PREPARATION AND CHARACTERIZATION OF
POLY(LACTIC ACID)/RICE STRAW CELLULOSE BIO-
COMPOSITE FILMS FOR PACKAGING APPLICATIONS

BY

SUPATTRA PIEWKLIANG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTER OF
ENGINEERING (ENGINEERING TECHNOLOGY)
SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY
ACADEMIC YEAR 2024

Ref. code: 25676322040459BOR



THAMMASAT UNIVERSITY

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THESIS

BY

SUPATTRA PIEWKLIANG

ENTITLED

PREPARATION AND CHARACTERIZATION OF POLY(LACTIC ACID)/RICE
STRAW CELLULOSE BIO-COMPOSITE FILMS FOR PACKAGING

APPLICATIONS

was approved as partial fulfillment of the requirements for

the degree of Master of Engineering (Engineering Technology)

Chairperson

Member and Advisor

Member and Co-advisor

Member

Director

on March 18, 2025

Pavjyy

(Associate Professor Cariya Kaewsaneha, Ph.D.)

PGt

(Associate Professor Pakorn Opaprakasit, Ph.D.)

,*“;U’Vk’ PA~—-

(Atitsa Petchsuk, Ph.D.)
.? /_P "f'f\ e

(Professor Takeshi Serizawa, Ph.D.)

Ty

(Associate Professor Kriengsak Panuwatwanich, Ph.D.)



1)

Thesis Title PREPARATION AND
CHARACTERIZATION OF POLY(LACTIC
ACID)/RICE STRAW CELLULOSE BIO-
COMPOSITE FILMS FOR PACKAGING
APPLICATIONS

Author Supattra Piewkliang

Degree Master of Engineering (Engineering
Technology)
Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Thesis Advisor Associate Professor Pakorn Opaprakasit, Ph.D.
Thesis Co-Advisor Atitsa Petchsuk, Ph.D.
Academic Years 2024

ABSTRACT

The development of sustainable and biodegradable poly(lactic acid) (PLA) bio-
composite films using cellulose fibers extracted from rice straw (RSC), a major
agricultural waste product in Southeast Asia. This study tackles pressing environmental
issues arising from the excessive use and improper disposal of petroleum-based
plastics, focusing on single-use applications such as food packaging. Rice straw
cellulose was extracted through a chemical process involving alkaline, bleaching, and
acidic treatments, resulting in cellulose fibers with enhanced purity. These cellulose
fibers were subsequently modified with alkyl ketene dimer (AKD), a cost-effective and
hydrophobic reagent with food-safe properties. Eco-friendly, solvent-free ball-milling
and thermal treatment processes were employed to improve their compatibility with the
hydrophobic PLA matrix. The success modification was verified by Fourier-transform
infrared (FTIR) spectroscopy, demonstrating the reaction between the lactone ring of
AKD and hydroxyl groups (-OH) of cellulose successfully generated f-ketoester bonds,
reflected by a new band at 1735 cm™, which imparted hydrophobic characteristics to

the cellulose surface and improved dispersion within the PLA matrix.
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The PLA/RSC bio-composite films were prepared using a solvent-casting
method with cellulose fiber contents varying between 1-7 %wt. The films' mechanical
properties, water vapor permeability (WVP), and hydrophobicity (water contact angle)
were investigated. The results indicated significant improvements in mechanical
properties, including tensile strength and elongation at break, particularly at a 3 %wt
loading of the AKD-modified cellulose. The films also exhibited enhanced
hydrophobicity, with water contact angles increasing to 91.5°, demonstrating improved
water resistance compared to neat PLA films. Furthermore, the inclusion of modified
cellulose maintained the water vapor permeability of the films, ensuring their suitability
for packaging applications that require effective moisture control. By transforming rice
straw into high-performance bio-composite films, this research promotes a bio-circular
economy, reduces environmental pollution, and creates value-added products.
Moreover, the developed PLA/RSC bio-composite films present a promising eco-

friendly for smart packaging applications.

Keywords: Poly(lactic acid), Rice straw cellulose, Alkyl ketene dimer, Ball-milling,
Bio-composite, Packaging film
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CHAPTER 1
INTRODUCTION

1.1 General Background

In recent decades, waste from single-use packaging plastics become one of the
major environmental pollutions due to its high consumption rate. Many petroleum-
based plastics, such as polystyrene (PS), polyethylene terephthalate (PET), polyamide
(PA), polypropylene (PP), and polyethylene (PE), are commercially used in packaging
applications. Food packaging accounts for 61% of total plastic waste, as reported by
ECA based on data from ‘A circular economy for plastic — A European Overview,’

Plastics Europe, 2019. Year 2018, as shown in Figure 1.1.

Others; 13 %

Agriculture; 5%

Electrical and
electronic
equipment; 6 %

Building and
construction; 6 %

* Total post-consumer plastic waste collected via relevant streams - 29.1 million tonnes

Figure 1.1 Plastic waste generation by sector in 2018.
(Source: ECA based on data from ‘A circular economy for plastic — A European

Overview,’ Plastics Europe, 2019.)

Conventional plastics offer a favorable combination of high flexibility,
mechanical strength, durability, high gas/moisture permeability, transparency, and ease
of processing, making them suitable for food packaging. Although petroleum-based
plastics have benefits, they are mostly non-degradable, persisting in the environment
for years and causing significant harm. Consequently, extensive research regarding

environmentally friendly and sustainable packaging has been conducted. Among all
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approaches, the use of biopolymers become a promising approach to reduce the
negative impacts of plastic wastes, owing to biodegradability, renewability, and low
energy consumption. Examples of such polymers include poly(lactic acid) (PLA),
poly(butylene succinate) (PBS), polyhydroxyalkanoates (PHA), and starch. (Bordes et
al., 2009; Kumar et al., 2019). Among various biopolymers, PLA is extensively studied
due to its exceptional biodegradability, renewability, high mechanical strength, ease of
processing, and superior optical properties. PLA is a biopolymer derived from
renewable resources such as corn, sugarcane, and starch, making it a sustainable
alternative to conventional plastics. Its versatility enables its use in various applications,
including packaging, 3D printing filaments, and biomedical products. However, its
poor mechanical and barrier properties have limited its application in some areas. To
overcome these limitations and widen its applications, many researchers have
developed PLA-based composites by incorporating natural fibers, such as cellulose and
starch, into PLA matrix to improve its properties (Abdulkhani et al., 2014; llyas et al.,
2021).

Cellulose fiber is a natural fiber derived from plants, such as wood, cotton, and
wheat. In plant cell walls, cellulose chains are bound together by hydrogen bonds,
forming cellulose microfibrils, which serve as the fundamental structural units of plant
fibers (Nasri-Nasrabadi et al., 2014). Additionally, cellulose can also be derived from
agricultural waste, such as rice straw, rice bran, and palm oils, which can be extracted
and utilized. Rice straw constitutes an essential agricultural waste in Southeast Asia,
particularly in Thailand, where the annual production exceeds 20 million tons.
Unfortunately, during peak seasons of rice harvesting, a substantial portion of this
biomass remains unutilized and is frequently subjected to burning. As a result,
approximately 90% of rice straw is burning as a means of disposal, leading to grave
environmental issues on both local and global scales (Kophimai et al., 2020). Hence,
the objective of this research is to extract cellulose fiber from rice straw as a solution
to mitigate these problems. By utilizing the potential of cellulose fiber extraction, aim
for unutilized rice straw waste and pave the way for sustainable resource management.
Cellulose fiber can be used as reinforcing fillers for many polymers to enhance their
mechanical properties but retain biodegradability. This is owing to its low cost, low

density, non-toxicity, fire resistance, non-abrasiveness, and biodegradability. Although
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cellulose holds significant promise as a biological reinforcement in bio-composites, its
dispersion within hydrophobic matrices remains challenging due to its strong affinity
for water, attributed to the high concentration of hydroxyl groups in its chemical
structure. Thus, many surface modification methods, e.g., physical and chemical
treatments, have been used to promote interfacial interaction between polymer matrix
and cellulose surfaces (Abdulkhani et al., 2014).

Among all surface modifying agents, Alkyl ketene dimer, commonly known as
AKD, is a promising modifying agent for hydroxyl-rich materials due to its high
reactivity toward chemical reactions with hydroxyl groups (-OH), especially cellulose
(Ali Varshoei, 2013). The interaction between the lactone ring of AKD and the
hydroxyl groups of cellulose results in the formation of a B-ketoester bond on the
cellulose surface, where the hydrophobic tails align as hydrophobic side chains
(Kaewsaneha et al., 2022). AKD is commonly utilized as a cost-effective neutral sizing
agent in the paper industry to enhance the water resistance of paper due to its high
hydrophobicity. Furthermore, AKD is considered a food-safe material, as it is derived
from fatty acids containing an unsaturated p-lactone ring and alkyl chains with 16-18
carbon atoms.

