74 Distance Matrix																							
75 Location	DC Samut Sakhon	Central Bangna	Central World	i Chaengwattana	Chidlom	EastVille	Embassy	Future Park	Ladprao	Pinklao	Rama 2	Rama 3	Ramindra	Salaya	Silom Complex	WestGate							
76 DC Samut Sakhon	0.0	45.8	B 39.5	5 56.2	39.0	48.5	37.9	68.1	46.1	35.9	19.3	31.2	54.4	46.	7 37.1	41.5	5						
77 Central Bangna	46.1	0.0	0 19.4	4 40.2	18.8	20.2	15.5	48.0	26.3	26.9	31.2	17.9	31.3	50.	7 16.9	47.6	6						
78 Central World	38.6	17.4	4 0.1	22.1	2.0	14.0	1.2	31.4	9.8	8.9	21.8	10.1	18.1	32.	7 2.5	30.4							
79 Chaengwattana 80 Chidines	59.3	39.4	4 <u>29</u> .1	0.0	25.0	23.0	25.2	22.9	20.3	22.9	42.5	30.7	11.7	41.	3 20.5	19.2							
01 Earth/ile	52.0	22.6	5 16	4 20.2	15.0	10.1	15.7	20.2	11.5	22.0	26.0	22.1	12.5	46.0	4 10.2	29.1							
82 Embassy	39.1	16.3	3 1.	5 23.6	1.2	12.6	0.0	31.4	9.7	9.7	22.3	9.0	18.0	33.5	5 2.8	31.0							
83 Future Park	67.1	44.3	3 29.1	21.9	30.9	25.7	30.2	0.0	21.1	33.4	50.3	37.0	14.4	56.3	2 34.2	31.4							
84 Ladorag	46.8	24.0	9.0	5 15.8	10.7	9.1	9.8	24.3	0.0	15.1	29.9	16.7	8.8	38.	0 13.9	23.2							
85 Pinklao	39.3	27.6	5 12.5	5 22.7	13.2	24.9	13.0	35.5	16.3	0.0	22.0	18.3	23.5	24./	4 13.7	20.5	5						
86 Rama 2	23.5	27.7	7 21.	4 38.1	20.8	30.4	19.7	50.0	28.0	17.8	0.0	13.1	36.3	33.	3 18.9	29.0	D						
87 Rama 3	32.5	14.9	9 8.1	7 29.5	8.1	17.6	7.4	37.3	15.6	16.2	15.7	0.0	23.8	38.5	5 4.9	36.9	9						
88 Ramindra	57.0	30.8	8 20.1	8 11.5	20.5	11.6	20.0	21.4	12.4	23.0	40.1	26.9	0.0	45.1	8 22.1	30.4							
89 Salaya	46.1	46.3	3 31.3	2 42.3	31.9	43.6	31.7	54.2	35.0	23.9	34.7	37.0	42.2	DJ	0 32.4	25.7							
AD Priow Complex	35.6	15.0	4.	1 25.0	4.9	16.1	3.7	35.8	12.4	11.4	18.8	5.9	20.7	35.	2 0.0	33.3	1						
02 Websale	42.1	44.1	1 29.	20.1	29.7	28.2	29.9	35.6	21.1	20.2	30.6	35.4	24.4	21.5	4 31.2	0.0	4						
02																							1
$\langle \rangle$ (Distance Matrix	Travel tin	me Matrix	Data Ca	culation	Solu	ution_Infe	erence	Picture	-	-						:	-	_				Þ
Ready 🐼 🛣 Acc	assibility: Investiga	te																Ħ		g		-+ 7	70%

