

AN AUTOMATIC WAREHOUSE INVENTORY

MONITORING SYSTEM BASED ON TEXT EXTRACTION

USING COMPUTER VISION

BY

NITIWAT ANANVAITHAYAKIJ

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING (LOGISTICS AND SUPPLY CHAIN

SYSTEMS ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2022

Ref. code: 25656522040481YEF

(1)

Independent Study Title AN AUTOMATIC WAREHOUSE INVENTORY

MONITORING SYSTEM BASED ON TEXT

EXTRACTION USING COMPUTER VISION

Author Nitiwat Ananvaithayakij

Degree Master of Engineering (Logistics and Supply Chain

Systems Engineering)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Advisor Associate Professor Warut Pannakkong, Ph.D.

Academic Years 2022

ABSTRACT

Nowadays, most of product companies around the world do sales forecasting and

inventory management to give themselves benefits to be able to take care of all customers’

demand and avoid the shortage of supplies that might cause a lost in sales. Most companies

then require at least a warehouse whether it is an in-house or outsourced warehouse to store

products safely and be able to deliver them to assigned destinations. That is why warehouse

management is an inevitable factor when we consider maximizing supply chain’s profit.

In order to ensure that operating warehouses perform product storage correctly,

companies usually request for an inventory checking report from warehouses, some for

annually and some for semi-annually. This report normally presents meaningful keys that

represent identity of each product such as product ID, pallet’s tag ID, location of pallet on

the rack, and quantity of products in that pallet. However, this request indirectly sends non-

benefit impacts to the warehouse since inventory checking has been done manually which

requires several workers to unload, check, and load pallets back on the rack and also needs

to stop all transporting schedule to do the checking. With the following impacts, warehouse

Ref. code: 25656522040481YEF

(2)

needs to reschedule its normal activities and sometimes even postpone the delivery

appointment. This study is going to find the solution for these drawbacks by replacing

manual inventory counting with an automatic warehouse inventory monitoring system

based on text extraction with the use of computer vision that can detect product label

attached on every pallet on the rack, recognize and extract key information from label, and

send digital text to store in document for comparing with the master data. Under the field

of computer vision, technology of image processing will be applied in the part of detecting

product label from captured images while optical character recognition will be applied to

extract text from cropped image of label. With the help of technology, warehouse can

reduce time used and decrease human error in the inventory checking process.

Keywords: Inventory management, Computer vision, Image processing,

 Optical character recognition, Text extraction, Labels

Ref. code: 25656522040481YEF

(3)

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest appreciation to Associate Professor

Dr. Warut Pannakkong who has been a long time both advisor and supporter for this

independent study. His support, guidance, and assistance have been invaluable throughout

this journey. His expertise in the field of artificial intelligence and computer vision eased

my study and work a lot. The insightful feedback and encouragement have been

instrumental in shaping the direction and quality of this work. I am grateful for the

opportunity to learn from his wisdom and experience.

I would also like to extend my heartfelt thanks to KNS Logistics Service Co., Ltd.

and the warehouse staff, who provided valuable assistance, insights, and contributions to

different aspects of this independent study. Their dedication, expertise, and collaboration

have significantly enriched the outcomes and enhanced the overall quality of this work.

Without the company, there would be no collection of training dataset that can improve the

model up to this satisfied level.

Furthermore, I am grateful to Sirindhorn International Institute of Technology that

provided the necessary resources and facilities to conduct this independent study. The

support has been crucial in enabling the successful completion of this work.

My sincere appreciation also goes to my colleagues and friends who have offered

their support and encouragement throughout this endeavor. Their insightful discussions,

constructive feedback, and motivation have been truly inspiring and have helped me

overcome challenges along the way.

In conclusion, I am humbled and honored to have had the opportunity to work on

this study, and I am grateful to everyone who has contributed in any way. Your support

and collaboration have made this journey fulfilling, and I am indebted to each and every

one of you.

 Nitiwat Ananvaithayakij

Ref. code: 25656522040481YEF

(4)

TABLE OF CONTENTS

 Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (3)

LIST OF TABLES (6)

LIST OF FIGURES (7)

CHAPTER 1 INTRODUCTION

1.1 Background and Motivation 1

1.2 Problem Statement 1

1.3 Objectives 2

1.4 Study Limitations 2

CHAPTER 2 REVIEW OF LITERATURE 3

2.1 Related Research 3

2.2 Relevant Theories 5

2.2.1 Pre-processing Original Image 5

2.2.2 Extracting Text from Image 7

CHAPTER 3 DESCRIPTION OF STUDY 9

3.1 Methodology 9

3.2 Activities 11

3.2.1 Study of Image Processing and Text Extraction 12

3.2.2 Construction of Label Detection Model 17

Ref. code: 25656522040481YEF

(5)

 3.2.2.1 Image Pre-processing 18

 3.2.2.2 Shape Detection 19

 3.2.2.3 Perspective Adjustment and Cropping 19

3.2.3 Construction of Text Extraction Model 20

 3.2.3.1 Three Key Information Cropping 20

 3.2.3.2 Three Key Information Extraction 21

3.2.4 Collecting Samples of Product Labels from Warehouse 21

3.2.5 Evaluation of Model Performance 22

CHAPTER 4 RESULTS AND DISCUSSION 25

 4.1 Results 25

 4.2 Discussion 26

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 29

 5.1 Conclusion of the Project 29

 5.2 Knowledge Gained 30

 5.3 Recommendations for Future Work 31

REFERENCES 32

APPENDIX

 APPENDIX A 36

BIOGRAPHY 40

Ref. code: 25656522040481YEF

(6)

LIST OF TABLES

Tables Page

2.1 Comparison Between Past Researches and This Study 5

3.1 Gantt Chart of Scheduled Activities 12

3.2 Model Performance Evaluation Template 24

4.1 Label Detection Performance 25

4.2 Item Code Extraction Performance 25

4.3 Pallet Tag Extraction Performance 26

4.4 QTY Extraction Performance 26

Ref. code: 25656522040481YEF

(7)