In this work, PLA-based bio-composites with high water vapor permeability
and hydrophobicity properties are developed. Cellulose fibers are extracted from low-
cost rice straw derived from agricultural waste. An eco-friendly and solvent-free
modifying process is applied to prepare modified cellulose fiber, improving
compatibility between the cellulose fibers and the PLA matrix. The chemical reaction
between the AKD and cellulose was confirmed by an attenuated total reflectance
Fourier transform infrared (ATR-FTIR) spectroscopy. The PLA/RSC bio-composite
films were prepared using the solvent casting method. The contents of cellulose fiber
were varied at 1, 3, 5, and 7 %wt. The water vapor permeability (WVP), hydrophobicity
(water contact angle), and mechanical properties of the PLA/RSC bio-composite films
are investigated. The material is aimed at use in smart packaging films. The films are
expected to be completely compostable, biodegradable, and useful for various
applications. The use of waste materials to create a good quality product could promote
a bio-circular economy with the utilization of natural resources and positive benefits to

society and the country.
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1.2 Objectives

1. Develop biodegradable packaging films from PLA/cellulose bio-composite.

2. Extract cellulose fibers from rice straw and further use them as reinforcing
filler for PLA.

3. Modify a cellulose surface by employing chemical reactions among the
hydroxyl (-OH) groups of cellulose and lactone ring of alkyl ketene dimer
(AKD).

4. Develop an eco-friendly and solvent-free modifying process using ball-
milling and thermal treatment.

5. Investigate the effect of filler contents on water vapor permeability (WVP),
hydrophobicity (water contact angle), and mechanical properties of the PLA

bio-composite films.

1.3 Scope of the study
Part | Extraction and characterization of rice straw cellulose

1. Extraction of rice straw cellulose (RSC) fibers from rice straw (RS) using
alkaline treatment, bleaching, and acidic treatment.

2. Investigated chemical structure and morphology of the extracted rice straw
cellulose (RSC) using Fourier-transform infrared (FTIR) spectroscopy and
scanning electron microscope (SEM), respectively.

Part Il Preparation of RSC treated with AKD

1. Finding optimum conditions for Alkyl ketene dimers (AKD) treated RSC
using microcrystalline cellulose (MCC) by varying the treatment time and
AKD content.

2. Modify the RSC with AKD (RSCD) by using the ball-milling machine and
heating at 110 °C for 15 h for further use as reinforcing fillers for the

commercial PLA.
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3. Study and confirm the chemical reaction among the hydroxyl (-OH) groups
of cellulose and lactone ring of alkyl ketene dimer (AKD) using Fourier-
transform infrared (FTIR) spectroscopy.

Part 111 Fabrication and characterization of PLA/RSC bio-composite films

1. Apply the modified cellulose as a reinforcing material for PLA by solvent
casting method, the filler contents content is varied at 1, 3, 5, and 7 %wt.

2. Investigate the mechanical, morphology, hydrophobicity, and water vapor
permeability of the PLA compared to PLA/modified RSC bio-composite

films.
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CHAPTER 2
REVIEW OF LITERATURE

While many conventional plastics, such as PA, PP, PET, PE, and PS, have
considerable potential for mechanical recycling, their recycling processes are
economically unfavorable due to the high costs associated with sorting and cleaning.
This challenge represents a major obstacle to the widespread implementation of plastic
recycling initiatives (Marano et al., 2022; Talegaonkar et al., 2017). Alternatively,
biopolymers have raised global attention for packaging materials, surpassing
petroleum-based polymers, owing to their biodegradability, renewability, and lower
energy consumption (Perera et al., 2023). To address these challenges, biopolymers
have emerged as a promising solution for sustainable food packaging (Kumari et al.,
2022).

2.1 Biopolymers

Biopolymers, also known as biodegradable polymers, originate from renewable
natural sources, including plants, animals, and microorganisms, and can also be
synthetically produced using raw materials such as starch, sugars, oils, and natural fats
(Basavegowda & Baek, 2021; Ncube et al., 2020). Biopolymers, as illustrated in Figure
2.1, can be categorized into various types depending on the source of the raw materials
and the methods used for production. These categories encompass:

(i) Natural biopolymers, which consist of plant-derived carbohydrates like
starch, cellulose, chitosan, alginate, agar, and carrageenan, alongside proteins sourced
from animals or plants such as soy protein, corn zein, wheat gluten, gelatin, collagen,
whey protein, casein, among others.

(i1) Synthetic biodegradable polymers including poly(lactic acid) (PLA),
poly(glycolic acid) (PGA), poly(caprolactone) (PCL), poly(butylene succinate) (PBS),
poly(vinyl alcohol) (PVA), and similar materials.

(iii) Biopolymers synthesized through microbial fermentation, such as
microbial polyesters like poly(hydroxyalkanoates) (PHAS), which encompass
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poly(hydroxybutyrate) (PHB), as well as microbial polysaccharides like pullulan and
curdlan (Rhim et al., 2013; Talegaonkar et al., 2017).

» Protein + From biomass + Polyester

SPI, WPI, conzein, wheat, PLA PHAs (PHB, PHBV)
gluten, gelatin etc.
+ From petrochemicals = Carbohydrates
+ Garbohydrates PCL Pullulan
Starch, cellulose, PVA Curdlan
chitosan, agar, PGA
carrageenan etc.
+ Lipids
Wax, fatty acids.

Figure 2.1 Classification of biopolymers. (adapted from Rhim et al. (2013))

Much research has been conducted on applying biopolymers as packaging due
to their biocompatibility, biodegradability, environmentally friendly, and non-toxicity.
In 2006, Kale et al. successfully investigated the decomposition of commercially
available PLA-based biodegradable packaging under real composting conditions over
a 30-day period. The results indicate that the PLA packaging degraded after less than
30 days, as illustrated in Figure 2.2.

Figure 2.2 Pictorial view of the PLA bottles exposed at 30 day of compost conditions.
(Kale et al., 2006)
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Subsequently, Arrieta et al. successfully fabricated films for food packaging of
poly(lactic acid) and poly(hydroxybutyrate) blends (PLA-PHB) by including two
distinct plasticizers, poly(ethylene glycol) (PEG) and acetyl-tri-n-butyl citrate (ATBC).
A laboratory-scale composting test was conducted to examine the degradation of PLA-

PHB films at a controlled temperature of 58+2 °C over 28 days. The findings reveal

that blending PLA with PHB slows down the degradation process compared to pure

PLA. Conversely, incorporating plasticizers into PLA accelerates its degradation,

completing within 28 days, as illustrated in Figure 2.3.

14

21

28

35

PLA-PEG

PLA-ATBC

PLA-PHB-PEG PLA-PHB-ATBC

—

o

'l.v-:#
P

3.
PLS P
b ]

Figure 2.3 Visual aspect of plasticized PLA and PLA-PHB films at different

disintegration times. (Arrieta et al., 2014)

Wen et al. successfully prepared nanocomposite films from poly(vinyl alcohol)

(PVA) with zinc oxide-coated multi-walled carbon nanotubes (MWCNTs-ZnO) for
packaging applications. The PVA nanocomposite films exhibited enhanced properties

over pure PVA, including improved tensile strength, thermal stability, reduced water

vapor transmission, increased hydrophobicity, and enhanced antibacterial activity.
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Notably, water loss tests on vegetables stored at room temperature demonstrated that
those wrapped in PVA nanocomposite films containing 0.6% MWCNTs-ZnO
(0.6(MWCNTSs-ZnO)/PVA) retained a higher moisture content for up to 4 days. The
result showed a low rate of water loss in vegetables when packed in PVA
nanocomposite films. This results in the vegetables maintaining a higher level of
freshness compared to those packed with pure PVA or without any packaging film, as

seen in Figure 2.4.

_________________________________________________________________________________

--------------------------------------------------------------------------------

................................................................................

________________________________________________________________________________

Figure 2.4 Vegetable rate of water loss a) control, b) PVA and c¢) 0.6(MWCNTs-
ZnO)/PVA. (Wen et al., 2022)

He et al. have recently successfully prepared antimicrobial films by combining
lignin and cellulose with polylysine (PL). The films were made with a lignin content of
30% and a polylysine concentration of 3% (LRCPL30-3). The films exhibited excellent
antibacterial, hydrophobicity, water vapor, and oxygen barrier properties and high
tensile strength. Based on these results, the LRCPL30-3 material was utilized for
shrimp packaging, significantly extending the product's shelf-life, as illustrated in

Figure 2.5.
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Figure 2.5 Multifunctional cellulose-lignin films (LRCPL30-3) applied as packaging
materials for shrimp. (He et al., 2023)

2.2 Poly(lactic acid) (PLA)

The increasing focus on sustainability, environmental consciousness, and
government policy is motivating both industries and researchers to research and
develop bio-based and biodegradable products. (Luetal.,2014). PLA, or poly(lactic
acid), stands out as a widely utilized biodegradable aliphatic polyester for its similarity
to petrochemical polymers. It is derived from I- and d-lactic acid from the fermentation
of starch-rich plants like corn, sugar cane, cassava, bagasse, wood chips, and wheat
straw (Angin et al., 2022; Fortunati et al., 2012; Kumar et al., 2019).