Figure A.7 Excel calculation section 2

	Tahoma	~11 ~ A	~ A* =	≡ ≡ *	~ 2þ	Wrap Tex	t	Gene	ral	~					**	Ē	∑ Aut	™ Ž7	Q		
Paste 🗳	B <i>I</i> <u>∪</u> ∽	⊞ • _ •	<u>A</u> - ≡	= = =	•	Merge &	Center	~ \$ ·	~ % ?	±00 -00	Form	ditional For atting * Ta	rmatas Ci able≚ Styl	ell In es ~	sert Delete	Format	Cle	ar * Filter *	Find & Select ~	Add-ins Anal Da	yze ta
Clipboard Fy		Font	F5		Alignment			F5	Number		ъ	Styl	es		Cells			Editing		Add-ins	
28 🗸 :	$\times \checkmark f_x$																				
A	В	с	D	E	F	G	н	1	J	К	L	м	N	0	р	Q	R	S	т	U	V
																		Service time (si)		earliest time	latest time
Location	DC Samut Sakho	n Central Bangna	Central World	Chaengwattana	Chidlom	East∀ille	Embassy	Future Park	Ladprao	Pinklao	Rama 2	Rama 3	Ramindra	Salaya	Silom Complex	WestGate	-	()		(ei)	(0)
OC Samut Sakhon	0.00	0 0.71	L 0.661	0.834	0.630	0.788	0.628	0.970	0.731	0.628	0.385	0.542	0.823	0.833	0.615	0.78	4				
Central Bangna	0.70	0.000	0.341	0.544	0.311	0.356	0.299	0.650	0.412	0.436	0.498	0.300	0.493	0.828	0.291	0.75	0	0.166666667		0.92	2 3.22
Central World	0.57	8 0.25	0.000	0.305	0.058	0.245	0.031	0.425	0.167	0.161	0.364	0.167	0.259	0.553	0.068	0.51	0	0.5		0.57	7 2.50
Chaengwattana	0.81	.5 0.530	0.388	0.000	0.369	0.341	0.354	0.339	0.282	0.364	0.601	0.414	0.170	0.716	0.371	0.30	5	0.333333333		1.53	3.98
Chidlom	0.56	9 0.243	0.056	0.304	0.000	0.235	0.014	0.411	0.164	0.166	0.355	0.156	0.256	0.558	0.064	0.50	9	0.5		0.54	1 2.37
SastVille	0.80	6 0.393	0.332	0.352	0.302	0.000	0.300	0.505	0.253	0.427	0.592	0.393	0.260	0.797	0.349	0.56	8	0.333333333		3.01	L 5.04
Embassy	0.55	5 0.225	0.052	0.290	0.045	0.221	0.000	0.397	0.158	0.162	0.340	0.142	0.250	0.554	0.060	0.49	6	0.5		1.08	3 2.91
Future Park	0.89	0.57	L 0.444	0.305	0.437	0.394	0.395	0.000	0.309	0.488	0.682	0.484	0.213	0,863	0.452	0.55	3	0.166666667		0.46	3.15
adprao	0.04	8 0.32	0.195	0.214	0.180	0.169	0.146	0.343	0.000	0.254	0.434	0.235	0.128	0.617	0.203	0.42	3	0.5		4.37	5.79
nklao	0.04	0.475	0.295	0.401	0.285	0.445	0.254	0.568	0.333	0.000	0.445	0.355	0.398	0.443	0.291	0.42	2	0.155005557		4.00	0.93
cama 2	0.39	9 0.356	0.316	0.489	0.286	0.443	0.283	0.625	0.395	0.283	0.000	0.197	0.4/8	0.652	0.2/0	0.57	2	0.5		0.66	3.30
cama a	0.50	0.23	0.183	0.305	0.152	0.309	0.147	0.49/2	0.254	0.2/7	0.291	0.000	0.946	0.000	0.124	0.59	-	0.000000000		0.94	2.00
caminura Talaura	0.77	0.400	0.309	0.158	0.291	0.192	0.2/5	0.311	0.177	0.342	0.302	0.303	0.000	0.717	0.318	0.42	9	0.8333333333		4.10	0.44
Salaya Silom Comolex	0.67	3 0.000	0.477	0.340	0.477	0.037	0.006	0.700	0.324	0.320	0.900	0.340	0.390	0.610	0.463	0.41	-	0.555555555		0.44	3.20
Nort Company	0.00	2 0.62	0.400	0.221	0.477	0.300	0.456	0.4/4	0.205	0.262	0.330	0.516	0.200	0.502	0.473	0.00		0.0222222222		2.50	E 74
1000000	0.00	0/00	. 0/120	0.001	0.172	00177	0.100	01010	0.000	0.002		0.010	0.007	01000	01110	0.00	~	0.000000000			3.51
Location	ai	pi	1	pi-si																	
C Samut Sakhon	0	0																			
Central Bangna	1.960	2.027		1.860																	
Central World	0.59988	1.09968		0.59988																	
Thaengwattana	2.214	2.548		2.214406667																	
Shidlom	0.044	0.544	-	0.04388																	
EastVille	4.292	4.626		4.292267767																	
mbassy	1.131	1.631	-	1.1310467																	
Future Park	2.887	3.053		2.880623333																	
adprao	4.993	5.493		4.9930678																	
nrkiao	4,494	4,661		4.493673333																	
kama 2	0.17832	0.67832	-	0.1/832																	
carna 3	0.8/518111	1.3/51811		0.8751811																	
tammura Talauta	3.266906/	4.10024		3.2009080607																	
sataya Ulom Comolov	1.4007644	2.335		2.001436667																	
nom complex	2,490/044	2.1004311		2.490/04433																	
The reader of the	2./10000/	3.302.02		a./4000000/																	
$\langle \rangle$	Distance Matri	x Travel tir	ne Matrix	Data Cal	culation	Solu	tion Infe	rence	Picture	+							:	4			
	Distance Matri	x Iravel tir	ne Matrix	Data	culation	Solu	tion_inte	rence	Picture	1							:	-	_	_	

