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ABSTRACT 

 

Phytocannabinoids have been studied for their medicinal purposes. This 

study examines their binding affinity to cyclooxygenase-2 (COX-2) and cannabinoids 

receptor type 2 (CB2), which are key therapeutic targets for inflammation. 

Semiempirical quantum mechanical (SQM) approaches hold promise for accurately 

describing noncovalent interactions in protein–ligand complexes, though calculating 

binding free energy for large complexes remains challenging. In this research, 

molecular docking simulations using AutoDock4 were initially employed to sampling 

ligand poses. False negative errors generated by AutoDock4 for non-steroidal anti-

inflammatory drugs (NSAIDs) were identified using GFN2-xTB, a tight-binding SQM 

method. This approach, coupled with the ALPB solvation model, was used to compute 

the binding free energy of fully relaxed receptor-cannabinoid complexes in implicit 

aqueous solvation. This study also reports the performance of selected SQM methods 

in modeling noncovalent interaction of benchmark datasets. In addition to the solvation 

effect, thermostatistical contributions were included to obtain a more accurate binding 

free energy (∆Gbind,solv). Results showed that non-psychoactive acid derivatives such as 

cannabichromenic acid (CBCA), cannabinolic acid (CBNA), and cannabielsoic acid 

(CBEA) exhibited strong affinities for COX-2 and CB2. To enhance their anti-

inflammatory potency, a sulfonamide group was incorporated to interact with Arg499 

of COX-2. This modification of the CBCA analog yielded a novel anti-inflammatory 

Ref. code: 25676309040050KWL



(2) 

 

compound with a computed binding free energy of −48.41 kcal/mol for COX-2, which 

is lower than that of celecoxib (−32.02 kcal/mol), a known NSAID. The predicted drug-

like properties of the modified cannabinoid analogs provide valuable insights for 

developing novel oral anti-inflammatory leads.  

 

Keywords: tight-binding semiempirical quantum mechanical method, molecular 

docking, noncovalent interactions, anti-inflammation, cannabinoids, 

binding free energy 

 

 

  

Ref. code: 25676309040050KWL



(3) 

 

ACKNOWLEDGEMENTS 

 

I would like to express the deepest appreciation to my advisor, Assistant 

Professor Dr. Panichakorn Jaiyong for the opportunity to me to do interesting research. 

The completion of this thesis could not have been possible without his invaluable 

guidance, continuous support, motivation, kindness, and encouragement.  

I would like to thank the thesis committees, Associate Professor Dr. Yuthana 

Tantirungrotechai in Department of Chemistry, Faculty of Science and Technology, 

Thammasat University for their knowledge and good comments throughout the study.  

I also would like to thank the external committee, Associate Professor Dr. 

Piyarat Nimmanpipug, in Department of Chemistry, Faculty of Science, Chiang Mai 

University for their encouragement and constructive comments.  

I am truly grateful for the scholarship for talent student to study graduate 

program in Faculty of Science and Technology Thammasat University, Contract No. 

TB 23/2020. 

Finally, I would like to thank my family for encouraging me to follow my 

dreams and I would like to thank my friends for sharing experiences. 

 

 

 Watcharin Kumaeum 

 

 

 

 

 

 

 

  

Ref. code: 25676309040050KWL



(4) 

 

TABLE OF CONTENTS 

       Page 

ABSTRACT (1) 

  

ACKNOWLEDGEMENTS (3) 

  

LIST OF TABLES (7) 

  

LIST OF FIGURES (10) 

  

LIST OF ABBREVIATIONS (14) 

  

CHAPTER 1 INTRODUCTION 1 

  

1.1 Statement of the problem 1 

1.2 Research objectives 4 

  

CHAPTER 2 REVIEW OF LITERATURE 5 

  

2.1 Inflammation 5 

2.2 Cyclooxygenase (COX) enzyme 5 

2.3 Non-steroidal anti-inflammatory drugs (NSAIDs) 6 

2.4 Cannabinoids and cannabinoid (CB) receptors 8 

2.5 Protein–ligand interactions 12 

2.5.1 COX binding pockets 12 

2.5.2 CB binding pockets 14 

2.6 Challenge in protein–ligand binding affinity predictions 17 

2.6.1 Molecular docking algorithm 17 

2.6.2 Dispersion corrected methods for modelling noncovalent 

interactions 

18 

2.6.3 Solvation model and predicted binding free energy 21 

Ref. code: 25676309040050KWL



(5) 

 

