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ABSTRACT 

 

Nowadays, most of product companies around the world do sales forecasting and 

inventory management to give themselves benefits to be able to take care of all customers’ 

demand and avoid the shortage of supplies that might cause a lost in sales. Most companies 

then require at least a warehouse whether it is an in-house or outsourced warehouse to store 

products safely and be able to deliver them to assigned destinations. That is why warehouse 

management is an inevitable factor when we consider maximizing supply chain’s profit.  

In order to ensure that operating warehouses perform product storage correctly, 

companies usually request for an inventory checking report from warehouses, some for 

annually and some for semi-annually. This report normally presents meaningful keys that 

represent identity of each product such as product ID, pallet’s tag ID, location of pallet on 

the rack, and quantity of products in that pallet. However, this request indirectly sends non-

benefit impacts to the warehouse since inventory checking has been done manually which 

requires several workers to unload, check, and load pallets back on the rack and also needs 

to stop all transporting schedule to do the checking. With the following impacts, warehouse 
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needs to reschedule its normal activities and sometimes even postpone the delivery 

appointment. This study is going to find the solution for these drawbacks by replacing 

manual inventory counting with an automatic warehouse inventory monitoring system 

based on text extraction with the use of computer vision that can detect product label 

attached on every pallet on the rack, recognize and extract key information from label, and 

send digital text to store in document for comparing with the master data. Under the field 

of computer vision, technology of image processing will be applied in the part of detecting 

product label from captured images while optical character recognition will be applied to 

extract text from cropped image of label. With the help of technology, warehouse can 

reduce time used and decrease human error in the inventory checking process.   

 

Keywords: Inventory management, Computer vision, Image processing, 

       Optical character recognition, Text extraction, Labels 
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CHAPTER 1 

INTRODUCTION 

 

In this chapter, introduction to an automatic inventory monitoring system based on 

text extraction using computer vision is presented along with its background and 

motivation, current problems that the warehouse is encountering, objectives, and 

limitations of this study. 

 

1.1 Background and Motivation 

Since most of the product companies, retailers, or even manufacturers require at 

least one warehouse to store their products, goods, or raw materials respectively, it is 

rational that those companies would like to track their inventories stored in the contracted 

warehouses. They usually request their partnered warehouses to send inventory checking 

report for every year or more frequently like half a year. KNS Logistics Service Co., Ltd., 

a 3PL company which provides storage and warehousing service mainly to Toshiba 

Thailand, has been requested for this kind of report too. However, it takes too much 

manpower and time to execute which will be explained in detail in the next sub-section. 

This study is then not only my independent study but also a collaborated study between 

SIIT and KNS aiming to improve the process of inventory checking by applying computer 

vision technology. 

 

1.2 Problem Statement 

According to the inventory checking activity that most warehouses are requested to 

perform, common problems are that they have to terminate all other usual warehouse 

activities and spend too many hours to finish this checking activity which normally requires 

a few working days. This can lead to a loss of sales that warehouses possibly make. 

Moreover, the current inventory checking process is done manually by warehouse’s 

employees. For KNS Logistics Service Co., Ltd., even it has an AS/RS system in the 

warehouse, employees still need to unload, check, and load pallets back on rack when 
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performing the inventory checking process. This can create more chance of human error 

and also decrease the trustworthy of the warehouse to its supply chain. 

In response to these two critical problems; long inventory checking process time 

and high possibility of human error, this study is focusing on developing an automatic 

inventory monitoring system that will reduce checking time and human error by applying 

the current popular technology, computer vision, which will be conceptually explained and 

demonstrated later on.  

In addition, each pallet stored on rack in KNS’s AS/RS system has a label attached 

on which contains text information such as product’s code, pallet’s tag number, and number 

of quantity. Traditional inventory checking process at KNS is to check whether these 

information on pallet correctly matches with information in the master data that is stored 

as .xlsx format or not.  

 

1.2 Objectives  

This study aims to achieve three objectives which can be divided into three phases. 

1. To develop the system that is capable of detecting label from the collected input images,  

     recognizing 3 text information on product label image; Tag Number, Item Code, and  

     Quantity Number, and transforming them into digital text..  

2. To evaluate the performance of the invented inventory monitoring system through 

     testing images collected from warehouse of KNS Logistics Service Co., Ltd. with the 

     required overall accuracy of 85%. 

 

1.3 Study Limitations 

All text information represented on product label in this study is printed in number 

or English language only which makes it easier to be recognized than the handwritten one 

or the other language one. Moreover, dataset used in this study is collected from a single 

warehouse, KNS Logistics Service Co., Ltd. which means other warehouses might have 

different product label’s configuration.  
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CHAPTER 2 

REVIEW OF LITERATURE  

 

2.1 Related Research  

 For the past few years, artificial intelligence has been in the trend of research and 

development which allows researchers to apply computer vision to be used in various 

industries. Several new technologies that have just been introduced to the world are also 

based on computer vision. Szelisk (2011) defined computer vision as a field aiming to 

describe images by interpreting, reconstructing, and extracting properties from them such 

as shapes, colors, and distances. There are different other names that can be defined as 

computer vision such as machine vision system, visual image system, and image system 

(Fernandes, Dórea, & Rosa, 2020). Since computer vision can be applied to any kind of 

problems that relate to images or videos, some articles found out that this technology can 

be helpful in defect detection problems. Raveendran and Chandrasekhar (2022) integrated 

computer vision techniques and deep learning model to inspect and classify defects in 

semiconductor manufacturing. He et al. (2021) applied image processing which is a part of 

computer vision to develop machine positioning. Apart from manufacturing industry, 

Fernandes, Dórea, & Rosa (2020) used computer vision in the field of animal science. The 

researchers monitored animal’s behavior, measured phenotypes of interest such as body 

weight and condition score, identified live animal, and assessed beef cuts composition 

through computer vision and sensor technologies. 