Figure A.8 Excel calculation section 3

n 🖞 🗄	Tahoma	~11 ~ A	. A. J =	= = *	- ab	Wrap Te	xt	Gener	al	Ŷ					-	Ē.	∑ AutoS	um × 27	\mathcal{O}	88			
Paste 🗳	B <i>I</i> <u>∪</u> ~	⊞ • 💁 • .	<u>A</u> ~ =	≡≡	•=	Merge 8	Center	\$ -	% 9	18 - 3 8	Cont Form	ditional For atting ∽ Ta	matas C ible ∽ Styl	iell In Ies 🗸	sert Delete	Format	¥ Fill ≚ ♦ Clear	Sort & ∽ Filter ~	Find & Select ¥	Add-ins	Analyze Data		
Clipboard 15		Font	5		Alignment			rs.	Number		5	Style	e:5		Cells			Editing		Add-ins			\sim
W28	V . fr																						
· · · ·	JA																						
	в		U	c	F	0			,	P.	L	Pri	15	0	F	9	R	5			0	v	- '
35 (pi+tij) - (1-xij)*M																							
36 Location	DC Samut Sakh	on Central Bangna	Central World	Chaengwattana	Chidlom	EastVille	Embassy	Future Park	Ladprao	Pinklao	Rama 2	Rama 3	Ramindra	Salaya	Silom Complex	WestGate							
37 DC Samut Sakhon	_	-999.289	-999.339	0.834	0.630	-999.212	-999.372	-999.030	-999.269	0.629	0.385	-999.458	-999.177	0.833	-999.385	-999.216							
38 Central Bangna		-997.973	-997.632	-997.429	-997.663	-997.618	-997.675	-997.323	-997.561	-997.538	-997.475	-997.674	-997.480	-997.146	-997.682	-997.224							
39 Central World		-998.646	-998.900	-998.595	-998.942	-998.655	1.131	-998.474	-998.733	-998.739	-998.536	-998.733	-998.641	-998.347	-998.832	-998.390							
0 Chaengwattana		-996.923	-997.065	-997.452	-997.083	-997.112	-997.098	2.887	-997.170	-997.089	-996.852	-997.039	-997.282	-996.736	-997.082	-997.147							
1 Chidlom	-	-999.213	0.600	-999.152	-999.456	-999.221	-999.442	-999.045	-999.292	-999.290	-999.101	-999.300	-999.200	-998.898	-999.392	-998.947							
12 EastVille		-994.981	-995.042	-995.023	-995.073	-995.374	-995.074	-994.969	-995.121	-994.948	-994.783	-994.981	-995.114	-994.578	-995.025	-994.905							
13 Embassy		1.860	-998.317	-998.079	-998.324	-948.148	-998.369	-997.972	-998.211	-998.207	-998.029	-998.227	-998.119	-447.815	-998.309	-997.873							
ie Huture Park	-	-996.376	-996.503	-996.641	-990.510	-990.503	-990.001	-996.947	-990.037	-996.459	-990.204	-996.463	3.207	-996.084	-996.495	-996.393							
io Lauprau	-	-994.183	-994.312	-994.293	-994.527	-994.338	-994.300	-994, 104	-994.507	-994.203	-994.073	-994.272	-994.3/9	-993,890	-994.304	-994.084							
15 Pricao	-	-994.864	-995.055	-994.939	-995.005	-994.094	-1495.076	-994.771	4.993	-995.339	-994.895	-994.984	-994.941	-994.896	-995.049	-994.918							
17 Plama 2	-	-998.930	-999.003	-990.033	-999.030	-998.879	-999.038	-998.090	-998.935	-999.039	-999.322	0.873	-998.843	-998.070	-999.031	-990.749							
40 Rama 3 40 Ramindra	-	-990.392	-005.501	-990.239	-005.600	-996.315	-998.478	-998.133	-998.371	-998.347	-005.334	-998.823	-998.279	-997.958	-001 503	-998.033							
in Calma	-	-990.400	-993.391	-990.742	-993.009	-002.000	-995.625	-995.005	-990.725	-993.330	-990.330	-990.037	-995.900	-990.165	-990.002	0.740							
E1 Silom Complex	-	-007 500	-007 202	-007 405	-007 709	-007 524	-007 749	-007 260	-007 606	-007 616	-007 409	-007 702	-007 514	-007 225	-007 025	-007 200							
12 Mast ² ala	-	-005 706	-005.029	-006.007	-005.046	-005 041	-005.062	-005.070	-006.032	-006.056	-005.050	-005.003	-006 030	-005 015	-005.045	-006.410							