CHAPTER 3 RESEARCH METHODOLOGY 27 

  

3.1 Preparation of receptors 27 

3.2 Preparation of ligands 31 

3.3 Molecular docking protocols 32 

3.4 Benchmark datasets 34 

3.5 SQM methods 35 

3.6 Computation of binding energy and binding free energy 38 

3.7 Calculation of inhibitory constant (Ki) and selectivity index 

(SI) 

39 

  

CHAPTER 4 RESULTS AND DISCUSSION 41 

  

4.1 NSAIDs 41 

4.1.1 The binding affinity of protein-ligand complexes 41 

4.1.2 The performance of AutoDock4 and GFN2-xTB for 

predicting the correct conformations 

45 

4.1.3 Validation of calculated selectivity index 48 

4.1.4 Validation of binding free energy 49 

4.2 Cannabinoids 50 

4.2.1 The binding affinity of receptors/cannabinoids complexes 50 

4.2.2 The selectivity index 61 

4.2.3 Geometry relaxation and binding interaction 62 

4.2.4 Modified cannabinoids analogs 65 

4.2.5 Drug-like properties 69 

4.3 Validation of SQM methods 71 

  

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 78 

  

5.1 Concluded remarks 78 

5.2 Further suggestions 80 

Ref. code: 25676309040050KWL



(6) 

 

REFERENCES 81 

  

APPENDIX 89 

  

APPENDIX A 90 

  

BIOGRAPHY 100 

         

 

 

 

 

 

 

 

 

 

  

Ref. code: 25676309040050KWL



(7) 

 

LIST OF TABLES 

 

Tables  Page 

2.1 NSAIDs selectivity. 6 

2.2 In vitro IC50 of NSAIDs tested as inhibitors of prostanoid 

formation determined in the COX-1 and COX-2 assays. 

7 

2.3 The Ki values (in nM) of cannabinoids with cannabinoid (CB) 

receptors. 

11 

2.4 List of the binding interactions of cannabinoids. 15 

2.5 Information of ligand binding interactions with CB1 16 

2.6 Information of ligand binding interactions with CB2.  16 

2.7 The root mean square errors (RMSEs) in kcal/mol of the SQM 

methods tested against the benchmark datasets. 

19 

2.8 Calculated binding free energies in kcal/mol of the top-ranked 

poses from Autodock Vina and PM6-DH2 calculations. 

20 

3.1 X-ray crystallographic structures of protein receptors. 28 

3.2 The list of amino acid residues in the pocket of protein 

receptors. 

28 

3.3 The number of amino acid residue, atoms, and total charge at 

the pocket of protein receptors. 

30 

3.4 RMSD of the best-docked poses of co-crystallized ligands with 

protein receptors. 

34 

 

3.5 Description of noncovalent benchmark datasets. 34 

3.6 The parameters for dispersion correction used in the PM6 and 

DFTB3. 

36 

 

3.7 The parameters for hydrogen-bonding correction used in the 

PM6 and DFTB3. 

36 

3.8 The parameters for halogen-bonding correction used in the 

PM6 method. 

37 

3.9 The parameter sets used in GFN2-xTB method. 37 

Ref. code: 25676309040050KWL



(8) 

 

4.1 Binding energy (BE) in kcal/mol of top-ten docked poses of 

NSAIDs from AutoDock4. 

42 

4.2 Uncorrected binding free energy (∆G'bind,solv) in kcal/mol of 

the lowest-energy optimized pose by using GFN2-xTB 

method with ALPB solvation model. 

45 

4.3 Root mean square deviations (RMSD) of lowest-energy 

optimized poses of co-crystallized ligands of protein 

receptors. 

46 

4.4 Experimental selectivity index (Exp. SI) and calculated 

selectivity index (Calc. SI) of NSIADs. 

49 

4.5 Statistical data of binding energies and uncorrected binding 

free energies in kcal/mol of 55 cannabinoids calculated by 

AutoDock4 and GFN2-xTB method with ALPB solvation 

model. 

52 

 

4.6 The uncorrected binding free energy (∆G'bind,solv) in kcal/mol 

of the lowest-energy optimized pose of parent cannabinoids 

and acid derivatives with CB1 and CB2 using the GFN2-xTB 

method with the ALPB solvation model. 

53 

 

4.7 The uncorrected binding free energy (∆G'bind,solv) in kcal/mol 

of the lowest-energy optimized poses of parent cannabinoids 

and their acid derivatives with varying alkyl sidechain lengths 

using the GFN2-xTB method with ALPB solvation model. 