 There are several articles in the recent years that integrated two technologies of 

computer vision which are image processing and text recognition and applied them to solve 

their interested problems like extracting text information from images taken from cameras 

or phones. Although the previous researchers applied this knowledge to many fields such 

as bill extraction and taxi receipt extraction which are illustrated in Figure 2.1 and Figure 

2.2 respectively, none of them use this capability to do text extraction from product label 

attached to every pallet on warehouse’s racks which is illustrated in Table 2.1. Moreover, 
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actual data from KNS warehouse will be used in this in study which will enhance this study 

to have more potential in the industrial world. 

 

                    

Figure 2.1 Output of Image Processing on Invoice 

 

                     

Figure 2.2 Output of Text Extraction from Taxi Receipt 
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Table 2.1 Comparison Between Past Researches and This Study  

 

 

2.2 Relevant Theories 

 In order to apply knowledge of computer vision technology to solve inventory 

checking problem in the warehouse, OpenCV and Tesseract OCR are two crucial engines 

to build an automatic inventory monitoring system. The first engine is for doing image 

processing which aims to exclude noise and unnecessary parts from original image and 

make an interested text part much easier to be later on extracted by applying some filters. 

Then the second engine does the job to recognize and extract text information from image 

and send it to specified destination.  

 

2.2.1 Pre-processing Original Image 

 Image processing is a technique used to pre-process an input image which all 

collected images must go through. This process needs to be done deliberately because 

Tesseract OCR in the next process may provide a poor-quality text extraction if its input 

images are not perfectly pre-processed. OpenCV has been a current well-known tool to 

perform an image processing. It is an open source computer vision library that contains a 

collection of image processing algorithms developed by Intel (Sidhwa et al., 2018) It 

provides various activities that users can do with their images such as resizing, color 

detection, and shape detection through Python language. Sidhwa et al. (2018) used 

OpenCV to detect bill or invoice from image and filter out unnecessary noise before 

passing it to next process. In their case, Canny edge detection function was initially used 

to convert original image into black and white where white lines separate two high contrast 

areas which representing edge of the invoice as shown in Figure 2.3. Then the next process 
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was executed by contour detection function which draws contour in color along the edge 

that was detected earlier as shown in Figure 2.4. Article of Yindumathi, Chaudhari, & 

Aparna (2020) also mentioned that OpenCV has been widely used to do image’s edge 

cutting. Changing image’s color from RGB to grayscale or binary is also available in 

OpenCV. This approach allows computer to detect contours or shapes easier than original 

color. This type of image improvement was one process of OCR process flow in an article 

of Thorat et al. (2022). However, there are some articles selected other techniques to pre-

process original images. For example, improved SSD network was developed and used by 

Liu et al. (2020) to locate taxi’s receipt information region in original images instead of 

using image processing.  

 

 

Figure 2.3 Input Image After Performing Canny Edge Detection 

 

Ref. code: 25656522040481YEF



7 

 

 

Figure 2.4 Input Image After Performing Contour Detection 

 

2.2.2 Extracting Text from Image 

 After noise and unnecessary parts of image have been cropped out and interested 

parts have been pre-processed, text information now should be easily extracted. One 

popular text extraction technique that has been widely used is optical character recognition 

or OCR. Tesseract is one of the open-source OCR engines that was developed at Hewlett 

Packard (Sidhwa et al., 2018). It applies text segmentation to extract printed or handwritten 

text from images. There are three levels of segmentation process which are line 

segmentation, word segmentation, and character segmentation as shown in Figure 2.5, 

Figure 2.6, and Figure 2.7 respectively. The first level aims to classify text information by 

lines and then moves to the next level that finds space between words in each line that was 

previously detected to perform word segmentation. The last level is to dilute words into 

the smallest level, characters. Sidhwa et al. (2018), Yindumathi, Chaudhari, & Aparna 

(2020), Kumar et al. (2020), and Thorat et al. (2022) all used Tesseract OCR to convert 

text information in any images into digital text format although some had used different 

pre-processing techniques. However, Liu et al. (2020) used different approach to do 

character recognition. The researchers selected to use CNN-GRU combined neural network 

to recognize text instead of three levels of segmentation. They proposed their text 

recognition methodology for taxi receipt based on neural network without applying 
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traditional image processing and ordinary optical character recognition because their 

problem was quite different from normal situation. Their dataset, taxi receipt, contains bad 

printing and irregular arrangement of text which ordinary text segmentation cannot solve. 