(II; H5C CH,4
cyclization ring-open polymerization |
2HO— (—( OOH —-—- > 0—C—CO0O0
H catalyst H n

Lactic acid Lactide Poly(lactic acid)

Figure 2.6 Synthesis of poly(lactic acid). (Xiao et al., 2012)

PLA is synthesized either by the direct polycondensation of lactic acid
monomers or through the ring-opening polymerization of lactide. Since lactic acid
exists in two isomeric forms, L- and D-lactic acid, three distinct stereochemical
variations of lactide are possible: L,L-lactide, D,D-lactide, and L,D-lactide. These
stereochemical configurations significantly influence the final properties of PLA
(Peelman et al., 2013).
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Figure 2.7 1somers of lactic acid. (Xiao et al., 2012)

The standout properties of PLA are its eco-friendliness, high tensile strength,
stiffness, and biodegradability. On the other hand, it has brittleness, poor mechanical
performance, and limited barrier properties. These constraints restrict its usage in
packaging. One method to enhance PLA's properties is mixing other polymers,
plasticizers, or fillers like starch, carbon, and cellulose fibers into the PLA matrix,
thereby improving its overall characteristics. (Kumar et al., 2019; Paul et al., 2021;
Popa et al., 2017).

Many studies have been conducted to address the limitations of biopolymers,
which include relatively low tensile strength, poor flexibility, and barrier properties,
hindering their industrial utilization. These biopolymers, despite their eco-friendly
degradation characteristics, require enhancements to meet broader industrial demands.
One approach involves incorporating reinforcing agents like nanofillers, biopolymers,
plasticizers, and natural additives to augment their mechanical and functional
properties, thereby expanding their applicability while maintaining their
environmentally friendly disposal traits (Kumari et al., 2022; Perera et al., 2023).

2.3 PLA bio-composites

PLA bio-composites represent a significant advancement in sustainable
materials research, integrating the advantages of PLA with various natural fibers or
fillers. PLA, a biodegradable polymer from renewable materials such as corn starch or
sugarcane, is distinguished for its eco-friendly characteristics. Nevertheless, its
mechanical properties and uses can be significantly improved when combined with
natural fibers such as hemp, flax, or bamboo. Incorporating natural fibers with PLA

produces a bio-composite that reduces dependence on petroleum-derived polymers
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while enhancing the material's strength and durability. These bio-composites are lighter
and can be modified for specific uses, making them suitable for automotive
components, packaging, and construction materials (Mohanty et al., 2000; Sudamrao
Getme & Patel, 2020).

The PLA bio-composite can enhance PLA's mechanical, thermal, and gas
barrier properties. Many research investigations focus on enhancing the toughness,
strength, and water vapor permeability (WVP) of polylactic acid (PLA), focusing on
improving the compatibility between the PLA matrix and fillers by using various
methods listed in Table 2.1. For instance, Guo et al. successfully developed PLA/clay
nanocomposite (PLA-30B) utilizing the melt-blending process. The results indicate that
adding clay at 1 phr to the PLA-30B vyields a high elongation at break of 208%,
corresponding to the morphological investigation showing the clay is well-dispersed
within the PLA matrix. Jaikaew et al. successfully researched PLA/silica bio-composite
films. This research involves modified silica with poly(lactic acid-grafted-chitosan)
copolymer (PCT). The PLA/silica bio-composite films were prepared using a
compression molding technique. The resulting results indicate that the PLA/silica bio-
composite films exhibit the greatest reduction in light transmission at the addition of 5
%wt. silica (Jaikaew et al., 2018). Wang et al. studied the PLA/wheat starch bio-
composite blended with methylenediphenyl diisocyanate (MDI) using melt blending.
The PLA bio-composite, including 45% wheat starch and 0.5 %wt MDI, has a
maximum tensile strength of 68 MPa and an elongation at break of 5.1% (Wang et al.,
2002). Kale et al. successfully manufactured PLA/MCC derived from rice bran oil
using the solvent casting method. MCC was modified by resultant acylated MCC
(RAMCC) to enhance hydrophobicity. The mechanical, thermal, and UV barrier
properties of PLA/RAMCC exhibit excellent characteristics. The WVP decreased upon
the addition of 2 %wt RAMCC (Kale et al., 2018). The characteristics of PLA bio-
composites are based on the filler utilized. The mechanical and gas barrier
characteristics were greatly enhanced by the filler in the PLA matrix processing
methods. The difference in these composite properties. However, this was determined
by the filler and methods (Sudamrao Getme & Patel, 2020). Kumar et al. effectively
developed nanocomposite films of PLA with cellulose nanofibers (PLA/CNFs) using

solvent casting methods. The PLA/CNFs film demonstrates exceptional mechanical
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and barrier properties upon incorporating 5 wt% CNFs into the PLA matrix. Yu et al.
successfully produced a composite filament of PLA with rice straw powder (RSP) with
fused deposition modeling (FDM) 3D printing. The PLA composite filament displays
enhanced tensile strength and modulus upon the incorporation of RSP after alkaline and

ultrasonic pretreatment (Yu et al., 2021).
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Table 2.1 Mechanical and gas barrier properties of PLA bio-composite

14

Mechanical properties

_ o Processing Tensile Young’s  Elongationat Gas barrier
Polymer/Filler Modification content ] Reference
method strength modulus break properties
(MPa) (MPa) (%)
) (Lai et al.,
PLA/clay - 1 phr Melt blending  50.8 £ 0.8 1,640 + 70 208 + 45 -
2014)
. Compression ] (Jaikaew et
PLA/silica PCT 5 %wit. ) - - - High WV
molding al., 2018)
i (Wang et
PLA/starch MDI 45 %wt.  Melt blending 68.06 1,810 5.1 -
al., 2002)
) _ (Kale et al.,
PLA/MCC Acylation 2 %wt.  Solvent casting 36.66 424 8.8 Low WVP 2018)
. (Kumar et
PLA/CNFs - 5%wt.  Solvent casting 35.61 - - Low WVTR
al., 2019)
.. (Yuetal.,
PLA/RSP - 1:99 3D printing 58.59 568.68 - -

2021)
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2.4 Cellulose

Due to their full biodegradability, nontoxicity, and low density, natural fibers
have immense potential for reinforcing thermoplastic matrixes. Cellulose is the most
commonly utilized natural polymer, produced by plants such as wood pulp, rice husk,
sugarcane bagasse, cotton linter, and banana, as well as by bacteria, through a process
known as delignification (Mohamed et al., 2017; Peelman et al., 2013; Spiridon et al.,
2016). Cellulose, the most abundant polysaccharide in nature, is the primary structural
component of all plant fibers. It is an organic polymer with the formula (CsH10Os)s,
composed of linear chains of B-(1—4) linked D-glucose units, which can range in
length from several hundred to several thousand units. The degree of polymerization
varies depending on the source, with values reaching up to 14,000 g/mol. As a major
constituent of dietary fiber, cellulose forms tightly packed linear molecules that create
long, insoluble fibers, making it resistant to digestion by human enzymes. It is also a
crucial structural element in the cell walls of green plants and algae, contributing to
their strength and structure. The cellulose matrix exhibits extensive intermolecular
hydrogen bonding, which aligns the molecules in a parallel orientation, leading to the
formation of microfibrils. This structure consists of a crystalline phase interspersed with
an amorphous phase, with the ratio between them varying based on plant species and
structural organization (Collard & Blin, 2014; Mudgil & Barak, 2013).

HOH,C OH HOH,C
HOA . 2/ : o HO Q
5 10 0 o
~° HO 0 H
HOH,Cq O OH HOH,C OH

Figure 2.8 Structure of cellulose. (Zhang et al., 2011)

Various techniques have been employed to extract cellulose and analyze the
chemical composition of plant fibers, including cellulose, lignin, and hemicellulose, as
shown in Table 2.2. Sheltami et al. successfully isolated cellulose and cellulose
nanocrystals from mengkuang leaves (Pandanus tectorius) using alkali treatment and
bleaching, with cellulose extracted by treating the leaves with a 4% NaOH solution at
125 °C. The isolated cellulose was then bleached using a 1.7% NaClO: solution at 125