52		-990.700	-993.968	-990.007	-993.940	-990.941	-990.906	-993.078	-990.033	-990.030	-990.900	-993.902	-990.029	-990.910	-993.943	-990.410							
54																							
M*(iiv+tii) + (1-vii)*M																							
56 Location	DC Samut Sakh	n Central Banona	Central World	Chaengwaltana	Chidhm	EastVille.	Embassy	Future Park	Latinran	Pinklan	Rama 2	Rama 3	Ramindra	Salava	Silom Corrolex	WestGate							
57 DC Samut Sakhon	CC Condition County	1000,711	1000.661	0.834	0.630	1000.788	1000.628	1000.970	1000.731	0.628	0.385	1000.542	1000.823	0.833	1000.615	1000.784							
58 Central Banona	-	1002.027	1002.368	1002.571	1002.337	1002.382	1002.325	1002.677	1002.439	1002.462	1002.525	1002.326	1002.520	1002.854	1002.319	1002.776							
59 Central World		1001.354	1001.100	1001.405	1001.158	1001.345	1.131	1001.526	1001.267	1001.261	1001.464	1001.267	1001.359	1001.653	1001.168	1001.610							
0 Chaengwattana		1003.077	1002.935	1002.548	1002.917	1002.888	1002.902	2.887	1002.830	1002.911	1003.148	1002.961	1002.718	1003.264	1002.918	1002.853							
51 Chidlom	-	1000.787	0.600	1000.848	1000.544	1000.779	1000.558	1000.955	1000.708	1000.710	1000.899	1000.700	1000.900	1001.102	1000.608	1001.053							
2 EastVille		1005.019	1004.958	1004.977	1004.927	1004.626	1004.926	1005.131	1004.879	1005.052	1005-217	1005.019	1004.886	1005.422	1004.974	1005.194							
3 Embassy	1	1.960	1001.683	1001.921	1001.676	1001.852	1001.631	1002.028	1001.799	1001.793	1001.971	1001.773	1001.991	1002.185	1001.691	1002.127							
54 Future Park		1003.624	1003.497	1003.359	1003.490	1003.437	1003.449	1003.053	1003.363	1003.541	1003.736	1003.537	3.267	1003.916	1003.505	1003.607							
5 Ladprao		1005.815	1005.688	1005.707	1005.673	1005.662	1005.640	1005.835	1005.493	1005.747	1005.927	1005.728	1005.621	1006.110	1005.696	1005.916							
56 Pinklao	1	1005.136	1004.945	1005.061	1004.945	1005.105	1004.924	1005.229	4.993	1004.661	1005.105	1005.016	1005.059	1005.104	1004.951	1005.082							
57 Rama 2		1001.044	1000.995	1001.167	1000.964	1001.121	1000.962	1001.304	1001.065	1000.961	1000.678	0.875	1001.157	1001.330	1000.949	1001.251							
58 Rama 3		1001.608	1001.558	1001.761	1001.527	1001.685	1001.522	1001.867	1001.629	1001.653	1001.666	1001.375	1001.721	1002.042	1.499	1001.967							
69 Ramindra		1004.550	1004.409	1004.258	1004.391	4.292	1004.375	1004.412	1004.277	1004.442	1004.662	1004.463	1004.100	1004.817	1004.419	1004.529							
70 Salaya		1003.003	1002.812	1002.925	1002.812	1002.972	1002.791	1003.094	1002.859	1002.661	1002.823	1002.883	1002.925	1002.335	1002.818	2.749							
71 Silom Complex		1002.401	1002.297	1002.505	1002.292	1002.466	1002.252	1002.640	1002.394	1002.384	1002.502	1002.298	1002.486	1002.775	1002.165	1002.710							
72 WestGate		1004.214	1004.072	1003.913	1004.054	1004.059	1004.038	1004.122	1003.967	1003.944	1004.050	1004.098	1003.971	1004.085	1004.055	1003.582							
73																							
74 Const 6+7			1.1																				
75 ai		1.8599633	0.59988	2.2144067	0.04388	4.29227	1.131047	2.8868233	4.9930678	4.4938733	0.17832	0.87518111	3.2669067	2.0014367	1.4987644	2.7486867							
< > r	Distance Mate	Travel tin	ne Matrix	Data Cal	culation	Soli	tion Infe	rence	Dicture	+	-							_	_				