LIST OF FIGURES

Figures Page

2.1 Output of Image Processing on Invoice 4

2.2 Output of Text Extraction from Taxi Receipt 4

2.3 Input Image After Performing Canny Edge Detection 6

2.4 Input Image After Performing Contour Detection 7

2.5 Process of Line Segmentation 8

2.6 Process of Word Segmentation 8

2.7 Process of Character Segmentation 8

3.1 Flowchart of Methodology 10

3.2 Original Input Image 13

3.3 Grayscale Image 13

3.4 Grayscale and Blurred Image in Both Axes 14

3.5 Image Adjusted by Thresholding Technique 15

3.6 Cropped Image of Apple 15

3.7 Axes Arrangement and Coordinates of Cropped Section 16

3.8 Rectangular Shape Detection through Finding and Drawing Contour 17

3.9 Original Input Image 18

3.10 Preprocessed Image 18

3.11 Shape Detection Performed on Original Image 19

3.12 Detection of Product Label 20

3.13 Cropped Pallet Tag Image 21

3.14 Cropped Item Code Image 21

3.15 Cropped QTY Image 21

3.16 Three Text Information Extracted from Image 21

3.17 A Training Dataset of Input Image 22

3.18 An Example Image of Normal Case Situation 23

3.19 An Example Image of Special Case Situation 23

Ref. code: 25656522040481YEF

(8)

4.1 Blurred Image 27

4.2 “RECEIVED” Mark Blocking Text Image 28

Ref. code: 25656522040481YEF

1

CHAPTER 1

INTRODUCTION

In this chapter, introduction to an automatic inventory monitoring system based on

text extraction using computer vision is presented along with its background and

motivation, current problems that the warehouse is encountering, objectives, and

limitations of this study.

1.1 Background and Motivation

Since most of the product companies, retailers, or even manufacturers require at

least one warehouse to store their products, goods, or raw materials respectively, it is

rational that those companies would like to track their inventories stored in the contracted

warehouses. They usually request their partnered warehouses to send inventory checking

report for every year or more frequently like half a year. KNS Logistics Service Co., Ltd.,

a 3PL company which provides storage and warehousing service mainly to Toshiba

Thailand, has been requested for this kind of report too. However, it takes too much

manpower and time to execute which will be explained in detail in the next sub-section.

This study is then not only my independent study but also a collaborated study between

SIIT and KNS aiming to improve the process of inventory checking by applying computer

vision technology.

1.2 Problem Statement

According to the inventory checking activity that most warehouses are requested to

perform, common problems are that they have to terminate all other usual warehouse

activities and spend too many hours to finish this checking activity which normally requires

a few working days. This can lead to a loss of sales that warehouses possibly make.

Moreover, the current inventory checking process is done manually by warehouse’s

employees. For KNS Logistics Service Co., Ltd., even it has an AS/RS system in the

warehouse, employees still need to unload, check, and load pallets back on rack when

Ref. code: 25656522040481YEF

2

performing the inventory checking process. This can create more chance of human error

and also decrease the trustworthy of the warehouse to its supply chain.

In response to these two critical problems; long inventory checking process time

and high possibility of human error, this study is focusing on developing an automatic

inventory monitoring system that will reduce checking time and human error by applying

the current popular technology, computer vision, which will be conceptually explained and

demonstrated later on.

In addition, each pallet stored on rack in KNS’s AS/RS system has a label attached

on which contains text information such as product’s code, pallet’s tag number, and number

of quantity. Traditional inventory checking process at KNS is to check whether these

information on pallet correctly matches with information in the master data that is stored

as .xlsx format or not.

1.2 Objectives

This study aims to achieve three objectives which can be divided into three phases.

1. To develop the system that is capable of detecting label from the collected input images,

 recognizing 3 text information on product label image; Tag Number, Item Code, and

 Quantity Number, and transforming them into digital text..

2. To evaluate the performance of the invented inventory monitoring system through

 testing images collected from warehouse of KNS Logistics Service Co., Ltd. with the

 required overall accuracy of 85%.

1.3 Study Limitations

All text information represented on product label in this study is printed in number

or English language only which makes it easier to be recognized than the handwritten one

or the other language one. Moreover, dataset used in this study is collected from a single

warehouse, KNS Logistics Service Co., Ltd. which means other warehouses might have

different product label’s configuration.

Ref. code: 25656522040481YEF

3

CHAPTER 2

REVIEW OF LITERATURE

2.1 Related Research

 For the past few years, artificial intelligence has been in the trend of research and

development which allows researchers to apply computer vision to be used in various

industries. Several new technologies that have just been introduced to the world are also

based on computer vision. Szelisk (2011) defined computer vision as a field aiming to

describe images by interpreting, reconstructing, and extracting properties from them such

as shapes, colors, and distances. There are different other names that can be defined as

computer vision such as machine vision system, visual image system, and image system

(Fernandes, Dórea, & Rosa, 2020). Since computer vision can be applied to any kind of

problems that relate to images or videos, some articles found out that this technology can

be helpful in defect detection problems. Raveendran and Chandrasekhar (2022) integrated

computer vision techniques and deep learning model to inspect and classify defects in

semiconductor manufacturing. He et al. (2021) applied image processing which is a part of

computer vision to develop machine positioning. Apart from manufacturing industry,

Fernandes, Dórea, & Rosa (2020) used computer vision in the field of animal science. The

researchers monitored animal’s behavior, measured phenotypes of interest such as body

weight and condition score, identified live animal, and assessed beef cuts composition

through computer vision and sensor technologies.

 There are several articles in the recent years that integrated two technologies of

computer vision which are image processing and text recognition and applied them to solve

their interested problems like extracting text information from images taken from cameras

or phones. Although the previous researchers applied this knowledge to many fields such

as bill extraction and taxi receipt extraction which are illustrated in Figure 2.1 and Figure

2.2 respectively, none of them use this capability to do text extraction from product label

attached to every pallet on warehouse’s racks which is illustrated in Table 2.1. Moreover,

Ref. code: 25656522040481YEF

4

actual data from KNS warehouse will be used in this in study which will enhance this study

to have more potential in the industrial world.

Figure 2.1 Output of Image Processing on Invoice

Figure 2.2 Output of Text Extraction from Taxi Receipt

Ref. code: 25656522040481YEF

5

Table 2.1 Comparison Between Past Researches and This Study

2.2 Relevant Theories

 In order to apply knowledge of computer vision technology to solve inventory

checking problem in the warehouse, OpenCV and Tesseract OCR are two crucial engines

to build an automatic inventory monitoring system. The first engine is for doing image

processing which aims to exclude noise and unnecessary parts from original image and

make an interested text part much easier to be later on extracted by applying some filters.

Then the second engine does the job to recognize and extract text information from image

and send it to specified destination.