 

 

Figure 2.5 Process of Line Segmentation 

 

 

Figure 2.6 Process of Word Segmentation 

 

 

Figure 2.7 Process of Character Segmentation  
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CHAPTER 3 

DESCRIPTION OF STUDY 

 

According to those literatures recited in Chapter 2, this study applies two 

techniques, image processing and text extraction, to be a core knowledge to perform several 

step operations defined as methodology which will be represented as flow chart. This 

chapter also provides an activity plan which is called Gantt Chart. Details of each activity 

will be presented too in this chapter. 

 

3.1 Methodology 

There are two big model construction to be performed following knowledge gained 

from Chapter 2. The first model is to construct label detection model that is able to perform 

image processing on input images. Then the second model is a text extraction model that 

is able to extract three key text information from the preprocessed image of product label. 

OpenCV library from computer vision is initially used to perform image processing. The 

first model should be developed to be capable of pre-processing an image, detecting 

product label from captured image, and cropping out unnecessary parts. Then OCR is 

applied through Tesseract OCR library to develop a text extraction model to be capable of 

extracting text information from label image and converting it from image format to text 

format. The extracted text is expected to be sent out of the system, automatically compared 

with the master data, and updated the master file. However, there are more details in 

between than these two big processes to achieve this study’s goals.  

Figure 3.1 represents flowchart of methodology which each element of it will be 

explained in detail later on this sub-section. In this figure, each activity needs to be 

executed to respond three objectives identified in Chapter 1. An initial process of this 

study’s methodology is to do literature review related to image processing, text extraction, 

and computer vision. Then KNS Logistics Service Co., Ltd. comes to take a vital role as it 

provides the dataset for this study in form of a set of samples of product labels with an 

amount around a hundred labels. During this initial phase, OpenCV and Tesseract OCR 
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library need to be studied in order to be able to use as main tools to construct a model that 

can both perform image processing and text extraction in sequence.    

 

 

Figure 3.1 Flowchart of Methodology 

 

 After knowledge and dataset are prepared, a model is ready to be constructed. 

Python is a language used to construct a script for both models. OpenCV library is used 

first. In this phase, input images are required to be preprocessed; for example, cropping out 

unnecessary sections and leaving only label part. Then Tesseract OCR library is used next 

to construct a Python script that can convert text information in image format to text format 
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and also be able to send this text to check similarity with the master data and update the 

master file. 

 When the model can fully operate, performance evaluation will be done to assure 

that inventory monitoring system can predict text with satisfied accuracy. The testing 

images that individually contain product label directly came from KNS Logistics Service 

Co., Ltd. which have the same pattern of information fulfillment. So, it is important to 

make sure that all testing images were captured under the same environment and aligned 

on the same perspective so that this study could simulate as close as possible to what would 

actually happen when this system is launched into the warehouse. 

 At this point of the entire methodology, this study is able to produce an automatic 

inventory monitoring system based on text extraction using computer vision that can be 

applied to help KNS Logistics Service Co., Ltd. to reduce process time and human error 

for doing annual or semi-annual inventory checking. There are other several advantages of 

this study not for only one warehouse company but also for the whole supply chain to 

recognize how computer vision technology is worth to invest and how it can save cost for 

every element of the supply chain. 

 

3.2 Activities  

In order to follow the mentioned flowchart and be able to complete every task in 

time, all activities should be addressed in the schedule manner. This following Gantt Chart 

in Table 3.1 represents each activity that needs to be executed and its duration in the manner 

of period of time. Moreover, details of each activity in Gantt Chart are thoroughly 

explained so that readers can follow and apply knowledge gained from this study to their 

tasks or projects. 
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Table 3.1 Gantt Chart of Scheduled Activities 

 

 

The abbreviations in the Gantt Chart are explained below:      

PP = Proposal and Progress Presentation (1 Apr)      

FD = Final Defense (24 Jun)  

 

3.2.1 Study of Image Processing and Text Extraction 

 This is the first process to be performed after all literatures were reviewed. I started 

learning how to construct the label detection model first and then following by how to 

construct the text extraction model. Both of them were constructed and executed through 

Python script using Visual Studio Code as a code editor software program. There are two 

main libraries that need to be installed in order to construct the two models. OpenCV is the 

first one. Open Computer Vision is an open source of computer vision that contains a 

collection of image processing functions. PyTesseract is another library that needs to be 

installed. It provides an interface for using Tesseract OCR engine which is a technology 

that is capable of extracting text from images. 
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 After all libraries are set, image processing is always the first process to perform to 

any input image. There are five functions that I found useful in this study which will be 

briefly explained and illustrated through the change of Figure 3.2. 

 

 

Figure 3.2 Original Input Image 

 

cv2.cvtColor 

Changing color of the image is the first function to be used. Normally, images have 

three channels of color which are red, green, and blue which is difficult for computer to 

process. This is why it needs to be changed to one channel only which is grayscale. Figure 

3.3 illustrates how image is changed according to this function. 

 

 

Figure 3.3 Grayscale Image 
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cv2.GaussianBlur 

Next function is to blur image which is important because it helps reduce unwanted 

noise and remove high-frequency details of the image but retain main structure and edges 

of image which make it easier to detect interested components from blurred image than 

clear image. Users are allowed to configure whether they want to blur the image in X-axis, 

Y-axis, or both axes. They are also allowed to set the level of blur through number. Figure 

3.4 illustrates an example of blurred image. 