Figure A.9 Excel calculation section 4

	Tahoma	~[11	~ A^ /	√ =	= =) »» -	sp v	Wrap Text		Gener	ral		·)				2	, Autosu Fill Y	m * ZV O		
<	BIU	* # *	Ø - <u>A</u>	* =	= =	01 01	E N	Aerge Br. Ci	enter	\$ \$	% 9	. 38 -	Fo	rmatting ~ Table ~	Styles *	sert Delete r	* 6	Clear ~	Filter * Select *	Data	8
soard Fy		Font		F9		Alig	nment			G.	Number		r ₂	Styles		Cells			Editing	Add-ins	
~	$I \times \checkmark$	fx																			
×		Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
Fuel Cost by	Vehicle	_					_						_						Fuel Cost by Refrigerator		_
Locatio	n DC	Samut Sakhon	Bangha	Central World	Chaengw attana	Chidlom	East/ille	Embassy	Park	Ladprao	Pinklao	Rama 2	Rama 3	Ramindra	Salaya	Silom Comple	ax WestGate		Location	DC Samut Sakhon	Bangr
DC Samut Sak	han	0.0	0.0	0.0	315.3	218.5	0.0	0.0	0.0	0.0	175.3	102.9	0.0	0.0	245.0	0.0	0.0		DC Samut Sakhon	0.0	0.0
Central Bangna	a	203.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Central Bangna	77.0	0.0
Central World		0.0	0.0	0.0	0.0	0.0	0.0	5.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Central World	0.0	0.0
Chaengwattan	a	0.0	0.0	0.0	0.0	0.0	0.0	0.0	123.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Chaengwattana	0.0	0.0
hidlom		0.0	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Chidlom	0.0	0.0
lastville		232.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		East/ile	88.6	0.0
mbassy		0.0	73.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Embassy	0.0	48.1
uture Park		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75.4	0.0	0.0	0.0		Future Park	0.0	0.0
adoran		205.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Ladoran	71.3	0.0
inklan		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	77.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Pinklan	8.0	0.0
tama 2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	69.5	0.0	0.0	0.0	0.0		Rama 2	0.0	0.0
ama 3		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.7	0.0		Rama 3	0.0	0.0
amindra		0.0	0.0	0.0	0.0	0.0	52.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Ramindra	0.0	0.0
Labava		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	128.5		Salava	0.0	0.0
Silom Comoles	r I	196.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Silom Complex	60.6	0.0
WeetCate		195.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		WashCate	71.7	0.0
																					-
Product fres	hness cost d	ring distributi	ion																Product freshness cost de	unioading	
Locatio	×	Carry & Californ	Central	Central	Chaengw	Chidlom	East/ille	Embassy	Future	Ladprao	Pinklao	Rama 2	Rama 3	Ramindra	Salaya	Silom Comple	ex WestGate		Location	DC Samut Sakhon	Centra
DC Garaut Gald	100	Junior Sector	0.0	0.0	41.7	21.5	0.0	0.0	0.0	0.0	21.4	10.2	0.0	0.0	41.7	0.0	0.0		DC Same Salton	DO DATING DATING	0.0
Central Banny	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Central Bangha	1	0.0
Central World	-		0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Central World		0.0
Chaenzwattan			0.0	0.0	0.0	0.0	0.0	0.0	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Chaengwattana		0.0
hidlom			0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Chidlom		0.0
Fact//ile			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		East//ile		0.0
imbassy			11.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Embassy		50.0
Dintine Park			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.7	0.0	0.0	0.0		Dub no Park		0.0
adoran	_		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Ladorao		0.0
Pinklan	_		0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Pinktan		0.0
2ama 2	_		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.8	0.0	0.0	0.0	0.0		Pama 2		0.0
Rama 3			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.2	0.0		Rama 3		0.0
lamindra	_		0.0	0.0	0.0	0.0	9.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Ramindra		0.0
cycle:			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.7		Salava		0.0
Silom Complex			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.7		Silom Complex		0.0
second and so that it is a first of the			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		WestGate		0.0
MachCate	-		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		(NOSIGNE)		0.
WestGate																					
WestGate			1.0			Calcu	lation	0.1.0					1						_		