2.2.1 Pre-processing Original Image

 Image processing is a technique used to pre-process an input image which all

collected images must go through. This process needs to be done deliberately because

Tesseract OCR in the next process may provide a poor-quality text extraction if its input

images are not perfectly pre-processed. OpenCV has been a current well-known tool to

perform an image processing. It is an open source computer vision library that contains a

collection of image processing algorithms developed by Intel (Sidhwa et al., 2018) It

provides various activities that users can do with their images such as resizing, color

detection, and shape detection through Python language. Sidhwa et al. (2018) used

OpenCV to detect bill or invoice from image and filter out unnecessary noise before

passing it to next process. In their case, Canny edge detection function was initially used

to convert original image into black and white where white lines separate two high contrast

areas which representing edge of the invoice as shown in Figure 2.3. Then the next process

Ref. code: 25656522040481YEF

6

was executed by contour detection function which draws contour in color along the edge

that was detected earlier as shown in Figure 2.4. Article of Yindumathi, Chaudhari, &

Aparna (2020) also mentioned that OpenCV has been widely used to do image’s edge

cutting. Changing image’s color from RGB to grayscale or binary is also available in

OpenCV. This approach allows computer to detect contours or shapes easier than original

color. This type of image improvement was one process of OCR process flow in an article

of Thorat et al. (2022). However, there are some articles selected other techniques to pre-

process original images. For example, improved SSD network was developed and used by

Liu et al. (2020) to locate taxi’s receipt information region in original images instead of

using image processing.

Figure 2.3 Input Image After Performing Canny Edge Detection

Ref. code: 25656522040481YEF

7

Figure 2.4 Input Image After Performing Contour Detection

2.2.2 Extracting Text from Image

 After noise and unnecessary parts of image have been cropped out and interested

parts have been pre-processed, text information now should be easily extracted. One

popular text extraction technique that has been widely used is optical character recognition

or OCR. Tesseract is one of the open-source OCR engines that was developed at Hewlett

Packard (Sidhwa et al., 2018). It applies text segmentation to extract printed or handwritten

text from images. There are three levels of segmentation process which are line

segmentation, word segmentation, and character segmentation as shown in Figure 2.5,

Figure 2.6, and Figure 2.7 respectively. The first level aims to classify text information by

lines and then moves to the next level that finds space between words in each line that was

previously detected to perform word segmentation. The last level is to dilute words into

the smallest level, characters. Sidhwa et al. (2018), Yindumathi, Chaudhari, & Aparna

(2020), Kumar et al. (2020), and Thorat et al. (2022) all used Tesseract OCR to convert

text information in any images into digital text format although some had used different

pre-processing techniques. However, Liu et al. (2020) used different approach to do

character recognition. The researchers selected to use CNN-GRU combined neural network

to recognize text instead of three levels of segmentation. They proposed their text

recognition methodology for taxi receipt based on neural network without applying

Ref. code: 25656522040481YEF

8

traditional image processing and ordinary optical character recognition because their

problem was quite different from normal situation. Their dataset, taxi receipt, contains bad

printing and irregular arrangement of text which ordinary text segmentation cannot solve.

Figure 2.5 Process of Line Segmentation

Figure 2.6 Process of Word Segmentation

Figure 2.7 Process of Character Segmentation

Ref. code: 25656522040481YEF

9

CHAPTER 3

DESCRIPTION OF STUDY

According to those literatures recited in Chapter 2, this study applies two

techniques, image processing and text extraction, to be a core knowledge to perform several

step operations defined as methodology which will be represented as flow chart. This

chapter also provides an activity plan which is called Gantt Chart. Details of each activity

will be presented too in this chapter.

3.1 Methodology

There are two big model construction to be performed following knowledge gained

from Chapter 2. The first model is to construct label detection model that is able to perform

image processing on input images. Then the second model is a text extraction model that

is able to extract three key text information from the preprocessed image of product label.

OpenCV library from computer vision is initially used to perform image processing. The

first model should be developed to be capable of pre-processing an image, detecting

product label from captured image, and cropping out unnecessary parts. Then OCR is

applied through Tesseract OCR library to develop a text extraction model to be capable of

extracting text information from label image and converting it from image format to text

format. The extracted text is expected to be sent out of the system, automatically compared

with the master data, and updated the master file. However, there are more details in

between than these two big processes to achieve this study’s goals.

Figure 3.1 represents flowchart of methodology which each element of it will be

explained in detail later on this sub-section. In this figure, each activity needs to be

executed to respond three objectives identified in Chapter 1. An initial process of this

study’s methodology is to do literature review related to image processing, text extraction,

and computer vision. Then KNS Logistics Service Co., Ltd. comes to take a vital role as it

provides the dataset for this study in form of a set of samples of product labels with an

amount around a hundred labels. During this initial phase, OpenCV and Tesseract OCR

Ref. code: 25656522040481YEF

10

library need to be studied in order to be able to use as main tools to construct a model that

can both perform image processing and text extraction in sequence.

Figure 3.1 Flowchart of Methodology

 After knowledge and dataset are prepared, a model is ready to be constructed.

Python is a language used to construct a script for both models. OpenCV library is used

first. In this phase, input images are required to be preprocessed; for example, cropping out

unnecessary sections and leaving only label part. Then Tesseract OCR library is used next

to construct a Python script that can convert text information in image format to text format

Ref. code: 25656522040481YEF

11

and also be able to send this text to check similarity with the master data and update the

master file.

 When the model can fully operate, performance evaluation will be done to assure

that inventory monitoring system can predict text with satisfied accuracy. The testing

images that individually contain product label directly came from KNS Logistics Service

Co., Ltd. which have the same pattern of information fulfillment. So, it is important to

make sure that all testing images were captured under the same environment and aligned

on the same perspective so that this study could simulate as close as possible to what would

actually happen when this system is launched into the warehouse.

 At this point of the entire methodology, this study is able to produce an automatic

inventory monitoring system based on text extraction using computer vision that can be

applied to help KNS Logistics Service Co., Ltd. to reduce process time and human error

for doing annual or semi-annual inventory checking. There are other several advantages of

this study not for only one warehouse company but also for the whole supply chain to

recognize how computer vision technology is worth to invest and how it can save cost for

every element of the supply chain.