55 

4.8 The uncorrected binding free energy (∆G'bind,solv) in kcal/mol 

of the lowest-energy optimized pose of other cannabinoid 

derivatives using the GFN2-xTB method with ALPB 

solvation model. 

56 

 

4.9 The uncorrected binding free energy (∆G'bind,solv) in kcal/mol 

of the lowest-energy optimized pose of parent cannabinoids 

and acid derivatives with COX-1 and COX-2 using the 

GFN2-xTB method with ALPB solvation model. 

57 

Ref. code: 25676309040050KWL



(9) 

 

4.10 The uncorrected binding free energy (∆G'bind,solv) in kcal/mol 

of the lowest-energy optimized pose of parent cannabinoids 

and acid derivatives with varying alkyl sidechain lengths 

using the GFN2-xTB method with ALPB solvation model. 

59 

4.11 The uncorrected binding free energy (∆G'bind,solv) in kcal/mol 

of the lowest-energy optimized pose of other cannabinoid 

derivatives using the GFN2-xTB method with ALPB 

solvation model. 

60 

 

4.12 The corrected binding free energy (∆Gbind,solv) in kcal/mol of 

candidate cannabinoids and NSIADs at the active sites of 

COX-2 using GFN2-xTB method with ALPB solvation 

model. 

63 

 

4.13 The corrected binding free energy (∆Gbind,solv) in kcal/mol of the 

modified cannabinoid analogs at the active sites of COX-2 by 

using GFN2-xTB method with ALPB solvation model. 

66 

 

4.14 Predicted drug-like properties of the modified cannabinoids 

and celecoxib. 

70 

4.15 RMSE, MAD, MSE, DMIN, and DMAX in kcal/mol of SQM 

methods tested against S66, X40, HB375, and HB300SPX 

data sets. 

72 

4.16 RMSE, MAD, MSE, DMIN, and DMAX in kcal/mol of SQM 

methods tested against PLA15 data set. 

73 

4.17 Mean absolute deviation (MAD) for the computed hydration 

free energy in kcal/mol using the GFN2-xTB method, ALPB 

solvation model, and MNSOL benchmark datasets. 

76 

4.18 The computed hydration free energy in kcal/mol of 

compounds in the SAMPL2 dataset using the GFN2-xTB 

method with the ALPB solvation model. 

77 

    

   

Ref. code: 25676309040050KWL



(10) 

 

LIST OF FIGURES 

 

Figures  Page 

2.1 Inflammatory pathway. 5 

2.2 Schematic presentation of COX-1 and COX-2 pathways. 6 

2.3 Classification of NSAIDs based on a chemical structure. 8 

2.4 Chemical structures of cannabinoids: (a) Δ9-tetrahydrocannabinol 

(∆9-THC), (b) cannabinol (CBN), (c) cannabidiol (CBD), (d) 

cannabigerol (CBG), (e) cannabitriol (CBT), (f) cannabichromene 

(CBC), (g) cannabicyclol (CBL), and (h) cannabielsoin (CBE). 

9 

2.5 Schematic representation of signal transduction by ligand 

interactions with the cannabinoid receptors. 

10 

2.6 Distribution of CB1 and CB1 and their associated functions. 10 

2.7 Schematic presentation of the signaling pathways for anti-

inflammatory effects. 

11 

2.8 Comparison of the key amino acid residues of COX-1 and COX-2 

binding pockets. 

12 

2.9 Binding interaction of ibuprofen with COX-2 active site. The 

hydrogen bonds are displayed as black dashed lines, and 

hydrophobic interactions are in yellow dashed lines. All distances 

are measured in angstroms. 

13 

2.10 Molecular interactions of CBG with key amino acid residues inside 

binding pocket of COX-2 enzyme. 

13 

2.11 Comparison of the key amino acid residues (deep teal and magenta 

sticks) of (a) CB1 receptors with AM11542 (yellow sticks) and (b) 

CB2 receptors with WIN 55,212-2 (cyan sticks). The water is 

shown as a red sphere. The hydrogen bonds are shown as dashed 

lines. 

14 

2.12 Binding interactions of (a) (−)-trans-Δ9-THCV, (b) (−)-trans-Δ9-

THCB, and (c) (−)-trans-Δ9-THC in complex with CB1 (PDB ID 

5XRA). 

15 

Ref. code: 25676309040050KWL



(11) 

 

2.13 Distribution of the relative errors of interaction energies obtained 

from the tested methods using the PLA15 data. 