°C for 4 h. The cellulose nanocrystals were obtained through acid hydrolysis of
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cellulose using 60 %wt. H2SO4 at 45 °C for 45 min and then sonicated for 30 min. The
cellulose has sizes ranging 5 - 80 um, while the cellulose nanocrystals have dimensions
ranging 5 - 25 nm. The cellulose structures were examined using FTIR spectroscopy
and X-ray diffraction (XRD). The analysis reveals that hemicellulose and lignin were
effectively extracted from the isolated cellulose (Sheltami et al., 2012). Nuruddin et al.
produced cellulose nanofibers (CNFs) from kenaf fibers and wheat straw using a
method that involved treatment with formic acid (FA)/acetic acid (AA), peroxyformic
acid (PEA)/peroxyacetic acid (PAA), and hydrogen peroxide (H20-), followed by ball
milling. The CNFs were analyzed using FTIR spectroscopy, SEM microscopy,
Transmission electron microscopy (TEM), XRD, and thermogravimetric analysis
(TGA). The ball milling process successfully extracted CNFs with diameters ranging
from 8 to 100 nm. The preparation of CNFs mostly removed lignin and hemicellulose
from lignocellulose, resulting in an enhanced crystallinity. Moreover, the
decomposition temperature of CNFs increased by about 27 °C (Nuruddin et al., 2015).
Different treatment techniques for cellulose fiber can yield a variety of micro- and
nanosized cellulose fiber products. These methods generate cellulose fibers presenting
distinct crystallinities, fiber dimensions, and functionalities (Jiang & Ngai, 2022).
Cellulose is a popular material for polymer composites due to its low production
cost and ability to produce high-performance products. Cellulose is inexpensive,
compatible with living organisms, and biodegradable from numerous renewable
sources. Cellulose possesses several beneficial properties, such as remarkable strength
and stiffness, and contains numerous hydroxyl groups amenable to modification
through different chemical processes. Despite its considerable potential as a biological
reinforcement in bio-composites, its dispersion in hydrophobic matrices is constrained
by its hydrophilic nature, stemming from the high concentration of hydroxyl groups in
its molecular structure. Thus, surface modification methods before being composited
with the polymer can overcome this problem, and surface modification has many
methods, e.g., physical and chemical treatments, which have promoted interfacial

interaction between cellulose surfaces and polymer matrix (Paul et al., 2021).
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Table 2.2 Extraction methods, diameter, and percentage composition of cellulose's chemical components from various natural sources.

Content (%oweight)

Cellulose sources Extraction method Diameter Ref.
cellulose  lignin  hemicellulose
Mengkuang leaves Chemo-mechanical treatment 5-25nm 81.6+0.6 24038 34.4+0.2 (Sheltami et al., 2012)
Kenaf fiber
Chemo-mechanical treatment 8 — 100 nm - - - (Nuruddin et al., 2015)
wheat straw
Sisal fiber 5+15nm 626+28 7.9%10 125+£25
Hemp fiber Chemo-mechanical treatment 20 - 50 nm 70636 4.2%0.38 156+29 (Mondragon et al., 2014)
Flax fiber 15-45nm 66.3+35 22zx0.1 188+27
Sisal fiber Chemical treatment 30.9 £12.5nm - - - (Morén et al., 2007)
) ) (Nasri-Nasrabadi et al.,
Rice straw Chemo-mechanical treatment 70-90 nm 79.3 4.8 15.9 2014)
Rice straw Chemical treatment - 36.8 5.8 28.6 (Zhou et al., 2024)
Rice husk Chemical treatment 15-20 nm 96 21 12 (Johar et al., 2012)
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2.5 Rice straw

Rice is a key grain and a staple food for over half of the global population, with
particularly high consumption rates in growing economies and Asian countries. It
represents approximately 95% of global production and is consumed by around 50% of
people worldwide. In terms of agricultural commodity production, rice ranks third,
following sugarcane and maize (Rathna Priya et al., 2019). Agricultural crop wastes are
considered the most abundant source of cellulose owing to their worldwide abundance
and yearly renewability. Rice straw (RS), a major by-product of grain crops, is often
regarded as the greatest agricultural waste. Rice straw is mostly burned. It can be seen
in Asia countries such as India, China, Vietnam, and Thailand, as shown in Figure 2.9
(Ramos et al., 202 3). Wherewith this method is easy and low-cost. Moreover, this
method can dispose of weed seeds well and reduce the presence of other diseases. On
the other hand, natural waste combustion often produces considerable amounts of
carbon emissions and air pollution, contributing to climate change, global warming,
and PM 2.5. Due to its abundance, rice straw trash disposal has a significant effect, with
much research being conducted to find helpful and practical solutions to recycle this
waste. Numerous strategies for making effective use of rice straw have been devised,
reducing the need for rubbish to be burnt. After treatment with chemical or physical,
it’s used as a fuel for animal nutrition or a natural additive in composites. Utilizing rice
straw as a composite component in bio-composites can substantially minimize
environmental pollution, save scarce forest and petroleum resources, and increase the
added value of rice straw. Rice straw is inexpensive, biodegradable, lightweight, and
has a high strength-to-weight ratio. Composites are used for natural fibers and
biological waste. Natural fibers, on the other hand, have a high moisture absorption and
uneven fiber diameters, which deteriorate the mechanical properties in which they are

employed if not treated properly (Osman & Atia, 2018; Rathna Priya et al., 2019).
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Figure 2.9 Comparison of rice straw burning and production in each country. (Singh
etal., 2021)

2.6 Alkyl ketene dimer

Alkyl ketene dimer (AKD) is a fatty acid dimer synthesized from stearic acid or
a blend of fatty acids with alkyl groups containing carbon chains of 16 to 18 atoms,
along with a single lactone ring, as shown in Figure 2.5. The melting point of AKD
varies between 40 and 60 °C, depending on the length of the carbon chain in the dimer
(Quan et al., 2009). AKD is classified as waxy and emulsion. Another study indicates
that liquids are less effective as a sizing agent than wax (Hundhausen et al., 2008). The
AKD emulsion is prepared by dispersing particles in an aqueous mixed solution,
producing a milky appearance. The properties and stability of the emulsion improve
with increasing AKD oligomer concentration, and the particle size of the AKD

emulsion ranges from 0.2 to 2 pm (Kumar et al., 2016).

R,—CH——C—CH—R,

1 —_—

O—C—0
Figure 2.10 Structure of alkyl ketene dimer (AKD). (Hundhausen et al., 2008)
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AKD highly reacts to chemical reactions with hydroxyl groups (-OH groups),
especially cellulose (Ali Varshoei, 2013). The interaction between the lactone ring of
AKD and the hydroxyl groups of cellulose creates a -ketoester bond on the cellulose
surface, with the hydrophobic tails aligning as side chains, enhancing its hydrophobic
characteristics. Furthermore, AKD is commonly used as an affordable, food-safe
neutral sizing agent in the paper industry, where its high hydrophobicity improves the

water resistance of paper (Kaewsaneha et al., 2022).

Ay cH=—C _E —hRz
| | 4+  HO—Cellulosa
O——C==0
[AKLD) j
Az Tl’
Ry CH3 "-—Ch G O——=Callulasa
[

(f-keto ester — bound formy)

Figure 2.11 Reaction of cellulose treated with AKD. (Kumar et al., 2016)

Several researchers have focused on the surface modification of cellulose by
using AKD to develop hydrophobicity. Kaewsaneha et al. effectively prepared wood
treated with AKD nanoparticles by subjecting it to heating at 110°C for 5 hours. Figure
2.12 presents the water contact angle and FTIR spectra of wood treated with AKD. The
treated wood shows a water contact angle (WCA) of 150° + 2, indicating the presence
of a hydrophobic layer on the surface. FTIR analysis reveals the reaction between the
lactone ring of AKD and the wood's hydroxyl groups, with a new peak at 1735 cm™

confirming the formation of a S-ketoester bond.
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Figure 2.12 water contact angle of treated wood and FTIR spectra of neat AKD (A),
untreated teakwood (B), and teakwood samples treated with AKD@SDS (C) and
AKD@PC (D). (Kaewsaneha et al., 2022)

Yang et al. successfully produced alkali/urea regenerated cellulose (AUC) films
treated with AKD, resulting in AUC-AKD films. The film has a maximum content of
AKD at 0.2%. The AUC-AKD films exhibit a significant increase in WCA from 50 to
110 degrees following treatment with AKD. The water vapor permeability (WVP) of
AUC-AKD is lower than AUC films at the same relative humidity (RH). However,
when relative humidity (RH) increases, the WVP of AUC-AKD films also increases as

seen in Figure 2.13.

103 F T T T T L] T
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Water vapor permeability
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Relative humidity (%)

Figure 2.13 Effect of relative humidity on water vapor permeability of AUC and
AUC-AKDO.1 films. (Yang et al., 2012)
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Caylak et al. successfully investigated the impact of AKD on PLA composite
films containing natural fiber (NF) and glass fiber (GF). A twin-screw extruder was
used to produce PLA composite film using melt-compounding. The mechanical
characteristics of PLA composite films demonstrate a 40% improvement in mechanical
strength compared to PLA composite films without AKD. The WCA of PLA composite
films is greater when AKD is present compared to PLA composite films without AKD.
Furthermore, AKD enhances the compatibility between PLA and NF/GF, as shown in
Figure 2.14. This is attributed to the well-dispersed NF with AKD in the PLA matrix,
which results in improved mechanical characteristics. This improvement can be
attributed to enhanced interfacial interaction between PLA and NF/GF.

Figure 2.14 SEM images of the fractured surface of the composites: (a), neat PLA;
(B), PLA with AKD; (C), NF-filled PLA; (D), NF-filled PLA with AKD; (E), GF
filled PLA; (F), GF filed PLA with AKD; (G), NF and GF filled PLA with AKD.