3.2 Activities

In order to follow the mentioned flowchart and be able to complete every task in

time, all activities should be addressed in the schedule manner. This following Gantt Chart

in Table 3.1 represents each activity that needs to be executed and its duration in the manner

of period of time. Moreover, details of each activity in Gantt Chart are thoroughly

explained so that readers can follow and apply knowledge gained from this study to their

tasks or projects.

Ref. code: 25656522040481YEF

12

Table 3.1 Gantt Chart of Scheduled Activities

The abbreviations in the Gantt Chart are explained below:

PP = Proposal and Progress Presentation (1 Apr)

FD = Final Defense (24 Jun)

3.2.1 Study of Image Processing and Text Extraction

 This is the first process to be performed after all literatures were reviewed. I started

learning how to construct the label detection model first and then following by how to

construct the text extraction model. Both of them were constructed and executed through

Python script using Visual Studio Code as a code editor software program. There are two

main libraries that need to be installed in order to construct the two models. OpenCV is the

first one. Open Computer Vision is an open source of computer vision that contains a

collection of image processing functions. PyTesseract is another library that needs to be

installed. It provides an interface for using Tesseract OCR engine which is a technology

that is capable of extracting text from images.

Ref. code: 25656522040481YEF

13

 After all libraries are set, image processing is always the first process to perform to

any input image. There are five functions that I found useful in this study which will be

briefly explained and illustrated through the change of Figure 3.2.

Figure 3.2 Original Input Image

cv2.cvtColor

Changing color of the image is the first function to be used. Normally, images have

three channels of color which are red, green, and blue which is difficult for computer to

process. This is why it needs to be changed to one channel only which is grayscale. Figure

3.3 illustrates how image is changed according to this function.

Figure 3.3 Grayscale Image

Ref. code: 25656522040481YEF

14

cv2.GaussianBlur

Next function is to blur image which is important because it helps reduce unwanted

noise and remove high-frequency details of the image but retain main structure and edges

of image which make it easier to detect interested components from blurred image than

clear image. Users are allowed to configure whether they want to blur the image in X-axis,

Y-axis, or both axes. They are also allowed to set the level of blur through number. Figure

3.4 illustrates an example of blurred image.

Figure 3.4 Grayscale and Blurred Image in Both Axes

cv2.threshold

The third function is a key factor of label detection model. This function converts

color or grayscale images into binary images. It allows users to specify threshold value that

when any pixel has value over the threshold, it will be converted to whether black (0) or

white (255) as the users defined. For example, if the threshold is set as 200 and the pixel

that is over the threshold is set to be white (255), any pixels that holds a value higher than

200 will be converted to white while any pixels that holds value below 200 will be

converted to black which is shown in Figure 3.5. Since the labels of this warehouse are

printed in white color and stamped onto the packaging of product which has different color,

this thresholding function then is very useful to help detect product label.

Ref. code: 25656522040481YEF

15

Figure 3.5 Image Adjusted by Thresholding Technique

image[y1:y2, x1:x2]

This function has a purpose to keep only interested segment from an original image.

It can be considered to be a cropping function. In order to specify the coordinates of

interested area, users need to identify a dimension of the whole image first.

“print(image.shape)” is a prerequisite function that can be used to identify a dimension of

the image. This function will identify the height and length of the image respectively. After

the dimension is known, the users now can determine which part of the image they want to

crop through (x1,y1) and (x2,y2) where point 1 represents top left corner while point 2

represents bottom right corner of the cropped image. From this example, an original image

has the height and length of 667 and 1,000 pixels respectively. If an apple in the middle is

an interest, trial and error is done to determine two coordinates that will crop out only apple

from original image. The result is shown in Figure 3.6.

Figure 3.6 Cropped Image of Apple

Ref. code: 25656522040481YEF

16

 However, the users need to be noted that the arrangement of axes in computer vision

is not usual as conventional axes. The origin is always at the top left corner of an image

which states the coordinate of (0,0). X-axis starts counting with positive value when the

axis goes on to the right which seems to be the same with conventional one. Y-axis however

starts counting with positive value when the axis goes down. In this case of cropping apple

out of an original image, it has been found that point 1 of the cropped section should be

(510,510) and point 2 should be (667,700) which are indicated in Figure 3.7.

Figure 3.7 Axes Arrangement and Coordinates of Cropped Section

cv2.findContours and cv2.drawContours

 Since the image now is in black and white, an interested section in the image is

ready to be detected through its edge and structure. These functions play an important role

to find contours and draw a curve or a line on the edge of the contours. Actually, there are

several sub-functions that the users can utilize to find contours. For this case, I used

“cv2.CHAIN_APPROX_NONE” so that there will be no approximation on edges of

contours which means the result will be more precise. Moreover, the users can add more

condition to the process of finding contour. For example, it can be stated to find only

contour that contains four curves so that only rectangular shape contour will be detected

and drawn with curve or line. So, this function can apply to perform shape detection too.

Figure 3.8 represents a contour which is in rectangular shape.

Ref. code: 25656522040481YEF

17

Figure 3.8 Rectangular Shape Detection through Finding and Drawing Contour

 Another part of the study moves to how to perform text extraction through the

library called PyTesseract. Fortunately, there is only one function that needs to be studied

which is “pytesseract.image_to_string”. This function will utilize Tesseract OCR engine

for text extraction on the preprocessed image. The engine technically perform a series of

processes to extract text which were already explained in Chapter 2, including text

localization, character segmentation, feature extraction, and recognition. During the study,

one important technique that I learned to increase an accuracy of text extraction is to input

an image containing only interesting text instead of the whole image. This technique then

requires a few more times of image cropping.

3.2.2 Construction of Label Detection Model

 When all libraries and functions were installed and studied, the first model of label

detection could be now constructed. The structure of label detection was designed to have

three main parts. Pre-processing an image is the first part. This is a part where an original

input image meets the system. When an image is perfectly preprocessed, the next part of

the model will attempt to detect the rectangular shape that represents the product label. If

the label is detected, the last part will adjust its perspective and crop out unnecessary

section so that there will be only product label comes out as an output. Following three

sub-sections represent each part of the label detection mentioned above.

Ref. code: 25656522040481YEF

18

3.2.2.1 Image Pre-processing

 From the study in section 3.2.1, I selected to perform changing the color of an image

from RGB to grayscale, blurring an image both X and Y axis, and applying thresholding

technique to an image respectively defined as an image pre-processing. Figure 3.10

illustrates the preprocessed image of Figure 3.9 that already went through these processes.