 

 

Figure 3.4 Grayscale and Blurred Image in Both Axes 

 

cv2.threshold 

The third function is a key factor of label detection model. This function converts 

color or grayscale images into binary images. It allows users to specify threshold value that 

when any pixel has value over the threshold, it will be converted to whether black (0) or 

white (255) as the users defined. For example, if the threshold is set as 200 and the pixel 

that is over the threshold is set to be white (255), any pixels that holds a value higher than 

200 will be converted to white while any pixels that holds value below 200 will be 

converted to black which is shown in Figure 3.5. Since the labels of this warehouse are 

printed in white color and stamped onto the packaging of product which has different color, 

this thresholding function then is very useful to help detect product label.  
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Figure 3.5 Image Adjusted by Thresholding Technique 

 

image[y1:y2, x1:x2] 

This function has a purpose to keep only interested segment from an original image. 

It can be considered to be a cropping function. In order to specify the coordinates of 

interested area, users need to identify a dimension of the whole image first. 

“print(image.shape)” is a prerequisite function that can be used to identify a dimension of 

the image. This function will identify the height and length of the image respectively. After 

the dimension is known, the users now can determine which part of the image they want to 

crop through (x1,y1) and (x2,y2) where point 1 represents top left corner while point 2 

represents bottom right corner of the cropped image. From this example, an original image 

has the height and length of 667 and 1,000 pixels respectively. If an apple in the middle is 

an interest, trial and error is done to determine two coordinates that will crop out only apple 

from original image. The result is shown in Figure 3.6. 

 

 

Figure 3.6 Cropped Image of Apple  
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 However, the users need to be noted that the arrangement of axes in computer vision 

is not usual as conventional axes. The origin is always at the top left corner of an image 

which states the coordinate of (0,0). X-axis starts counting with positive value when the 

axis goes on to the right which seems to be the same with conventional one. Y-axis however 

starts counting with positive value when the axis goes down. In this case of cropping apple 

out of an original image, it has been found that point 1 of the cropped section should be 

(510,510) and point 2 should be (667,700) which are indicated in Figure 3.7. 

 

 

Figure 3.7 Axes Arrangement and Coordinates of Cropped Section 

 

cv2.findContours and cv2.drawContours 

 Since the image now is in black and white, an interested section in the image is 

ready to be detected through its edge and structure. These functions play an important role 

to find contours and draw a curve or a line on the edge of the contours. Actually, there are 

several sub-functions that the users can utilize to find contours. For this case, I used 

“cv2.CHAIN_APPROX_NONE” so that there will be no approximation on edges of 

contours which means the result will be more precise. Moreover, the users can add more 

condition to the process of finding contour. For example, it can be stated to find only 

contour that contains four curves so that only rectangular shape contour will be detected 

and drawn with curve or line. So, this function can apply to perform shape detection too. 

Figure 3.8 represents a contour which is in rectangular shape. 
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Figure 3.8 Rectangular Shape Detection through Finding and Drawing Contour 

 

 Another part of the study moves to how to perform text extraction through the 

library called PyTesseract. Fortunately, there is only one function that needs to be studied 

which is “pytesseract.image_to_string”. This function will utilize Tesseract OCR engine 

for text extraction on the preprocessed image. The engine technically perform a series of 

processes to extract text which were already explained in Chapter 2, including text 

localization, character segmentation, feature extraction, and recognition. During the study, 

one important technique that I learned to increase an accuracy of text extraction is to input 

an image containing only interesting text instead of the whole image. This technique then 

requires a few more times of image cropping. 

 

3.2.2 Construction of Label Detection Model 

 When all libraries and functions were installed and studied, the first model of label 

detection could be now constructed. The structure of label detection was designed to have 

three main parts. Pre-processing an image is the first part. This is a part where an original 

input image meets the system. When an image is perfectly preprocessed, the next part of 

the model will attempt to detect the rectangular shape that represents the product label. If 

the label is detected, the last part will adjust its perspective and crop out unnecessary 

section so that there will be only product label comes out as an output. Following three 

sub-sections represent each part of the label detection mentioned above. 
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3.2.2.1 Image Pre-processing 

 From the study in section 3.2.1, I selected to perform changing the color of an image 

from RGB to grayscale, blurring an image both X and Y axis, and applying thresholding 

technique to an image respectively defined as an image pre-processing. Figure 3.10 

illustrates the preprocessed image of Figure 3.9 that already went through these processes. 

At this point, a rectangular shape section obviously appears upon an input image which 

represents the interesting section, product label. However, since each input image has its 

own color of product’s package and different brightness, the threshold value in the 

thresholding function needs to be adjusted manually every time. 

 

             

Figure 3.9 Original Input Image                          

 

   

Figure 3.10 Preprocessed Image 

Ref. code: 25656522040481YEF



19 

 

3.2.2.2 Shape Detection 

 From the preprocessed image received from 3.2.2.1, it is quite a simple task to 

detect contour from black and white image because the structure and edge of the label are 

so obvious. This part of the model requires to use function finding and drawing contours 

with the condition that drawing only occurs when the contour have four curves so that it is 

surely a rectangular contour. Moreover, there is an additional condition I put into the model 

which relates to an area that the contour covers. There is a minimum area set as a threshold 

so that this model still operates smoothly when there is another rectangular shape in an 

input image. Figure 3.11 illustrates a shape detection process executed on a preprocessed 

image from previous process but displaying the highlighted contour on an original image. 