20 

2.14 Mean absolute deviations (MADs) in kcal/mol for the noncovalent 

energies of different benchmark sets. 

21 

2.15 Schematic representation of alchemical free-energy calculations. 22 

 

2.16 Schematic representation of alchemical intermediates. 22 

2.17 (a) protein–ligand binding free energy in solvation. (b) thermodynamic 

cycle for estimating the binding free energy of protein–ligand 

complexes. Ligand is presented in green. Protein is presented in red. 

Solvent is presented in blue. 

23 

 

2.18 Number of false positive poses for the six methods across all the 17 

protein–ligand complexes. 

24 

2.19 Mean deviation in kcal/mol of hydration free energies for the 

neutral species of the FreeSolv database. 

26 

2.20 Absolute error (i.e., |ΔGexp-ΔGcal|) for the binding free energy of 

the truncated systems with the PM6-D3H4 and GFNn-xTB 

methods. 

26 

3.1 Chemical structures of NSAIDs: (a) celecoxib, (b) etoricoxib, (c) 

diclofenac, (d) flurbiprofen, (e) ibuprofen, (f) naproxen, and (g) aspirin. 

31 

3.2 Chemical structures of cannabinoids: (a) Δ9-tetrahydrocannabinol (∆9-

THC), (b) cannabinol (CBN), (c) cannabidiol (CBD), (d) cannabigerol 

(CBG), (e) cannabitriol (CBT), (f) cannabichromene (CBC), (g) 

cannabicyclol (CBL), (h) cannabielsoin (CBE), (i) Δ9-

tetrahydrocannabinolic acid (∆9-THCA), (j) cannabinolic acid 

(CBNA), (k) cannabidiolic acid (CBDA), (l) cannabigerolic acid 

(CBGA), (m) cannabitriolic acid (CBTA), (n) cannabichromenic acid 

(CBCA), (o) cannabicyclolic acid (CBLA), and (p) cannabielsoic acid 

(CBEA). 

32 

 

3.3 The size of a grid box at the binding regions of (a) COX-1, (b) COX-2, 

(c) CB1, and (d) CB2. 

33 

Ref. code: 25676309040050KWL



(12) 

 

4.1 Hydrogen bonding interactions between the best-docked pose (stick 

representation in yellow) and the lowest-energy optimized pose 

(stick representation in pink) of (a) aspirin and (b) diclofenac at the 

active sites of COX-1. 

47 

4.2 Hydrogen bonding interactions between the best-docked pose (stick 

representation in yellow) and the lowest-energy optimized pose 

(stick representation in pink) of flurbiprofen at the active sites of 

COX-2. 

48 

4.3 Pearson correlation between experimental binding free energy 

values and (a) uncorrected binding free energy (∆G'bind,solv) and (b) 

corrected binding free energy in implicit aqueous solvation 

(∆Gbind,solv) by using the GFN2-xTB method with ALPB solvation 

model of NSAIDs. 

50 

4.4 Selectivity index (SI) of COX-2/COX-1 ratio and CB2/CB1 ratio of 

(a) parent cannabinoids and (b) acid derivatives by using GFN2-

xTB method with ALPB solvation model. 

62 

4.5 Binding interactions of (a) CBCA, (b) CBNA, (C) CBEA, and (d) 

CBLA with key amino acid at fully relaxed COX-2 complex. The 

hydrogen bonds are presented in green dashed lines. The unit of 

distance in proximity is angstrom. 

64 

4.6 The optimized poses of (a) CBNA, (b) CBEA, and (C) CBCA 

aligned on celecoxib (gray stick) at fully relaxed COX-2 complex. 

65 

4.7 Chemical structures of modified cannabinoid analogs: (a) CBNA-

C1, (b) CBNA-C2, (c) CBNA-C3 (d) CBEA-C1, (e) CBEA-C2, (f) 

CBEA-C3, (g) CBCA-C3, (h) CBCA-C4, and (i) CBCA-C5. 

66 

4.8 Binding interactions of modified (a) CBCA-C3, (b) CBNA-C3, and 

(C) CBEA-C2 with key amino acid at fully relaxed COX-2 

complex. The hydrogen bonds are presented in green dashed lines. 

The unit of distance in proximity is angstrom. 

68 

4.9 Mean absolute deviations (MADs) in kcal/mol for the noncovalent 

interaction energies of different benchmark datasets. 