At this point, a rectangular shape section obviously appears upon an input image which

represents the interesting section, product label. However, since each input image has its

own color of product’s package and different brightness, the threshold value in the

thresholding function needs to be adjusted manually every time.

Figure 3.9 Original Input Image

Figure 3.10 Preprocessed Image

Ref. code: 25656522040481YEF

19

3.2.2.2 Shape Detection

 From the preprocessed image received from 3.2.2.1, it is quite a simple task to

detect contour from black and white image because the structure and edge of the label are

so obvious. This part of the model requires to use function finding and drawing contours

with the condition that drawing only occurs when the contour have four curves so that it is

surely a rectangular contour. Moreover, there is an additional condition I put into the model

which relates to an area that the contour covers. There is a minimum area set as a threshold

so that this model still operates smoothly when there is another rectangular shape in an

input image. Figure 3.11 illustrates a shape detection process executed on a preprocessed

image from previous process but displaying the highlighted contour on an original image.

Figure 3.11 Shape Detection Performed on Original Image

3.2.2.3 Perspective Adjustment and Cropping

 The last part of the label detection model is to adjust the perspective of the label

from whatever perspective it lies on to conventional perspective. This part will also crop

out unnecessary section and remain only a label image. This process was done through two

main functions which are “cv2.getPerspectiveTransform” and “cv2.warpPerspective”.

Figure 3.12 presents the product label after passing through all processes of the label

detection model.

Ref. code: 25656522040481YEF

20

Figure 3.12 Detection of Product label

3.2.3 Construction of Text Extraction Model

 Now that the label of product is in the pocket, next step is to extract text information

from it. In this case, there are three key text information needed to be considered and

extracted which are pallet tag, item code, and quantity number. For a traditional inventory

checking process, warehouse staff would manually compare these three information on the

product label to the one recorded in the master file. Extraction of these three information

then is the goal of this model. It can be seen in Figure 3.12 that each text information

locates in different locations of the label. From the study in 3.2.1, the less text information

in an image increases the accuracy of text extraction process. That is why there are two

parts in text extraction model. First part focuses on cropping these three key text

information into three different images. Another part focuses on using a function in

PyTesseract library to extract text from each image.

3.2.3.1 Three Key Information Cropping

 Since there are three locations of text, there then are three separate images of each

text information. Fortunately, location of each text approximately locates at the same

coordinates for all label. That allows us to be able to use the same setting of cropping

function or at most adjust for a little. Figure 3.13, 3.14, and 3.15 illustrate cropped images

of three different text information.

Ref. code: 25656522040481YEF

21

Figure 3.13 Cropped Pallet Tag Image

Figure 3.14 Cropped Item code Image

Figure 3.15 Cropped QTY Image

3.2.3.2 Three Key Information Extraction

 Each text image then needs to be extracted using a “pytesseract.image_to_string”

function through PyTesseract library which was explained in 3.2.1. This process directly

relates to the resolution of an input image. If the input image is captured with high

resolution, it is easier for the Tesseract OCR engine to extract text in it. Figure 3.16

illustrates three outputs of three text extractions on pallet tag, item code, and quantity

number.

Figure 3.16 Three Text Information Extracted from Image

3.2.4 Collecting Samples of Product Labels from Warehouse

 After both models were constructed, a dataset of input images should be collected

so that evaluation of the models can be conducted. For this process, I went to the warehouse

Ref. code: 25656522040481YEF

22

of KNS Logistics Service Co., Ltd. to collect as much as possible of images. There are over

a thousand pallets stored in their AS/RS system which all of them have a product label on

but only images of pallets that are already unloaded from the system aiming for being

transported can be taken. So, there are totally 105 images of product label that I collected

from the warehouse. Figure 3.17 presents one part of the collection of images that will be

used as a training dataset for evaluating performance of the models while Figure 3.9 is an

example of this dataset.

Figure 3.17 A Training Dataset of Input Images

3.2.5 Evaluation of Model Performance

 Now both models and training dataset are prepared for performing performance

evaluation. First, I decided to join label detection and text extraction models together so

that it would be easier in model testing process because both label detection and text

extraction would be executed after one click of running the model. The dataset was also

classified into two categories; normal case and special case. Normal case of input image is

that the product label is located on the product package clearly without any blockers that

can be unexpected noise to the label detection process and that all three parts of text

Ref. code: 25656522040481YEF

23

information which are printed on the label can be visible clearly without any noise such as

blurred image. Figure 3.18 is a good example representing image that is classified into

normal case situation. On the other hand, special cases are the images that were blurry

taken, had unusual markings blocking interesting text, had other labels overlapping the

interesting product label, had plastic film sealing over the product label, had the product

label stamped at the edge of the product package which make it difficult to detect label’s

edge, or even had a strap lying upon the product label. Figure 3.19 is a good example of

image that is classified into a special case situation because there are two more labels on

the product package which overlaps the interesting label.

Figure 3.18 An Example Image of Normal Case Situation

Figure 3.19 An Example Image of Special Case Situation

Ref. code: 25656522040481YEF

24

 After the data preparation was done, there are then total 61 images that are classified

into the normal situation for this automatic warehouse inventory monitoring system. The

procedure of evaluating performance of this model can be divided into two main parts

according to a number of processes that were explained earlier. The first part is to evaluate

the accuracy of this model in detecting the product label from an input image. Then the

second part aims to evaluate the accuracy of this model in extracting text from the

preprocessed image where there are three texts to be extracted for each image; pallet tag,

item code, and quantity number. So, it can be said that there would be four tables of

accuracy. The model can be considered to meet to the standard only when all accuracy

levels are over 85%.

 Table 3.2 represents a template of two vital metrics that was used to evaluate the

performance of the model using class precision and class recall. Class precision is a

measurement that indicates the proportion of correctly predicted positive instances which

is known as “True Positives” out of all instances predicted as positive which are the

combination of “True Positives and False Positives”. This metric reflect the ability of the

model to avoid false positives. Class recall, on the other hand, measures the proportion of

“True Positives” out of all actual positive instances which are the combination of “True

Positives and False Negatives”. This metric reflects the ability of the model to capture all

positive instances. It can be stated that “Higher precision indicates fewer false positives

and better performance while higher recall indicates fewer false negatives and better

performance”.