 

 

Figure 3.11 Shape Detection Performed on Original Image 

 

3.2.2.3 Perspective Adjustment and Cropping 

 The last part of the label detection model is to adjust the perspective of the label 

from whatever perspective it lies on to conventional perspective. This part will also crop 

out unnecessary section and remain only a label image. This process was done through two 

main functions which are “cv2.getPerspectiveTransform” and “cv2.warpPerspective”. 

Figure 3.12 presents the product label after passing through all processes of the label 

detection model. 
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Figure 3.12 Detection of Product label 

 

3.2.3 Construction of Text Extraction Model 

 Now that the label of product is in the pocket, next step is to extract text information 

from it. In this case, there are three key text information needed to be considered and 

extracted which are pallet tag, item code, and quantity number. For a traditional inventory 

checking process, warehouse staff would manually compare these three information on the 

product label to the one recorded in the master file. Extraction of these three information 

then is the goal of this model.  It can be seen in Figure 3.12 that each text information 

locates in different locations of the label. From the study in 3.2.1, the less text information 

in an image increases the accuracy of text extraction process. That is why there are two 

parts in text extraction model. First part focuses on cropping these three key text 

information into three different images. Another part focuses on using a function in 

PyTesseract library to extract text from each image.  

 

3.2.3.1 Three Key Information Cropping 

 Since there are three locations of text, there then are three separate images of each 

text information. Fortunately, location of each text approximately locates at the same 

coordinates for all label. That allows us to be able to use the same setting of cropping 

function or at most adjust for a little. Figure 3.13, 3.14, and 3.15 illustrate cropped images 

of three different text information. 
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Figure 3.13 Cropped Pallet Tag Image 

 

 

Figure 3.14 Cropped Item code Image 

 

 

Figure 3.15 Cropped QTY Image 

 

3.2.3.2 Three Key Information Extraction 

 Each text image then needs to be extracted using a “pytesseract.image_to_string” 

function through PyTesseract library which was explained in 3.2.1. This process directly 

relates to the resolution of an input image. If the input image is captured with high 

resolution, it is easier for the Tesseract OCR engine to extract text in it. Figure 3.16 

illustrates three outputs of three text extractions on pallet tag, item code, and quantity 

number. 

 

 

Figure 3.16 Three Text Information Extracted from Image 

 

3.2.4 Collecting Samples of Product Labels from Warehouse 

 After both models were constructed, a dataset of input images should be collected 

so that evaluation of the models can be conducted. For this process, I went to the warehouse 
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of KNS Logistics Service Co., Ltd. to collect as much as possible of images. There are over 

a thousand pallets stored in their AS/RS system which all of them have a product label on 

but only images of pallets that are already unloaded from the system aiming for being 

transported can be taken. So, there are totally 105 images of product label that I collected 

from the warehouse. Figure 3.17 presents one part of the collection of images that will be 

used as a training dataset for evaluating performance of the models while Figure 3.9 is an 

example of this dataset.  

 

 

Figure 3.17 A Training Dataset of Input Images 

   

3.2.5 Evaluation of Model Performance 

 Now both models and training dataset are prepared for performing performance 

evaluation. First, I decided to join label detection and text extraction models together so 

that it would be easier in model testing process because both label detection and text 

extraction would be executed after one click of running the model. The dataset was also 

classified into two categories; normal case and special case. Normal case of input image is 

that the product label is located on the product package clearly without any blockers that 

can be unexpected noise to the label detection process and that all three parts of text 
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information which are printed on the label can be visible clearly without any noise such as 

blurred image. Figure 3.18 is a good example representing image that is classified into 

normal case situation. On the other hand, special cases are the images that were blurry 

taken, had unusual markings blocking interesting text, had other labels overlapping the 

interesting product label, had plastic film sealing over the product label, had the product 

label stamped at the edge of the product package which make it difficult to detect label’s 

edge, or even had a strap lying upon the product label. Figure 3.19 is a good example of 

image that is classified into a special case situation because there are two more labels on 

the product package which overlaps the interesting label. 

 

 

Figure 3.18 An Example Image of Normal Case Situation 

 

 

Figure 3.19 An Example Image of Special Case Situation 
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 After the data preparation was done, there are then total 61 images that are classified 

into the normal situation for this automatic warehouse inventory monitoring system. The 

procedure of evaluating performance of this model can be divided into two main parts 

according to a number of processes that were explained earlier. The first part is to evaluate 

the accuracy of this model in detecting the product label from an input image. Then the 

second part aims to evaluate the accuracy of this model in extracting text from the 

preprocessed image where there are three texts to be extracted for each image; pallet tag, 

item code, and quantity number. So, it can be said that there would be four tables of 

accuracy. The model can be considered to meet to the standard only when all accuracy 

levels are over 85%. 