AKD, alkyl ketene dimer; PLA, poly(lactic acid). (Caylak et al., 2021)
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2.7 Ball milling

Ball milling is a widely used technique for breaking down particles and reducing
their size. During this process, powder particles are trapped between colliding balls and
the inner surface of the milling container. This leads to repeated deformation and
breakdown of the powder, resulting in the production of fine nanoparticles (Piras et al.,
2019). This technique offers several benefits, including cost-effectiveness, reliability,
ease of use, and the ability to generate consistent results through control of energy and
speed. It can be applied in both wet and dry conditions and is compatible with various
materials, such as cellulose, chemicals, fibers, polymers, hydroxyapatite, and metal
oxides. One notable application in the field of cellulose is the preparation and chemical
modification of cellulose nanocrystals and nanofibers. This approach allows for the
integration of chemical treatments, facilitating the production of desired products with
minimal effort. However, factors such as milling duration, processing speed, solvent
choice, and pre-treatment methods need to be carefully optimized, as they can
significantly impact the properties of the isolated nanocellulose. This allows for precise

manipulation of the final particle size and distribution.

By adjusting these parameters, it is possible to tailor the milling process to meet specific
requirements, such as achieving submicron or nanoscale particles. As well-known,
esterification is the most frequently documented reaction on the functionalization of
CNCs and CNFs as shown in Figure 2.15. The chemical reactivity of these materials is
often challenging due to their limited solubility in both water and organic solvents.
However, it is possible to investigate alternative forms of chemical modification,
although this is restricted by the functional groups that are present. Other potential
reactions could involve the cellulose hydroxyl groups acting as nucleophiles.
Additionally, the adaptability of ball milling in dry and aqueous environments positions
it as a promising, environmentally friendly, and sustainable technology for industrial
use. Further investigation into the synthesis of cellulose-based nanocomposites is
recommended, as this method provides a straightforward and efficient approach for
creating these hybrid systems. Some studies have been proposed on developing
modification and extraction of cellulose fiber. For example, Lan et al. studied pretreated

microcrystalline cellulose (MCC) to enhance its performance in photoreforming using
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a Pt/TiOz catalyst. The findings show that the ball milling treatment could significantly
modify the MCC with decreased particle size and improved photoreforming of MCC
for Hz production (Lan et al., 2022). Nuruddin et al. developed a method for extracting
cellulose nanofibers from lignocellulosic biomass through ball milling and chemical
treatment. Their study showed significant removal of lignin and hemicellulose from
kenaf fiber and wheat straw, while preserving the original cellulose structure of the
isolated nanofibers. There are obtained a cellulose nanofiber with a uniform diameter
ranging from 8 to 100 nm (Nuruddin et al., 2016). Huang et al. conducted a study on
modifying cellulose nanofibers to enhance their dispersion in an organic solvent. The
researchers employed the ball milling method to modify native cellulose using
hexanoyl chloride as an esterifying agent through wet mechanical ball milling. By
varying the milling duration, they examined its effects on the modification process. The
results showed a progressive increase in the ester bond peak in the FTIR spectrum with
longer milling times. Furthermore, stability tests demonstrated a well-dispersed state,
consistent with the FTIR findings (Huang et al., 2012).

CsH11COCI
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1 - ‘. X
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Figure 2.15 The modification of surface cellulose nanofibers with esterification
through ball milling (Huang et al., 2012).
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CHAPTER 3
EXPERIMENTAL APPROACH

The overall process for PLA/modified cellulose bio-composites preparation is
summarized in Figure 3.1. The preparation of PLA/RSC cellulose bio-composites is
divided into 3 parts. In the first part, rice straw cellulose fiber (RSC) was extracted from
rice straw (RS) by a chemical treatment (alkaline, bleaching, and acidic treatments) (Fig
3.1a). In the next step, the surface of cellulose fiber is modified by grafting alkyl ketene
dimer (AKD) on hydroxyl group (-OH) cellulose using ball-milling machine,
subsequently by treatment in a hot-fan oven to allow a ring-opening reaction of lactone
ring of AKD by reacted with hydroxyl group (-OH) of cellulose forming (3-ketoester
bond at 110 °C (Fig 3.1b). Lastly, the modified particles/fibers are further used as
reinforcing fillers for commercial Poly(lactic acid) (PLA). The films were prepared
using the solvent-casting method (Fig 3.1c). The chemical structure of the extracted
products and the interaction between cellulose and AKD were studied using Fourier-
transform infrared spectroscopy (FTIR). A scanning electron microscope (SEM)was
applied to observe the morphology and determine the particle size of modified products.
Hydrophobicity, mechanical properties, and water vapor permeability (WVP) of the

PLA/modified cellulose bio-composites were investigated.
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Figure 3.1 The overall process of (a) extraction of RSC, (b) RSC surface

modification, and 1(c) fabrication of PLA/RSC bio-composite films.
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3.1 Materials

Rice straw (RS) was supplied by a local farm in Kanchanaburi Province,
Thailand. Microcrystalline cellulose (MCC) was obtained from Saim Cement Group
(SCG). Poly (lactic acid) (PLA) pellets (Ingeo™ Grade 4043D) was purchased from
NatureWorksLLC. Sodium hydroxide (NaOH) pellets, Hydrogen peroxide (H202)
40%, Hydrochloric acid (HCI) 37%, and Tetrahydrofuran (THF) were purchased from
Carlo Erba™. Alkyl Ketene Dimer (C16-C18 grade) was purchased from Kemira Co.
Ltd. Chloroform 99.8% from RCI Labscan®.

3.2 Experimental
Part | Extraction and characterization of rice straw cellulose (RSC)
3.2.1 Extraction of RSC

The Rice straw Cellulose fibers (RSC) extraction process was adopted from
Nasri-Nasrabadi et al. (2014) method. The overall extraction process includes alkaline
treatment, bleaching, and acidic treatment. Rice straw was initially washed and dried in
a vacuum oven at 80 °C for 24 h. Then, 10 g of rice straw was immersed and stirred in
a NaOH solution (4 %wt.) at 60 °C for 4 h. The bleaching procedure was then
subsequently performed by adding the obtained alkaline treated cellulose fibers into
H202 solution (10 %v/v.) at 80 °C for 2 h. In the final step, the acidic treatment was
conducted in an HCI solution (10 %v/v.) at 60 °C for 12 h. A dialysis process was
applied to neutralize the cellulose fiber products. The obtained RSC was dried in an

oven at 80 °C for 24 h. The procedure for the extraction process is shown in Figure 3.2.
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(Agricultural Waste) 3. Acidic (HCl) Cellulose fiber

Figure 3.2 The procedure for the extraction process
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3.2.2 Characterization of RSC

The yield of RSC was determined using equation 3.1, yield (%):

Wfinal
Wstarting

Yield (%) = x 100 (3.1)

Where: Wrinal is the weight of RSC after acidic treatment
Wstarting IS the weight of RS.

The FTIR spectra of RSC and its modified fibers/particles were recorded on a
Fourier-transform infrared (FTIR) spectroscopy (Nicolet iS5 spectrometer) in an
attenuated total reflection (ATR) mode. The spectra were collected using 32 scans and
a resolution of 4 cm™.

Field Emission Scanning electron microscope (JSM-6000 Plus, JEOL) and
image J Software were used to observe morphology and determine the size of RSC and
modified RSC, respectively. The voltage of 2 kV, with 500X and 5000X are applied.

The dried samples were dispersed on a stub's carbon tape before gold coating.

Part 11 Preparation of RSC treated with AKD (RSCD)
3.2.3 Conditions screening for surface modification of cellulose using AKD.
Commercial microcrystalline cellulose (MCC), which has a chemical structure
similar to RSC, was used in the screening step to determine the best treatment
conditions for AKD-treated RSC. The MCC was treated with AKD in a ball-milling
machine (Planetary ball mills (PM100, Retsch) at a speed of 500 rpm for 1 h. The
reaction of AKD and hydroxyl group (-OH) of cellulose was further employed in an
oven at 110 °C (Kaewsaneha et al., 2022). The reaction time was varied at 1, 2, 3, 4, 5,
and 15 h, and the content of AKD was fixed at 10 %wt. The best operating conditions
will be further used for the AKD treatment RSC in the next step.
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3.2.4 Modification of RSCD

The RSC was then treated with AKD in a ball-milling machine at a speed of
500 rpm for 1 h. The content of AKD was fixed at 10 %wt. of RSC. The surface-treated
RSCD was subsequently heated in an oven at 110 °C for 15 h. The RSCD was washed
in THF and dried in a vacuum oven at 60°C overnight. The chemical reaction among
AKD and the hydroxyl groups (-OH) of RSC was studied and confirmed by FTIR. The
surface morphology and particle size of RSCD were examined by SEM at 500X,
1000X, and 2000X resolution and image-j software. The chemical reaction of the AKD-
treated RSC is shown in Figure 3.3.

OH OH OH OH OH OH Planetary ball milling
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Figure 3.3 The overall procedure for the AKD-treated RSC and their characterization.