Table 3.2 Model Performance Evaluation Template

Ref. code: 25656522040481YEF

25

CHAPTER 4

RESULTS AND DISCUSSION

This chapter will present the outcome of the performance of the constructed model

that was evaluated after all processes in Chapter 3 have been accomplished. Moreover,

there will be a section of discussion of the results too.

4.1 Results

 Since the model performance was evaluated separately according to its purpose,

there are four parts of the result which are reported as Table 4.1, Table 4.2, Table 4.3, and

Table 4.4 using the template of class precision and class recall metrics explained previously

in Chapter 3. There are totally 61 images classified as normal cases and used to find the

model performance. The first table relates to label detection model while the rest relates to

text extraction model. The performance of the overall model can be considered to be good

since the standard level of accuracy (at least 85%) that was set up earlier is satisfied.

Table 4.1 Label Detection Performance

Table 4.2 Item code Extraction Performance

Ref. code: 25656522040481YEF

26

Table 4.3 Pallet Tag Extraction Performance

Table 4.4 QTY Extraction Performance

4.2 Discussion

 From the result, three out of four tables show that the performance of the model in

term of accuracy is up to 100% while the remaining one table can reach up to 88.5% which

already passes the criteria that was set in Chapter 3. The table that has an issue is a table

representing a performance of the item code extraction. There are 7 images that the model

incorrectly predicted. After looking into those images and analyzing the situation to

determine the root cause of this issue, it was found that the issue was all about the unclear

font. There are two characters that were misunderstood and incorrectly extracted. The first

character is “5”. Since the font that the warehouse’s label designer use does not provide

number 5 a sharp edge, two out of seven incorrect predictions then extract this number as

alphabet “S”. Another character is “0”. This is universal issue if the users do not select the

font carefully because zero can be seen as alphabet “O” sometimes. In my case, the

remaining five incorrect predictions occurred by predicting “0” to be “O”. This situation

rarely happens with pallet tag or quantity number because their texts are not the

combination of alphabets and numbers like item code. However, this issue can be easily

solved and bring the model to the higher standard by training the Tesseract OCR engine

Ref. code: 25656522040481YEF

27

more about the difference between these two characters so that the model can classify them

by itself without changing the design of the label. However, changing fonts of the label

seems to be an easier work to perform because it is an improvement at the root of this issue.

 For the special case situation, the remaining 44 images are separated into 6

categories based on its specialty. There are 2 images that are blurred, 3 images that have

“RECEIVED” marks blocking an interesting text, 11 images that their product labels are

sealed by plastic film, 23 images that their product labels are overlapped by other unwanted

labels, 6 images that product labels are placed too close to an edge of the product package

which creates difficulty in detecting edge and structure of the product label, and 3 images

that their product labels have a strap lying on. I tried to run all special case images through

the model and it turned out that product label of 39 out of 44 images cannot be detected

which means they technically cannot reach to the text extraction process. Only 5 images

from two categories, including blurred image and “RECEIVED” mark blocking interesting

text image, that pass through the label detection part. However, text information in these 5

images cannot be extracted correctly. For the first two images, text information on the

image is too blurred to be correctly extracted. Figure 4.1 is an example of this case. For

other three images, text information on the image has “RECEIVED” mark lying on the text

which makes the model perform incorrect extraction. Figure 4.2 is an example of this case.

Figure 4.1 Blurred Image

Ref. code: 25656522040481YEF

28

Figure 4.2 “RECEIVED” Mark Blocking Text Image

Ref. code: 25656522040481YEF

29

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion of the Project

 This study aims to develop an automatic warehouse inventory monitoring system

that is able to first detect the product label that is stamped on the product package and then

extract three interesting text information located in different locations on the label. There

are then two models to be constructed which are label detection model and text extraction

model. After the required Python libraries which are OpenCV and PyTesseract were

installed onto a software program called Visual Studio code, the necessary functions of

both libraries were studied so that they can be wisely selected to use. The construction of

label detection and text extraction models was executed with a careful selection of

functions in order to create models that correctly respond to the stated problem of the

warehouse. These two models are also made to combine together to become only one

model that can both detect label and extract three interesting text information with one

click. At this point, objective number one has been fulfilled with the ability of this model

that satisfies the requirement. However, this model needs to be evaluated to see whether

its performance in term of accuracy can meet the standard level that was determined to be

85% or not.

 In order to perform a performance evaluation, training dataset is another key factor

apart from the automatic warehouse inventory monitoring system that has been

constructed. Thanks to KNS Logistics Service Co., Ltd., a partner of this study, the

collection of product label were collected from its warehouse to become the training dataset

for the model. There are 105 images collected from the warehouse which can be separated

into two categories. 61 images are classified as normal cases and 44 images are classified

as special cases. Only 61 normal case images are in the focus of model performance

evaluation while the rest plays as an extra role of this study. With the completed model in

one hand and a training dataset in another, the performance evaluation can be executed.

The class precision and class recall metrics were utilized to measure the performance.

Ref. code: 25656522040481YEF

30

There should be two parts of performance which are for label detection performance and

text extraction performance. However, there are three sections of text to be extracted which

are pallet tag, item code, and quantity number. So, there are totally four parts of

performance to be reported. As a result, three out of four gather a 100% accuracy as a

performance while the last one which is item code extraction performance can reach up to

88.5%. From these reported number, it is clear to claim that my automatic warehouse

inventory monitoring system outperforms the standard accuracy level that was set at 85%.

5.2 Knowledge Gained

 Since this study is related to the current technology, computer vision, opportunity

is what can be realized during the study of this topic. There are still many gaps in both

academic and industrial aspect. Text extraction has been introduced to the world many

years ago but people have applied it just to convert text in an image format to digital format.

There are many more problems that can apply this technique to solve but they do not have

awareness of this technology. Moreover, process of pre-processing before sending images

to undergo the next station is super vital. This is a lesson teaching that preparation is much

more important than an execution state.

 For the academic perspective, image processing is seemed to be fundamental step

to do before image is used. OpenCV library has covered almost everything that image

should be preprocessed such as cropping, color changing, and resizing. It was not hard to

understand how to write Python language according to OpenCV library; however, it is quite

difficult to analyze which commands should be selected when encountering one problem.

Tesseract OCR is another interesting library. Although there are less commands than

OpenCV, its ability to perform its duty is powerful. From now on, text that can be seen

everywhere as a picture or video can be converted to digital text format. This can be applied

to companies that are trying to move themselves forward by converting traditional data

storage to digital data storage too.