 Table 3.2 represents a template of two vital metrics that was used to evaluate the 

performance of the model using class precision and class recall. Class precision is a 

measurement that indicates the proportion of correctly predicted positive instances  which 

is known as “True Positives” out of all instances predicted as positive which are the 

combination of “True Positives and False Positives”. This metric reflect the ability of the 

model to avoid false positives. Class recall, on the other hand, measures the proportion of 

“True Positives” out of all actual positive instances which are the combination of “True 

Positives and False Negatives”. This metric reflects the ability of the model to capture all 

positive instances. It can be stated that “Higher precision indicates fewer false positives 

and better performance while higher recall indicates fewer false negatives and better 

performance”. 

 

Table 3.2 Model Performance Evaluation Template 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

This chapter will present the outcome of the performance of the constructed model 

that was evaluated after all processes in Chapter 3 have been accomplished. Moreover, 

there will be a section of discussion of the results too. 

 

4.1 Results 

 Since the model performance was evaluated separately according to its purpose, 

there are four parts of the result which are reported as Table 4.1, Table 4.2, Table 4.3, and 

Table 4.4 using the template of class precision and class recall metrics explained previously 

in Chapter 3. There are totally 61 images classified as normal cases and used to find the 

model performance. The first table relates to label detection model while the rest relates to 

text extraction model. The performance of the overall model can be considered to be good 

since the standard level of accuracy (at least 85%) that was set up earlier is satisfied. 

 

Table 4.1 Label Detection Performance 

 

 

Table 4.2 Item code Extraction Performance 
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Table 4.3 Pallet Tag Extraction Performance 

 

 

Table 4.4 QTY Extraction Performance 

 

 

4.2 Discussion 

 From the result, three out of four tables show that the performance of the model in 

term of accuracy is up to 100% while the remaining one table can reach up to 88.5% which 

already passes the criteria that was set in Chapter 3. The table that has an issue is a table 

representing a performance of the item code extraction. There are 7 images that the model 

incorrectly predicted. After looking into those images and analyzing the situation to 

determine the root cause of this issue, it was found that the issue was all about the unclear 

font. There are two characters that were misunderstood and incorrectly extracted. The first 

character is “5”. Since the font that the warehouse’s label designer use does not provide 

number 5 a sharp edge, two out of seven incorrect predictions then extract this number as 

alphabet “S”. Another character is “0”. This is universal issue if the users do not select the 

font carefully because zero can be seen as alphabet “O” sometimes. In my case, the 

remaining five incorrect predictions occurred by predicting “0” to be “O”. This situation 

rarely happens with pallet tag or quantity number because their texts are not the 

combination of alphabets and numbers like item code. However, this issue can be easily 

solved and bring the model to the higher standard by training the Tesseract OCR engine 
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more about the difference between these two characters so that the model can classify them 

by itself without changing the design of the label. However, changing fonts of the label 

seems to be an easier work to perform because it is an improvement at the root of this issue. 

 For the special case situation, the remaining 44 images are separated into 6 

categories based on its specialty. There are 2 images that are blurred, 3 images that have 

“RECEIVED” marks blocking an interesting text, 11 images that their product labels are 

sealed by plastic film, 23 images that their product labels are overlapped by other unwanted 

labels, 6 images that product labels are placed too close to an edge of the product package 

which creates difficulty in detecting edge and structure of the product label, and 3 images 

that their product labels have a strap lying on. I tried to run all special case images through 

the model and it turned out that product label of 39 out of 44 images cannot be detected 

which means they technically cannot reach to the text extraction process. Only 5 images 

from two categories, including blurred image and “RECEIVED” mark blocking interesting 

text image, that pass through the label detection part. However, text information in these 5 

images cannot be extracted correctly. For the first two images, text information on the 

image is too blurred to be correctly extracted. Figure 4.1 is an example of this case. For 

other three images, text information on the image has “RECEIVED” mark lying on the text 

which makes the model perform incorrect extraction. Figure 4.2 is an example of this case. 

 

 

Figure 4.1 Blurred Image 
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Figure 4.2 “RECEIVED” Mark Blocking Text Image 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion of the Project 

 This study aims to develop an automatic warehouse inventory monitoring system 

that is able to first detect the product label that is stamped on the product package and then 

extract three interesting text information located in different locations on the label. There 

are then two models to be constructed which are label detection model and text extraction 

model. After the required Python libraries which are OpenCV and PyTesseract were 

installed onto a software program called Visual Studio code, the necessary functions of 

both libraries were studied so that they can be wisely selected to use. The construction of 

label detection and text extraction models was executed with a careful selection of 

functions in order to create models that correctly respond to the stated problem of the  

warehouse. These two models are also made to combine together to become only one 

model that can both detect label and extract three interesting text information with one 

click. At this point, objective number one has been fulfilled with the ability of this model 

that satisfies the requirement. However, this model needs to be evaluated to see whether 

its performance in term of accuracy can meet the standard level that was determined to be 

85% or not. 

 In order to perform a performance evaluation, training dataset is another key factor 

apart from the automatic warehouse inventory monitoring system that has been 

constructed. Thanks to KNS Logistics Service Co., Ltd., a partner of this study, the 

collection of product label were collected from its warehouse to become the training dataset 

for the model. There are 105 images collected from the warehouse which can be separated 

into two categories. 61 images are classified as normal cases and 44 images are classified 

as special cases. Only 61 normal case images are in the focus of model performance 

evaluation while the rest plays as an extra role of this study. With the completed model in 

one hand and a training dataset in another, the performance evaluation can be executed. 