Figure A.10 Excel calculation section 5

Figure A.11 Excel calculation section 6

Step 7: Configure OpenSolver

Set up OpenSolver by selecting the cell to minimize (objective cell), the variable cells (decision variables), and the constraint cells as defined by the mathematical model of this study. (Insert picture of OpenSolver configuration here)

OpenSolver - N	lodel				>
What is AutoMe	odel?				AutoModel
AutoModel is a fe of the spreadshee	ature of OpenSolver tha at. It will turn its best gu	it tries to automatically deteri iess into a Solver model, whi	mine the problem you ch you can then edit ir	are trying to optimise by c 1 this window.	bserving the structure
Objective Cell:	\$AM\$38	C n	naximise 🔎 minimi	se C target value:	0
Variable Cells:	\$8\$7:\$Q\$22,\$8\$31:\$Q)\$46,\$B\$118:\$C\$132			
Constraints:		AT			
<add con<br="" new="">\$7\$7 <= \$AB\$</add>	straint> 7		<u> </u>		_ = +
\$B\$118:\$B\$13	2 = \$E\$118:\$E\$132				
\$B\$7:\$Q\$22 bi \$B\$31:\$Q\$46 ·	n <= \$8\$56:\$Q\$71				_
\$C\$118:\$C\$13	2 <= \$V\$97:\$V\$111			Add constraint	
\$U\$97:\$U\$111	<= \$C\$118:\$C\$132			Add constraint	Canter
\$5\$32:\$5\$46 =	= \$U\$32;\$U\$46 5 >= \$C\$152;\$0\$152				
\$R\$8:\$R\$22 =	\$T\$8:\$T\$22			Delete selected (constraint
\$C\$175:\$Q\$17 \$C\$175:\$Q\$17	5 >= \$C\$151:\$Q\$151 5 >= \$C\$142.\$0\$142		V N	iake unconstrained variabl	e cells non-negative
\$C\$175:\$Q\$17	5 >= \$C\$143:\$Q\$143		- <u>-</u>	how named ranges in con	etraint list
			, ,	non namea rangeo in con	of dance not
Sensitivity Ana	lysis 🔲 List sensitivity	analysis on the same sheet	with top left cell:		
	🗌 Output sensit	ivity analysis: 🛛 🌀 updating	any previous output s	heet 🗍 C on a new shee	t
Solver Engine:			Current	: Solver Engine : Bonmin	Solver Engine