Ref. code: 25656522040481YEF

31

5.2 Recommendations and Future Works

 There are two main aspects of the improvement that can be accomplish in the future.

The first one is about how to improve the current model to be able to have a higher

performance level. The second aspect is how to reduce the special case situations so that

the model can be applied to more mages. For the first aspect, discussing the change of font

on product label with the warehouse should be done because it is much easier solution than

training the Tesseract engine to get used to and understand the difference between “5” and

“S” and “0” and “O”. For the second aspect, there are six cases to deal with in order to

convert special cases into normal cases. Overlapping of other labels on the interesting

labels seems to be the most frequent problem since 23 out of 44 special case images have

this problem. There might be more training on the warehouse staff to not stamp the product

label over other labels or at least leave a space between the labels so that the label detection

could be done freely. The next vital problem which creates 11 cases out of 44 is that there

is a plastic film sealing over the product label which creates the difficulty in detecting label

since there will be reflecting light on the image that reflects on the plastic film which can

be considered as noise to an image. To solve this problem, the warehouse should rearrange

the process whether to not have the plastic film sealing at all or seal the plastic film first

and then attach the product label later. The next two issues are that the product label is

attached at the edge of the product package and that sometimes there are a strap lying on

the product label. These two issues can be solved easily through the policy of the warehouse

for its staff to be more careful when attaching the product label and when wrapping a strap

around the package not to interrupt the label. “RECEIVED” mark that blocks the

interesting text is same kind of issue as well which requires more carefulness from the staff

when stamping the mark onto the label not to interrupt the three interesting texts. Apart

from these, the model has been working well in the normal situation with high performance

level. So, the automatic warehouse inventory monitoring system is now useful and helpful

for the readers to apply knowledge and techniques included in this study to their projects

or tasks in order to develop new technological innovations that can help the industry sector

work with higher efficiency in their warehouse management fields.

Ref. code: 25656522040481YEF

32

REFERENCES

Ben Sassi, N., Averós, X., & Estevez, I. (2016). Technology and poultry welfare. Animals,

6(10), 62.

Fernandes, A. F. A., Dórea, J. R. R., & Rosa, G. J. D. M. (2020). Image analysis and

computer vision applications in animal sciences: an overview. Frontiers in

Veterinary Science, 7, 551269.

He, W., Jiang, Z., Ming, W., Zhang, G., Yuan, J., & Yin, L. (2021). A critical review for

machining positioning based on computer vision. Measurement, 184, 109973.

Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2022). Exploring impact and

features of machine vision for progressive industry 4.0 culture. Sensors

International, 3, 100132.

Karthikeyan, U., & Vanitha, M. (2019). A Study on Text Recognition using Image

Processing with Datamining Techniques. International Journal of Computer

Sciences and Engineering, 7(2), 1-6.

Kumar, V., Kaware, P., Singh, P., Sonkusare, R., & Kumar, S. (2020, September).

Extraction of information from bill receipts using optical character recognition. In

2020 International Conference on Smart Electronics and Communication

(ICOSEC) (pp. 72-77). IEEE.

Li, C., Li, J., Li, Y., He, L., Fu, X., & Chen, J. (2021). Fabric defect detection in textile

manufacturing: a survey of the state of the art. Security and Communication

Networks, 2021.

Li, N., Ren, Z., Li, D., & Zeng, L. (2020). Automated techniques for monitoring the

behaviour and welfare of broilers and laying hens: towards the goal of precision

livestock farming. animal, 14(3), 617-625.

Liu, W., Yuan, X., Zhang, Y., Liu, M., Xiao, Z., & Wu, J. (2020, June). An end to end

method for taxi receipt automatic recognition based on neural network. In 2020

IEEE 4th Information Technology, Networking, Electronic and Automation

Control Conference (ITNEC) (Vol. 1, pp. 314-318). IEEE.

Ref. code: 25656522040481YEF

33

Long, S., He, X., & Yao, C. (2021). Scene text detection and recognition: The deep learning

era. International Journal of Computer Vision, 129(1), 161-184.

Manoharan, S. (2019). A smart image processing algorithm for text recognition,

information extraction and vocalization for the visually challenged. Journal of

Innovative Image Processing (JIIP), 1(01), 31-38.

Mizan, C. M., Chakraborty, T., & Karmakar, S. (2017). Text Recognition using Image

Processing. International Journal of Advanced Research in Computer Science,

8(5).

Nasirahmadi, A., Edwards, S. A., & Sturm, B. (2017). Implementation of machine vision

for detecting behaviour of cattle and pigs. Livestock Science, 202, 25-38.

Natei, K. N., Viradiya, J., & Sasikumar, S. (2018). Extracting text from image document

and displaying its related information. J. Eng. Res. Appl, 8(5), 27-33.

Raveendran, S., & Chandrasekhar, A. (2022). Inspecting and classifying physical failures

in MEMS substrates during fabrication using computer vision. Microelectronic

Engineering, 254, 111696.

Sidhwa, H., Kulshrestha, S., Malhotra, S., & Virmani, S. (2018, October). Text extraction

from bills and invoices. In 2018 International Conference on Advances in

Computing, Communication Control and Networking (ICACCCN) (pp. 564-568).

IEEE.

Skurowski, P., Nurzyńska, K., Pawlyta, M., & Cyran, K. A. (2022). Performance of QR

Code Detectors near Nyquist Limits. Sensors, 22(19), 7230.

Szeliski, R. (2011). Computer vision. Texts in computer science. Texts in Computer

Science.

Thorat, C., Bhat, A., Sawant, P., Bartakke, I., & Shirsath, S. (2022). A Detailed Review on

Text Extraction Using Optical Character Recognition. ICT Analysis and

Applications, 719-728.

Wang, K., Babenko, B., & Belongie, S. (2011, November). End-to-end scene text

recognition. In 2011 International conference on computer vision (pp. 1457-1464).

IEEE.

Ref. code: 25656522040481YEF

34

Yindumathi, K. M., Chaudhari, S. S., & Aparna, R. (2020, July). Analysis of image

classification for text extraction from bills and invoices. In 2020 11th International

Conference on Computing, Communication and Networking Technologies

(ICCCNT) (pp. 1-6). IEEE.