Part 111 Fabrication and characterization of PLA/RSC bio-composite films
3.2.5 Fabrication of PLA/RSC bio-composite films

Neat PLA and PLA/RSC bio-composite films were prepared using a solvent-
casting method. RSC was dissolved and dispersed in PLA solution (chloroform 10
%wi/v.), and the RSC contents were varied at 1, 3, 5, and 7 %wt. The mixture was then
cast on a Teflon sheet and placed in a fumed hood to allow solvent evaporation for 24

h. The obtained films were then dried in a vacuum oven at 50 °C for 24 h.

3.2.6 Characterization of PLA/RSC bio-composite films

The chemical structure and compositions of neat PLA and PLA/RSC bio-
composite films were determined by FTIR spectroscopy as described above. The neat
PLA and PLA/RSC bio-composite films were cut with dimensions of 15 mm x 100 mm

for tensile testing by using a universal testing machine following the ASTM D882.
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The test was conducted at room temperature on a Tinius Olsen THE 1000N universal
testing machine with a speed of 50 mm/min, a 1000 N load cell, and a 50 mm initial
gauge length. Each sample was examined at least 8 times.

The morphology on the cross-section of fractured neat PLA and PLA/RSC bio-
composite films from the tensile testing was observed using SEM with 700X and 1500X
resolution and 2kV of voltage. The water contact angle (WCA) was measured to
determine the hydrophobicity or water wettability of the material's surface using a
Digital microscope (Dino-lite). The contact angle was measured using a digital
microscope and a 20 pL droplet of distilled water.

The water vapor permeability (WVP) of neat PLA and PLA/RSC bio-composite
films was investigated using Mocon: PERMATRAN-W® Model 398 under condition
test 90%RH, 37.8 °C.
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CHAPTER 4
RESULTS AND DISCUSSION

Part | Extraction and characterization of rice straw cellulose (RSC)

Cellulose fibers were extracted from rice straw (RS) using 3-step treatments,
i.e., alkaline, bleaching, and acidic treatments. The final product is in the form of white
powder and the calculated yield of the Rice straw cellulose (RSC) is around 25.2 +
0.5% is obtained. The chemical structure and morphology of the extracted cellulose
fibers were characterized using FTIR and SEM, respectively. FTIR spectrum of
extracted RSC and its chemical structure is shown in Figure 4.1. The peak at 3335 cm’
! corresponds to Hydroxxyl (-OH) groups of cellulose (Chirayil et al., 2014 ; Nasri-
Nasrabadi et al., 2014). The peak at 2895 cm™ was observed with C-H stretching
vibrations of cellulose (Hozman-Manrique et al., 2023). The band at 1645 cm
represents the -OH bending vibrations of adsorbed water (Mohamad Haafiz et al.,
2013). The peak at 1317 cm™ was attributed to cellulose C-C and C-O skeletal
vibrations. The absorption band at 1160 cm™ corresponds to cellulose C-O
antisymmetric bridge stretching. The band at 1054 cm™ related to C-O-C skeletal
vibration of the pyranose rings in cellulose. The peak at 898 cm™ was assigned to the
1,4 p-glycosidic linkages (Chen et al., 2013; Ng et al., 2015; Reddy et al., 2015).
Moreover, two peaks at 2917 and 2850 cm™* correspond to CH stretching of lignin and
hemicellulose, which are not found in the spectrum. The small peak in 1729 and 1513
cm? is associated with the carbonyl group (C=0) and C=C stretching vibration of
hemicellulose and lignin (Hozman-Manrique et al., 2023; Lu & Hsieh, 2012) also not
detected. The absence of these four peaks in the spectrum indicates that lignin and

hemicellulose were effectively removed during the treatment process.
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Figure 4.1 FTIR spectrum of extracted RSC.

The morphology and size of cellulose before and after each step treatments, i.e.
(1) Alkaline (2) bleaching, and (3) acid treatments, are compared and shown in Figure
4.2. The SEM image of the rice straw is shown in Figure 4.2 (a, b). A rough surface of
non-cellulose components such as lignin, hemicelluloses, pectin, wax, and other
impurities are observed on the fiber surface. After the first step (alkaline treatment),
smaller cellulose fiber bundles are observed, and some of the non-cellulose composition
and impurities are partially eliminated, as seen in Figure 4.2 (c, d). This indicates that
NaOH aqueous solution can remove some cementing components on the cell wall,
separating and reducing the dimension of cellulose fibers into the smaller cellulose
fibers bundles. This increased surface area of the treated fibers might further increase
the chance of catching up with the PLA matrix (Lu et al., 2014; Ng et al., 2015). In
addition, the product from this step is light brown powder, which reflects the remaining
non-cellulose components, and further treatment is required. The sample is further
subject to a bleaching process using hydrogen peroxide (H202). The obtained product
from this step is in the form of white powder. The SEM image of the bleached product
is shown in Figure 4.2 (e, f). It is clearly observed that the non-cellulose component is
fully removed, resulting in a clear and smooth surface. Microfibrils in the primary cell
wall of fibers are believed to be removed during the bleaching process (Feng et al.,
2018). However, the obtained fibers obtained from this step are presented in the form
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of agglomerate and large size. The acidic treatment is further applied to digest and
diminish fiber size to increase the surface area of the final product. The SEM image of
the fibers after acidic treatment is shown in Figure 4.2 (g, h). After acidic treatment, the
fiber is in rod shape, and the diameter is reduced from 178.2 £ 3.1 t0 7.4 £ 5.4 um
compared to the sample from the first step of alkaline treatment. The dimeter and length
of fibers are reduced by separating the amorphous region from the microfibrils by an
attacking of strong acid (Chirayil et al., 2014).

Figure 4.2 SEM images of the extracted RS (a, b) original fiber, (c, d) alkaline

treatment, (e, f) bleaching, (g, h) acidic treatment.
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The chemical structures of cellulose before and after each treatment step are
characterized by FTIR spectroscopy, as shown in Figure 4.3. The peak at 3335 cm™
corresponds to the OH stretching vibration of the hydroxyl group in the cellulose. The
intensity of this peak increases after chemical treatment due to the removal of the non-
cellulose component. This key peak will be further modified and studied in this work,
as it plays a crucial role in the surface moisture absorption and hydrophobicity of
cellulose fibers. The presence of hydroxyl group (-OH) on the cellulose surface makes
it highly reactive towards many reactions and easy to modify (Chirayil et al., 2014;
Nasri-Nasrabadi et al., 2014). The native rice straw fiber shows two characteristic peaks
at 2917 and 2850 cm™, representing methylene (CH2) and methyl (CHs) stretching of
lignin and hemicellulose. After the treatment process, these two peaks decreased,
simultaneously with an increase of peak at 2895 cm™ of CH stretching vibrations (CH
and CH) in the cellulose fibers (Hozman-Manrique et al., 2023; Ng et al., 2015; Yan
etal., 2021).

! 2895
2917 2850
[

Wavelength (cm?)

Figure 4.3 ATR-FTIR spectra of the extracted RSC (a) original fiber,

(b) alkaline treatment, (c) bleaching, and (d) acidic treatment.

In addition, the small peak at 1729 cm™ associated with the carbonyl group

(C=0) from the acetyl and ester groups in hemicellulose and the ester linkages of
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carboxylic groups of ferulic and p-coumaric acids in lignin is decreased after alkaline
treatment and further disappeared after the bleaching process, indicating the full
removal of hemicellulose and lignin (Chirayil et al., 2014; Reddy et al., 2015). The
weakened and disappearance of the 1513 cm™ band, which is attributed to the C=C
stretching vibration of the aromatic group in the lignin structure, are found in treated
products. It is supported that lignin was completely removed after alkaline treatment
(Lu & Hsieh, 2012). (Chen et al., 2013; Ng et al., 2015; Reddy et al., 2015). The results
are in agreement with the SEM images discussed above. It is important to note that the
absorbent band at 1645 cm™ corresponds to the absorption band of -OH bending from
water molecules found in all spectra reflected a highly hydrophilic cellulose fiber
(Mohamad Haafiz et al., 2013).

Part Il Preparation of RSC treated with AKD (RSCD)

Commercial microcrystalline cellulose (MCC), which has a similar chemical
structure to RSC, was used in the screening step to find the best AKD treatment
conditions. The FTIR spectra of MCC and RSC are compared in Figure 4.4. The band
characteristics of cellulose are found at 3335 cm™ """ corresponds to the OH stretching
vibration of the hydroxyl group in the cellulose. The CH stretching vibrations (CH and
CH?>) band is located at 2895 cm in both spectra. The band at 1054 cm™* attributed to
C-O-C skeletal vibration of the pyranose rings in cellulose and peak at 898 cm™ of 1,4
S-glycosidic linkages also detected in both spectra (Chen et al., 2013; Ng et al., 2015;
Reddy et al., 2015). This supported the idea that the treatment process is an effective
process for extracting cellulose, yielding a high-purity cellulose similar to those
commercial products, which was also reported by Yan et al. (2021).

Ref. code: 25676322040459BOR



35

I

Com0 00 0 w0

Wavelength (cm™)

Figure 4.4 ATR-FTIR Spectrum of (a) MCC and (b) RSC.