The class precision and class recall metrics were utilized to measure the performance. 
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There should be two parts of performance which are for label detection performance and 

text extraction performance. However, there are three sections of text to be extracted which 

are pallet tag, item code, and quantity number. So, there are totally four parts of 

performance to be reported. As a result, three out of four gather a 100% accuracy as a 

performance while the last one which is item code extraction performance can reach up to 

88.5%. From these reported number, it is clear to claim that my automatic warehouse 

inventory monitoring system outperforms the standard accuracy level that was set at 85%. 

 

5.2 Knowledge Gained 

 Since this study is related to the current technology, computer vision, opportunity 

is what can be realized during the study of this topic. There are still many gaps in both 

academic and industrial aspect. Text extraction has been introduced to the world many 

years ago but people have applied it just to convert text in an image format to digital format. 

There are many more problems that can apply this technique to solve but they do not have 

awareness of this technology. Moreover, process of pre-processing before sending images 

to undergo the next station is super vital. This is a lesson teaching that preparation is much 

more important than an execution state. 

 For the academic perspective, image processing is seemed to be fundamental step 

to do before image is used. OpenCV library has covered almost everything that image 

should be preprocessed such as  cropping, color changing, and resizing. It was not hard to 

understand how to write Python language according to OpenCV library; however, it is quite 

difficult to analyze which commands should be selected when encountering one problem. 

Tesseract OCR is another interesting library. Although there are less commands than 

OpenCV, its ability to perform its duty is powerful. From now on, text that can be seen 

everywhere as a picture or video can be converted to digital text format. This can be applied 

to companies that are trying to move themselves forward by converting traditional data 

storage to digital data storage too.   
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5.2 Recommendations and Future Works  

 There are two main aspects of the improvement that can be accomplish in the future. 

The first one is about how to improve the current model to be able to have a higher 

performance level. The second aspect is how to reduce the special case situations so that 

the model can be applied to more mages. For the first aspect, discussing the change of font 

on product label with the warehouse should be done because it is much easier solution than 

training the Tesseract engine to get used to and understand the difference between “5” and 

“S” and “0” and “O”. For the second aspect, there are six cases to deal with in order to 

convert special cases into normal cases. Overlapping of other labels on the interesting 

labels seems to be the most frequent problem since 23 out of 44 special case images have 

this problem. There might be more training on the warehouse staff to not stamp the product 

label over other labels or at least leave a space between the labels so that the label detection 

could be done freely. The next vital problem which creates 11 cases out of 44 is that there 

is a plastic film sealing over the product label which creates the difficulty in detecting label 

since there will be reflecting light on the image that reflects on the plastic film which can 

be considered as noise to an image. To solve this problem, the warehouse should rearrange 

the process whether to not have the plastic film sealing at all or seal the plastic film first 

and then attach the product label later. The next two issues are that the product label is 

attached at the edge of the product package and that sometimes there are a strap lying on 

the product label. These two issues can be solved easily through the policy of the warehouse 

for its staff to be more careful when attaching the product label and when wrapping a strap 

around the package not to interrupt the label. “RECEIVED” mark that blocks the 

interesting text is same kind of issue as well which requires more carefulness from the staff 

when stamping the mark onto the label not to interrupt the three interesting texts. Apart 

from these, the model has been working well in the normal situation with high performance 

level. So, the automatic warehouse inventory monitoring system is now useful and helpful 

for the readers to apply knowledge and techniques included in this study to their projects 

or tasks in order to develop new technological innovations that can help the industry sector 

work with higher efficiency in their warehouse management fields. 
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APPENDIX A  

PYTHON SCRIPT OF AN AUTOMATIC WAREHOUSE 

INVENTORY MONITORING SYSTEM 

 
import cv2, numpy as np, pytesseract, openpyxl, xlsxwriter, pandas as pd 

pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files\\Tesseract-

OCR\\tesseract.exe' 

 

widthImg = 640 

heightImg = 640 

##################################################### 

inputPic = "Training_Dataset/IMG_1533.jpg" 

 

def preProcessing(img): 

    imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 

    imgBlur = cv2.GaussianBlur(imgGray, (5,5), 1) 

    _,imgThreshold = cv2.threshold(imgBlur,200,250,cv2.THRESH_BINARY) 

    kernel = np.ones((5,5)) 

    imgThres = cv2.dilate(imgThreshold, kernel, iterations=2) 

    return imgThres 

 

def getContours(img): 

    biggest = np.array([])  

    maxArea = 0 

    countours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_NONE) 

    for cnt in countours: 

        area = cv2.contourArea(cnt) 

        if area > 100000: 

            print(f"This is selected area: {area}") 

            perimeter = cv2.arcLength(cnt, True) 

            print(f"This is perimeter: {perimeter}") 

            approx = cv2.approxPolyDP(cnt, 0.02*perimeter, True) 

            print(approx) 

            if area > maxArea and len(approx) == 4: 