Ref. code: 25656522040481YEF

35

APPENDIX

Ref. code: 25656522040481YEF

36

APPENDIX A

PYTHON SCRIPT OF AN AUTOMATIC WAREHOUSE

INVENTORY MONITORING SYSTEM

import cv2, numpy as np, pytesseract, openpyxl, xlsxwriter, pandas as pd

pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files\\Tesseract-

OCR\\tesseract.exe'

widthImg = 640

heightImg = 640

inputPic = "Training_Dataset/IMG_1533.jpg"

def preProcessing(img):

 imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

 imgBlur = cv2.GaussianBlur(imgGray, (5,5), 1)

 _,imgThreshold = cv2.threshold(imgBlur,200,250,cv2.THRESH_BINARY)

 kernel = np.ones((5,5))

 imgThres = cv2.dilate(imgThreshold, kernel, iterations=2)

 return imgThres

def getContours(img):

 biggest = np.array([])

 maxArea = 0

 countours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_NONE)

 for cnt in countours:

 area = cv2.contourArea(cnt)

 if area > 100000:

 print(f"This is selected area: {area}")

 perimeter = cv2.arcLength(cnt, True)

 print(f"This is perimeter: {perimeter}")

 approx = cv2.approxPolyDP(cnt, 0.02*perimeter, True)

 print(approx)

 if area > maxArea and len(approx) == 4:

 biggest = approx

 maxArea = area

 cv2.drawContours(imgContour, cnt, -1, (255,0,0), 30)

 cv2.drawContours(imgContour, biggest, -1, (255,0,0), 100)

 return biggest

def reorder(myPoints):

 myPoints = myPoints.reshape((4,2))

 myPointsNew = np.zeros((4,1,2), np.int32)

 add = myPoints.sum(1)

 myPointsNew[0] = myPoints[np.argmin(add)]

 myPointsNew[3] = myPoints[np.argmax(add)]

Ref. code: 25656522040481YEF

37

 diff = np.diff(myPoints, axis=1)

 myPointsNew[1] = myPoints[np.argmin(diff)]

 myPointsNew[2] = myPoints[np.argmax(diff)]

 return myPointsNew

def getWarp(img, biggest):

 biggest = reorder(biggest)

 pts1 = np.float32(biggest)

 pts2 = np.float32([[0,0], [widthImg,0], [0,heightImg], [widthImg,heightImg]])

 matrix = cv2.getPerspectiveTransform(pts1,pts2)

 imgOutput = cv2.warpPerspective(img, matrix, (widthImg,heightImg))

 imgCropped = imgOutput[20:imgOutput.shape[0]-20, 20:imgOutput.shape[1]-20]

 imgCropped = cv2.resize(imgOutput,(widthImg,heightImg))

 return imgCropped

def stackImages(scale,imgArray):

 rows = len(imgArray)

 cols = len(imgArray[0])

 rowsAvailable = isinstance(imgArray[0], list)

 width = imgArray[0][0].shape[1]

 height = imgArray[0][0].shape[0]

 if rowsAvailable:

 for x in range (0, rows):

 for y in range(0, cols):

 if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:

 imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale,

scale)

 else:

 imgArray[x][y] = cv2.resize(imgArray[x][y],

(imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)

 if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor(

imgArray[x][y], cv2.COLOR_GRAY2BGR)

 imageBlank = np.zeros((height, width, 3), np.uint8)

 hor = [imageBlank]*rows

 hor_con = [imageBlank]*rows

 for x in range(0, rows):

 hor[x] = np.hstack(imgArray[x])

 ver = np.vstack(hor)

 else:

 for x in range(0, rows):

 if imgArray[x].shape[:2] == imgArray[0].shape[:2]:

 imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)

 else:

 imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1],

imgArray[0].shape[0]), None,scale, scale)

 if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x],

cv2.COLOR_GRAY2BGR)

 hor = np.hstack(imgArray)

 ver = hor

Ref. code: 25656522040481YEF

38

 return ver

img = cv2.imread(inputPic)

imgContour = img.copy()

imgThres = preProcessing(img)

biggest = getContours(imgThres)

if biggest.size != 0:

 imgWarped = getWarp(img, biggest)

 imgArray = ([img,imgThres],

 [imgContour, imgWarped])

 cv2.imshow("Result", imgWarped)

else:

 imgArray = ([img,imgThres],

 [img, img])

stackedImages = stackImages(0.1, imgArray)

cv2.imshow("Work Flow", stackedImages)

cv2.imwrite(f"Output_1/{inputPic[21:25]}_label.jpg", imgWarped)

labelPic = f"Output_1/{inputPic[21:25]}_label.jpg"

image = cv2.imread(labelPic)

Crop TAG (having new image as [y1:y2 , x1:x2])

tag = image[270:310, 10:260]

Crop ITEM CODE

code = image[320:360, 160:380]

Crop QTY NUMBER

qty = image[500:580, 130:360]

cv2.imshow("tag", tag)

cv2.imshow("item code", code)

cv2.imshow("qty", qty)

cv2.imwrite(f"Output_1/{inputPic[21:25]}_tag.jpg", tag)

cv2.imwrite(f"Output_1/{inputPic[21:25]}_code.jpg", code)

cv2.imwrite(f"Output_1/{inputPic[21:25]}_qty.jpg", qty)

cv2.waitKey(0)

Open image file

tag = f"Output_1/{inputPic[21:25]}_tag.jpg"

code = f"Output_1/{inputPic[21:25]}_code.jpg"

qty = f"Output_1/{inputPic[21:25]}_qty.jpg"

Recognize text using Tesseract

tagText = pytesseract.image_to_string(tag)

codeText = pytesseract.image_to_string(code)

Ref. code: 25656522040481YEF

39

qtyText = pytesseract.image_to_string(qty)

Print recognized text

print(f"Product Tag: {tagText} \nItem code: {codeText} \nQTY Number: {qtyText}")

Load the Excel file

workbook = openpyxl.load_workbook('DataBase_Checking.xlsx')

Select worksheet

worksheet = workbook['Sheet1']

Write a value to specific cells

worksheet['B3'] = tagText

worksheet['B4'] = codeText

worksheet['B5'] = qtyText

Save the changes

workbook.save('DataBase_Checking.xlsx')

Ref. code: 25656522040481YEF

40

BIOGRAPHY

Name Nitiwat Ananvaithayakij

Education 2022: Bachelor of Engineering (Industrial Engineering)

 Sirindhorn International Institute of Technology

 Thammasat University

Ref. code: 25656522040481YEF