This study uses Alkyl ketene dimer (AKD) as a modifying agent for hydroxyl-
rich cellulose. AKD will serve as a coating agent for cellulose by disrupting H-bonds
on the cellulose surface, preventing agglomeration of particles and enhancing the
properties of final PLA/cellulose composite films. The chemical reaction between the
lactone ring of AKD and the -OH groups of cellulose generates a -ketoester bond on
the cellulose surface, where its hydrophobic tails are arranged as hydrophobic side
chains (Kaewsaneha et al., 2022). Alkyl ketene dimer (AKD) is a widely used neutral
sizing agent due to its low cost, food-safe materials, and high hydrophobicity to
improve the water-resistance of paper in industries. The chemical structure of neat AKD
was characterized by FTIR spectroscopy, as shown in Figure 4.5. The strong bands at
2920 and 2850 cm™* correspond to the stretching vibrations of C-H in the AKD tails. In
neat AKD, peaks at 1848 and 1720 cm™ are attributed to the C=O in the lactone ring
and the C=C bond connected to the lactone ring, respectively. The band at 1848 cm™!
will be further utilized to confirm the successful grafting of AKD onto the cellulose

surface.
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Figure 4.5 FTIR spectrum of neat AKD.

There are 2 steps in the cellulose surface modification process. The MCC was
treated with AKD in a ball-milling machine and then heated in an oven at 110 °C for
15 h. The first step allowed for the good mixing of AKD with cellulose without using
a solvent. The two opponents were mixed in a dry state. The ball-milling was used to
homogenize the mixture by various mechanical stresses such as impact, compression,
friction, and shear to cause the well-mixing between AKD and cellulose fiber (Sitotaw
etal., 2021).

The second step is for the generated reaction between AKD and cellulose fiber
by heating at 110 °C for 15 h. Yuan and Wen (2018) suggested that the temperature for

increasing the reaction between the AKD and cellulose fiber is around 70 — 110 °C.
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Figure 4.6 The chemical reaction of AKD-treated cellulose surface.
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The chemical reaction among AKD and hydroxyl groups (-OH) of RSC was
confirmed by ATR-FTIR spectroscopy. The spectra of AKD-treated cellulose from
different reaction times are compared in Figure 4.7. The spectrum of the rice straw
cellulose with AKD (RSCD) showed a band at 3335 cm™, corresponding to the -OH
groups of cellulose. The two strong bands at 2920 and 2850 cm™ in neat AKD,
corresponding to the stretching vibrations of C-H in methylene and methyl groups of
AKD tails, are present in all spectra. The two bands at 1848 and 1720 cm™ correspond
to C=0 in the lactone ring, and C=C is connected to the lactone ring of AKD. The peak
at 1848 cm™ is observed from the products treated at the first 5 h reaction time.
However, this band completely disappeared after 15 h treatment time, simultaneously
forming a new band at 1735 cm™ of C=0 of linear ester, confirming the successful

grafting of AKD, generating a -ketoester bond on the cellulose surface.
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Figure 4.7 ATR-FTIR spectra of MCCD various reaction times.

The RSC is then treated with AKD at the optimum conditions from the previous
screening experiment. The reaction time for allowing reaction among -OH of cellulose
and lactone ring of AKD after the ball-milling process at 15 h and 110 °C was chosen.
The spectra of neat AKD, RSC, RSCD after ball milling, and RSCD after heating at
110 °C are compared in Figure 4.8. It is observed that a new forming j-ketoester bond
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is detected at 1735 cm™. This may lead to lower hydrogen bonding in the cellulose

structures (Ali Varshoei, 2013; Kaewsaneha et al., 2022).
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Figure 4.8 ATR-FTIR spectra of (a) neat AKD, (b) RSC, (c) RSCD after ball milling,
and (d) RSCD after heating at 110 °C.

The stability of the grafting AKD is further investigated by dissolving the
treated fibers in THF, and the washed sample is coded as RSCT. The FTIR spectra of
washed and unwashed samples are recorded and compared in Figure 4.9. It is clearly
observed that some hydrophobic tails from an excess AKD are removed, as reflected
by a decrease intensity of the 2920 and 2850 cm™ bands and the $-ketoester band at

1735 cm™. This confirmed that AKD is strongly bound to a cellulose surface.
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Figure 4.9 ATR-FTIR spectra of (a) RSCD before and (b) after washing with THF.

The surface morphology of the native rice straw, extracted rice straw cellulose,
and modified cellulose are studied using SEM. The morphology of the samples before
and after AKD treatment are compared in Figure 4.10. The particle size distribution of
the modified and unmodified cellulose is determined by the image-J software. The
particle size of RSC, RSC after ball milling, RSCD after heating at 110 °C, MCC, MCC
after ball milling, and MCCD after heating at 110 °C are 16.1 + 22.5, 15.9 + 26.2, 7.4
+54,33+£1.8,6.5+£57,and 3.5+ 2.1 um, respectively. The RSC and RSC after ball
milling were largely agglomerated, whereas well-separated particles were observed in
RSCD after heating at 110 °C. This suggests that AKD can serve as a surface-modifying
agent for cellulose by coating its surface and forming chemical bonds between the
lactone ring of AKD and the hydroxyl groups of cellulose. In addition, the MCC and
MCC, after ball milling, showed the results of different shapes and separated particles.
The MCC were separated better than MCC after ball milling, while small agglomerated
and uncertain shapes particles were represented in MCC after ball milling. This
corresponds to that without AKD and pressure force from the grinding balls during ball
milling, making MCC agglomerate. On the other hand, the MCCD after heating at 110
°C were better separated than the MCC after ball milling, with AKD coating on the
surface of the MCCD as though the results of RSCD after heating at 110 °C.
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Figure 4.10 SEM images of (a) RSC, (b) RSC after ball milling, (c) RSCD after
heating at 110 °C, (d) MCC, (e) MCC after ball milling, and (f) MCCD after heating
at 110 °C.

Part 111 Fabrication and characterization of PLA/RSC bio-composite films

The solvent casting method is the most simple method for the fabrication of
PLA bio-composite films. The PLA (matrix) and cellulose (reinforcement) are mixed
in a solvent by stirring at room temperature, and then the mixed solution is cast on a
plate. The uniform film takes shape after the solvent evaporates (Xu et al., 2024). This
method significantly influenced the mechanical properties of the composite materials.
Bharimalla et al. (2019) reported that composite materials prepared using the solvent
casting method exhibited superior results compared to the melt extrusion method,
owing to the enhanced dispersion of cellulose and the potential for hydrogen bonding
between the reinforcement and the matrix. Moreover, many other factors affect the
mechanical properties of composite materials, such as the distribution, shape, size of
particles, surface area, orientation, the nature of filler, interfacial interaction, chemical
structure, polarity, and concentration of matrix and filler (Basavegowda & Baek, 2021).
In the study, the PLA/RSC bio-composite films were prepared using the solvent casting
method. The contents of cellulose fiber were varied at 1, 3, 5, and 7 %wt. The
mechanical properties, morphology, water vapor permeability (WVP), and
hydrophobicity (water contact angle) of the PLA/RSC bio-composite films are

investigated. The material is aimed at use in smart packaging films. The films are
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expected to be completely compostable, biodegradable, and useful for various
applications.

The mechanical properties of neat PLA, PLA/Long RSC, and PLA/Short RSC
bio-composite films containing different particle loading are compared in Figures 4.11
- 4.14. All samples show a typical characteristic of brittle material in their stress-strain
behavior with high tensile strength and low elongation at break (Figure 4.11). With the
addition of Long RSC and Short RSC at 1 %wt. content, the tensile strength presented
a high value compared to neat PLA and decreased after adding more content. The
Young's modulus of PLA/Long RSC bio- composite films showed a high value when
adding content at 1 %wt. and then decreased due to the high stiffness of the Long RSC
itself (Lu et al., 2014). Meanwhile, Young's modulus of Short RSC showed no trend.
Regarding the elongation at break, the Short RSC slightly increased compared to neat
PLA. In contrast, the Long RSC showed elongation at break lower than neat PLA due
to the Long RSC having a shape and size similarly long fiber as shown in Figure 4.2 e,
the length is 10 times of Short RSC. This is indicated to the agglomeration and poor
distribution of Long RSC in PLA matrix (Paul et al., 2021). This is the reason to choose
the Short RSC to keep using waste materials to create a good quality product and

modify the surface for study in the next part.
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Figure 4.11 Stress-strain curves of PLA/long and short RSC bio-composite films at

various fiber contents.
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Figure 4.12 Tensile strength of PLA/long and short RSC bio-composite films at

various fiber contents.
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Figure 4.13 Young’s modulus of PLA/long and short RSC bio-composite films at

various fiber contents.
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Figure 4.14 Elongation at break of PLA/long and short RSC bio-composite films at

various fiber contents.