73 

Ref. code: 25676309040050KWL



(13) 

 

4.10 Distribution plots of the MSE in the computed interaction energies 

of (a) S66, (b) X40, (c) HB375, (d) HB300SPX, and (e) PLA15 

benchmark datasets. 

74 

4.11 Hydrogen bonding interactions of the optimized pose of celecoxib 

at the pocket of COX-2 by using the DFTB3-D3H5 method. 

75 

4.12 Pearson correlation between the experimental ∆G'bind,solv values and 

the computed ∆G’bind,solv for (a) benchmark geometries and (b) 

optimized geometries of MNSOL dataset using the GFN2-xTB 

method and ALPB solvation model. 

76 

 

4.13 Pearson correlation between the experimental ∆G'bind,solv values and 

the computed ∆G’bind,solv for (a) benchmark geometries and (b) 

optimized geometries of SAMPL2 dataset using the GFN2-xTB 

method with ALPB solvation model. 

77 

 

  

 

 

 

  

 

  

Ref. code: 25676309040050KWL



(14) 

 

LIST OF ABBREVIATIONS 

 

Symbols/Abbreviations Terms 

  

∆9-THC Delta-9-tetrahydrocannabinol 

∆G'bind,solv Uncorrected binding free energy 

∆Gbind,solv   Corrected binding free energy 

µM Micromolar 

Å Angstrom 

ALPB Analytical linearized Poisson-

Boltzmann model 

AM11542 Tetrahydrocannabinol 

BE Binding energy 

CB1 Cannabinoid receptor type 1 

CB2 Cannabinoid receptor type 2 

CBC Cannabichromene 

CBD Cannabidiol 

CBDA Cannabidiolic acid 

CBE Cannabielsoin 

CBG Cannabigerol 

CBL Cannabicyclol 

CBN Cannabinol 

CBT Cannabitriol 

CNS Human central nervous system 

COX-1 Cyclooxygenase-1 

COX-2 Cyclooxygenase-2 

D Dispersion correction 

DFTB3 Density functional tight binding method 

version 3 

DMAX Maximum deviation 

DMIN Minimum deviation 

Ref. code: 25676309040050KWL



(15) 

 

Symbols/Abbreviations Terms 

  

ECS Endocannabinoid system 

Evac Total gas-phase energy 

FEP Free energy perturbation 

Gcomplex Free energy of complex 

GCPRs G-protein coupled receptors 

GFN2-xTB Acronym for geometries, frequencies, 

and noncovalent interactions version 2 

GFN-FF GFN force-field 

Gligand Free energy of ligand 

T∆SmRRHO Thermostatistical contribution 

Greceptor Free energy of receptor 

H Hydrogen bonding correction 

HBA Hydrogen bond acceptors 

HBD Hydrogen bond donors 

IC50 Half-maximal inhibitory concentration 

IE Interaction energy 

Ki Inhibitory constants 

LogP Partition coefficient 

MAD Mean absolute deviation 

MD Molecular dynamics 

MM Molecular mechanics 

MM/GBSA Molecular mechanics generalized Born 

surface area 

MM/PBSA Molecular mechanics Poisson–

Boltzmann surface areas 

mRRHO Modified rigid-rotor-harmonic-oscillator 

approximation 

MSE Mean signed error 

Mw Molecular weigh 

Ref. code: 25676309040050KWL



(16) 

 

Symbols/Abbreviations Terms 

  

nM Nanomolar 

NSAIDs Non-steroidal anti-inflammatory drugs 

PDB Protein databank 

PGE2 Prostaglandins 

PGI2 Prostacyclin 

QM Quantum mechanical method 

RMSD  Root mean square deviation 

RMSE Root mean square errors 

SI Selectivity index 

SQM Semiempirical quantum mechanical 

WIN55 212-2 Aminoalkylindole derivative 

X Halogen bonding correction 

Gsolv Solvation free energy 

Ref. code: 25676309040050KWL



1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Statement of the problem 

 

Cyclooxygenases play a role in producing prostaglandins (PGE2) and 

prostacyclin (PGI2) for inflammation. There are two isoforms of cyclooxygenase, 

cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) [1, 2]. The patterns of 

expression of both COX isoforms are different. COX-1 is a housekeeping enzyme 

expressed in many tissues whereas COX-2 is a key therapeutic target for inflammation 

[3]. Although the crystal structures of the COX-1 and COX-2 are similar and share 60% 

identical sequences of amino acid, the active site of both receptors is partially different. 

COX-1 and COX-2 contain three different residues of amino acid in the active site. 