                biggest = approx 

                maxArea = area 

                cv2.drawContours(imgContour, cnt, -1, (255,0,0), 30) 

    cv2.drawContours(imgContour, biggest, -1, (255,0,0), 100) 

    return biggest 

 

def reorder(myPoints): 

    myPoints = myPoints.reshape((4,2)) 

    myPointsNew = np.zeros((4,1,2), np.int32) 

    add = myPoints.sum(1)  

    myPointsNew[0] = myPoints[np.argmin(add)] 

    myPointsNew[3] = myPoints[np.argmax(add)] 
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    diff = np.diff(myPoints, axis=1) 

    myPointsNew[1] = myPoints[np.argmin(diff)] 

    myPointsNew[2] = myPoints[np.argmax(diff)] 

    return myPointsNew 

 

def getWarp(img, biggest): 

    biggest = reorder(biggest) 

    pts1 = np.float32(biggest) 

    pts2 = np.float32([[0,0], [widthImg,0], [0,heightImg], [widthImg,heightImg]]) 

    matrix = cv2.getPerspectiveTransform(pts1,pts2) 

    imgOutput = cv2.warpPerspective(img, matrix, (widthImg,heightImg)) 

 

    imgCropped = imgOutput[20:imgOutput.shape[0]-20, 20:imgOutput.shape[1]-20] 

    imgCropped = cv2.resize(imgOutput,(widthImg,heightImg)) 

 

    return imgCropped 

 

def stackImages(scale,imgArray): 

    rows = len(imgArray) 

    cols = len(imgArray[0]) 

    rowsAvailable = isinstance(imgArray[0], list) 

    width = imgArray[0][0].shape[1] 

    height = imgArray[0][0].shape[0] 

    if rowsAvailable: 

        for x in range (0, rows): 

            for y in range(0, cols): 

                if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]: 

                    imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, 

scale) 

                else: 

                    imgArray[x][y] = cv2.resize(imgArray[x][y], 

(imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale) 

                if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( 

imgArray[x][y], cv2.COLOR_GRAY2BGR) 

        imageBlank = np.zeros((height, width, 3), np.uint8) 

        hor = [imageBlank]*rows 

        hor_con = [imageBlank]*rows 

        for x in range(0, rows): 

            hor[x] = np.hstack(imgArray[x]) 

        ver = np.vstack(hor) 

    else: 

        for x in range(0, rows): 

            if imgArray[x].shape[:2] == imgArray[0].shape[:2]: 

                imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale) 

            else: 

                imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], 

imgArray[0].shape[0]), None,scale, scale) 

            if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], 

cv2.COLOR_GRAY2BGR) 

        hor = np.hstack(imgArray) 

        ver = hor 
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    return ver 

 

img = cv2.imread(inputPic) 

imgContour = img.copy() 

 

imgThres = preProcessing(img) 

 

biggest = getContours(imgThres) 

 

if biggest.size != 0: 

    imgWarped = getWarp(img, biggest) 

    imgArray = ([img,imgThres], 

                [imgContour, imgWarped]) 

    cv2.imshow("Result", imgWarped) 

else: 

    imgArray = ([img,imgThres], 

                [img, img]) 

stackedImages = stackImages(0.1, imgArray) 

 

cv2.imshow("Work Flow", stackedImages) 

cv2.imwrite(f"Output_1/{inputPic[21:25]}_label.jpg", imgWarped) 

 

labelPic = f"Output_1/{inputPic[21:25]}_label.jpg" 

image = cv2.imread(labelPic) 

 

# Crop TAG (having new image as [y1:y2 , x1:x2]) 

tag = image[270:310, 10:260] 

 

# Crop ITEM CODE 

code = image[320:360, 160:380] 

 

# Crop QTY NUMBER 

qty = image[500:580, 130:360] 

 

cv2.imshow("tag", tag) 

cv2.imshow("item code", code) 

cv2.imshow("qty", qty) 

cv2.imwrite(f"Output_1/{inputPic[21:25]}_tag.jpg", tag) 

cv2.imwrite(f"Output_1/{inputPic[21:25]}_code.jpg", code) 

cv2.imwrite(f"Output_1/{inputPic[21:25]}_qty.jpg", qty) 

 

cv2.waitKey(0) 

 

# Open image file 

tag = f"Output_1/{inputPic[21:25]}_tag.jpg" 

code = f"Output_1/{inputPic[21:25]}_code.jpg" 

qty = f"Output_1/{inputPic[21:25]}_qty.jpg" 

 

# Recognize text using Tesseract 

tagText = pytesseract.image_to_string(tag) 

codeText = pytesseract.image_to_string(code) 
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qtyText = pytesseract.image_to_string(qty) 

 

# Print recognized text 

print(f"Product Tag: {tagText} \nItem code: {codeText} \nQTY Number: {qtyText}") 

 

# Load the Excel file 

workbook = openpyxl.load_workbook('DataBase_Checking.xlsx') 

 

# Select worksheet 

worksheet = workbook['Sheet1'] 

 

# Write a value to specific cells 

worksheet['B3'] = tagText 

worksheet['B4'] = codeText 

worksheet['B5'] = qtyText 

 

# Save the changes 

workbook.save('DataBase_Checking.xlsx') 
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