The nature of cellulose is hydrophilicity due to the cellulose presenting many
-OH groups in the structure. This is an important problem of poor compatibility and
interfacial adhesion between cellulose and PLA matrix. The hydroxyl groups of
cellulose have a strong attractive force, thereby leading to agglomeration. The
agglomeration of cellulose into the polymer matrix directly affects poor mechanical
properties. Surface modification of cellulose was a significant method before it was
used in composites with a polymer matrix (Mokhena et al., 2018). In this study,
modified the RSC surface by employing chemical reactions among -OH groups of
cellulose and lactone ring of AKD, improving compatibility between the cellulose
fibers and the PLA matrix.

The mechanical properties of neat PLA, PLA/RSC, PLA/RSCD, and AKD bio-
composite films containing different particle loading are compared in Figures 4.15 —
4.18. The neat PLA, PLA/RSC, and PLA/RSCD bio-composite films show a typical
characteristic of brittle material in their stress-strain behavior with high tensile strength
and low elongation at break (Figure 4.15). On the contrary, the PLA/AKD bio-
composite films show a typical characteristic of elastic material in their stress-strain
behavior with high elongation at break. The bio-composite films show increased tensile

strength upon adding 1% of RSC or RSCD. However, the strength linearly decreased
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with the increasing fiber content. The maximum strength value of 48.8 and 49.1 MPa
was observed for RSC and RSCD composites, respectively, which are 26.8% and
27.6% higher than neat PLA. This is because the cellulose reinforcements are attributed
to the hardening of the composite, allowing a transfer of stress to fillers in the domain
(Lu et al., 2014). However, no trend is observed in all samples regarding the tensile
modulus at all particle loading, but they have slightly better stiffness than neat PLA. In
terms of the elongation at break, the samples containing RSCD showed a slight increase
at 3 %wt. loading for the AKD-treated fiber, in which the value increased to 7.1 % and
then decreased. This is likely because the fibers may be randomly oriented in the PLA
matrix. Furthermore, the samples containing AKD show an elongation at break similar
to those adding RSCD. The increasing elongation at break of PLA/RSCD bio-
composite films is because AKD can improve the RSC distribution and enhance
interfacial interaction with the PLA matrix than RSC without AKD, as shown in Figure
4.23. The lower elongation values might be due to fiber agglomeration, particularly
with the increased loading content of cellulose fibers (Jonoobi et al., 2010). In contrast,
no improvement was observed in PLA/RSC without AKD treatment, even with
increased particle loading. This is likely because of the brittle nature of PLA and the

agglomerating nature of RSC (Paul et al., 2021).
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Figure 4.15 Stress-strain curves of PLA/RSC, RSCD and AKD bio-composite films

at various fiber contents.
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Figure 4.16 Tensile strength of PLA/RSC, RSCD and AKD bio-composite films at

various fiber contents.
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Figure 4.17 Young’s modulus of PLA/RSC, RSCD and AKD bio-composite films at

various fiber contents.
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Figure 4.18 Elongation at break of PLA/RSC, RSCD and AKD bio-composite films

at various fiber contents.

Furthermore, the size of particles can also affect the mechanical properties of
PLA composites. Abdulkhani et al. (2014) studied PLA nanocomposite films prepared
with cellulose nanofiber (CNF) using a solvent-casting method. The surface of CNF
was modified to improve the distribution of CNF in the PLA matrix. The materials
showed good mechanical properties, especially the elongation at break with the NCF
content at 3 and 5 %wt., as the cellulose fiber has nano size, which leads to the good
distribution and orientation of nanofiber in the PLA matrix. In this study, the
mechanical properties of PLA/RSCD and PLA/MCCD bio-composite films containing
different particle loading are compared in Figures 4.19 — 4.22. The PLA/MCCD bio-
composite films show a typical characteristic of ductile material in their stress-strain
behavior with high elongation at break, especially loading MCCD content at 5 %wt.,
the highest value is 59.2 MPa. At the same time, PLA/RSCD showed an increase in the
elongation at break at 3 %wt. content and then decrease. The particle size of MCCD is
smaller than RSCD, as shown in Figure 4.10 ¢ and f, in which the smaller size of
cellulose can increase the surface area for more interfacial interaction and distribution

in the PLA matrix (Lu et al., 2014). Thus, the good mechanical properties of
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PLA/MCCD bio-composite films may indicate the well-interfacial
distribution between MCCD and PLA matrix.
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Figure 4.19 Stress-strain curves of PLA/RSCD and MCCD bio-composite films at
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Figure 4.20 Tensile strength of PLA/RSCD and MCCD bio-composite films at

various fiber contents.
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Figure 4.21 Young’s modulus of PLA/RSCD and MCCD bio-composite films at

various fiber contents.
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Figure 4.22 Elongation at break of PLA/RSCD and MCCD bio-composite films at

various fiber contents.
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The cross-section morphology of PLA/RSC and PLA/RSCD bio-based
composite films from the tensile fracture was investigated by SEM, which were
PLA/RSC and PLA/RSCD bio-composite at 3 %wt., respectively, as seen in Figure 4.2 3.
The PLA/RSC bio-composite films represent the agglomeration of RSC indicating its
poor distribution and interfacial interaction of RSC in the PLA matrix as shown in
Figure 4.23 a, b. RSC is hydrophilic and has different polarity to PLA (Lu et al., 2014).
In this case, the fracture surface of PLA/RSC bio-composite films shows a large hole
of RSC agglomeration after fracture. Moreover, the RSC with AKD can distribute in
the PLA matrix more than the RSC without AKD, as shown in Figure 4.23 c, d. The
single fiber dispersed in the PLA matrix due to the AKD will serve as both coating
agents for cellulose by reaction with the hydroxyl group on the cellulose surface,
preventing agglomeration of particles and enhancing the compatibility of
PLA/cellulose composite films (Paul et al., 2021).

Fracture/'hold
RSC agglomeration

single fiber

Figure 4.23 Cross section image of (a, b) PLA/RSC and (c, d) PLA/RSCD bio-based
composite films at 3 %wt.
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The effect of RSCD on the water barrier and the surface wettability and
hydrophobicity of the PLA/RSCD bio-composite films was examined using the water
vapor permeability test (WVP) and water contact angle (WCA) measurement. The
results are summarized and compared in Figure 4.24 — 4.26, the WVP of neat PLA film
is 7.55 + 0.93 g-mm/m?-day. There is no significant change in WVP values at 3 %wt.
loading for both RSC and RSCD. The WVP values of PLA/RSC and PLA/RSCD are
7.65 + 1.24 and 5.92 + 0.89 g-mm/m?-day, respectively. However, upon increasing the
particle loading to 7 %wt., the WVP value increased to 9.83 + 1.76 g-mm/m?-day. This
is likely due to the heterogeneous distributions of RSCD in the PLA matrix, which
create more microvoids, leading to a higher permeability. (Paul et al., 2021). The
hydrophobicity of PLA/RSCD bio-composite films was examined. The WCA value of
the PLA/RSC bio-composite films at all RSC loading is similar to neat PLA, in which
the values are in the range of 72.3-74.1°. These results proved that the WCA values
remain almost constant regardless of the RSC content. In contrast, the value of films
containing RSCD increased to 91.5 = 4.7° at 7 %wt. This confirms that adding RSCD
improves the surface hydrophobicity of PLA as part of AKD, and RSCD may migrate

to/and stay at the surface.
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Figure 4.24 Water vapor permeability of PLA/RSC bio-composite films at various

fiber contents.
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Figure 4.25 Water contact angle of PLA/RSC and RSCD bio-composite films at

various fiber contents.
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Figure 4.26 WCA images of PLA/RSC and RSCD bio-composite films at various

RSC contents.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Rice straw cellulose (RSC) was successfully extracted by chemical treatment
from rice straw (RS). The cellulose fibers obtained from these methods have a diameter
of 7.4 = 5.4 pm. RSC was then modified through a solvent-free process ball-milling
technique in the presence of AKD to induce the reaction between AKD and RSC. The
chemical reaction led to chemical bonding between the lactone ring of AKD and
hydroxyl groups of the RSC to form B-ketoester bonds when heated at a temperature of
110 °C for 15 h on the RSCD surface. The morphology studies of RSCD showed
relatively good fiber separation with a lower degree of accumulation due to the presence
of hydrophobic AKD molecules on the fiber surface. The PLA/RSC bio-composite
films with different concentrations from 0 — 7 wt.% were produced using the solvent
casting method. The incorporation of RSCD did not have a significant effect on the
permeability of films. Nonetheless, the increase of the RSCD ratio in a polymer
composite exhibited the compatibility of the RSCD, leading to significantly improved
hydrophobicity on the surface. In addition, the composites containing 3 %wt RSCD
showed a slight increase in elongation at break, likely due to a good distribution of the
fibers. However, other factors, e.g., the fiber orientation and the L/D ratios, may also
play some role. Further study will be conducted to examine the origin of this

phenomenon. Nonetheless, the materials have a high potential as smart packaging films.

5.2 Suggestions and Recommendations
1. Reducing the size of RSC to nanoscale through enhanced reaction conditions or
elevated chemical concentration.
2. Modification of RSCD through various amounts of AKD until the hydroxyl
group is reduced or removed to enhance hydrophobicity and compatibility with
PLA matrix.
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