Figure A.12 OpenSolver window

1000	Baht/truck	cost of vehicle operating	Fuel Cost by Vehicle	2676.7
2500	Baht/pallet	unit price of cold chain product	Fuel Cost by Refrigerator	1906.9
50	Baht/hr	unit cost of refrigeration during transportation	Quality loss Cost during transportation	427.6
100	Baht/hr	unit cost of refrigeration during unloading	Quality loss Cost during unloading	1105.1
55	Baht/L	unit price of fuel	Product freshness cost during transportation	271.9
			Product freshness cost during unloading	433.3
0.08	L/km	fuel consumption when vehicle empty	Vehicle Operating Cost	5000
0.102	L/km	fuel consumption when vehicle full load	Total Cost	11821.6
2	L/hr	refrigeration equipment consumption of fuel in unit time during transportation		
2.5	L/nr	refrigeration equipment consumption of fuel in unit time during unloading	Total Distance	547.0015
1	-	constant value of cold chain product during transportation		
0.99	-	constant value of cold chain product during the unloading	Total Travel Time	0.7040556
0.002	-	sensitivity factor of cold chain products	Total Havel fille	0.7940330
6	pallet/hr	discharge efficiency		
	1000 2500 50 100 55 0.08 0.102 2.5 1 0.99 0.002 6	1000 Bahr/ball 2500 Bahr/ball 250 Bahr/ball 50 Bahr/ball 100 Bahr/ball 0.08 L/km 0.102 L/km 2.5 L/kr 1 - 0.99 - 0.002 - 6 pallet/tr	1000 Baht/thuck cost of vehicle operating 2500 Baht/pailet unit cost of refrigeration during transportation 50 Baht/thir unit cost of refrigeration during transportation 100 Baht/thir unit cost of refrigeration during transportation 100 Baht/thir unit cost of refrigeration during unloading 55 Baht/t unit cost of refrigeration during transportation 0.08 L/km fuel consumption when vehicle empty 0.102 L/km refrigeration equipment consumption of fuel in unit time during transportation 2.5 L/hr refrigeration equipment consumption of fuel in unit time during transportation 1 - constant value of cold chain product during transportation 0.99 - constant value of cold chain product during the unloading 0.002 - sensitivity factor of cold chain products 6 pallet/hr dickarge efficiency	1000 Baht/buck cost of vehicle gerating Fuel Cost by Vehicle 2500 Baht/bail Fuel Cost by Vehicle 50 Baht/bail Fuel Cost by Vehicle 50 Baht/br unit cost of refrigeration during transportation Quality loss Cost during transportation 100 Baht/br unit cost of refrigeration during unloading Quality loss Cost during transportation 50 Baht/br unit cost of refrigeration during unloading Quality loss Cost during unloading 55 Baht/L unit cost of refrigeration during unloading Product freehress cost during unloading 0.08 L/km fuel consumption when vehicle empty Vehicle Operating Cost 0.102 L/km refrigeration equipment consumption of fuel in unit time during transportation Total Cost 2. L/hr refrigeration equipment consumption of fuel in unit time during transportation Total Distance 1 - constant value of cold chan product during transportation Total Distance 0.99 - constant value of cold chan product during transportation 0.99 - constant value of cold chan product during transportation 0.002 - sensitivity factor of cold chan product 6 pallet/hr dicharge schulet during transportation

Figure A.13 Parameters and Calculation result

Step 8: Run the Solver

Run the OpenSolver to initiate the optimization process.

Step 9: Copy the Solution Matrix

After the solver has finished, copy all values from the matrix x_{ij} and paste them into the "Solution Interface" sheet. (Insert picture of copying and pasting the matrix here)

Step 10: Identify the Routes

In the "Solution Interference" sheet, identify the first visit for each route. Repeat this process to trace each vehicle's route until it returns to the DC. Finally, interpret the routing solution by following the identified routes from the previous step. This process will give you the detailed routes for each vehicle, showcasing the optimization achieved by the model.

Figure A.14 Solution inference

By following these steps, you will be able to efficiently use the Excel tool developed in this independent study to run OpenSolver and obtain optimized routing solutions for cold chain logistics.