COX-1 is bordered by Ile523 and His513, while COX-2 is surrounded by Val523 and 

Arg513 [4]. According to the protein structure of COX-2 (PDB code: 3LN1, as explored 

in this study), the valine and arginine residues are, respectively, numbered 509 and 499 

[5].  

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to 

treat pain and inflammation by inhibiting COX enzymes. Based on selectivity, 

diclofenac, ibuprofen, flurbiprofen, and naproxen are non-selective NSAIDs, inhibiting 

both COX-1 and COX-2. Aspirin is COX-1 selective NSAID whereas celecoxib is 

COX-2 selective NSAID [6]. However, traditional NSAIDs have gastrointestinal and 

renal adverse effects in humans [7]. Morphine derived from the opium plant has 

previously been used as an alternative to synthetic drugs for treating severe pain [8]. 

Recent evidence indicates that cannabis could be an alternative to opium usage for the 

treatment of chronic pain due to its fewer risks and side effects [9]. Thus, developing a 

new inhibitor that can bind to a particular COX isoform with less adverse effects has 

been a challenge. 

Cannabis contains almost a hundred phytocannabinoids, including the 

psychoactive delta-9-tetrahydrocannabinol (∆9-THC) and the non-psychoactive 

cannabidiol (CBD) [10]. Recently, cannabis has been legalized for medicinal purposes. 

CBD has been used to treat inflammatory bowel diseases such as Crohn's disease [11]. 
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The half-maximal inhibitory concentration (IC50) of ∆9-THC, CBD, cannabidiolic acid 

(CBDA), and cannabigerol (CBG) on COX-2 receptor has been reported in a millimolar 

unit [12]. Additionally, it has been mentioned that cannabinoids are interrelated with 

the endocannabinoid system (ECS), including cannabinoid receptor type 1 (CB1) and 

cannabinoid receptor type 2 (CB2) [13]. CB1 is found in the human central nervous 

system (CNS) and linked to the psychotropic effects of ∆9-THC [14], while CB2 plays 

a role in the inflammatory response without the psychoactivity [15]. The inhibitory 

constants (Ki) of cannabinoids with CB2 receptors in a nanomolar unit has been 

reported in the previous study [16]. Nevertheless, the use of cannabinoids as a pure 

substance for medical treatment is limited due to the complexity of their mechanisms 

of action at a cellular level. This process not only requires advanced analysis tools and 

laboratory studies, but also consumes the time for drug development. Therefore, 

computational studies have emerged as a promising approach for investigating protein–

ligand binding affinities.  

Noncovalent interactions, e.g., dispersion, hydrogen bonding, halogen 

bonding, salt bridge, and π–π stacking, play a role in the binding affinity of protein–

ligand complexes [17]. A common technique for exploring the binding affinity of 

protein–ligand interaction is molecular docking. The success of docking approaches 

relies on both search algorithm and scoring function [18, 19]. The binding affinities of 

docking poses are estimated and ranked by the scoring function. The scoring functions, 

including the force field-based, knowledge-based, and empirical scoring functions, are 

available in various docking engines [20]. Discriminating between false-positive and 

false-negative docking results, as well as identifying the correct ones, remains a 

significant challenge for docking techniques [21].  

Semiempirical quantum mechanical (SQM) methods offer the advantage of 

reducing computational costs while improving the quantitative description of 

noncovalent interactions through empirical corrections for dispersion and hydrogen-

bonding interactions.  PM6-DH2 method has shown promise by accurately reproducing 

interaction energies for noncovalent geometries obtained from high-level quantum 

mechanical calculations [22] and identifying correct binding modes and bioactive 

conformations of bound ligands [23]. Furthermore, the development of the atom 

pairwise D3H4 formalism has enhanced the robustness of SQM methods, with errors 
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lower than 1 kcal/mol for benchmark datasets [24, 25]. Notably, a tight-binding 

semiempirical quantum mechanical method, GFN2-xTB, including the electrostatic and 

exchange-correlation Hamiltonian terms without specific corrections has reported a 

small error of noncovalent interaction energies for different benchmark sets [26]. The 

use of SQM potentials as scoring functions are still challenging due to solvation effects. 

Solvation plays a key role in protein–ligand interactions for many 

biochemical applications and has a strong impact on the calculation of binding free 

energies. Free energy perturbation (FEP) [27] has the highest accuracy in calculating 

the accurate binding free energy but is computationally costly and difficult to converge 

a large number of the protein–ligand complexes. Alternatively, molecular mechanics 

Poisson–Boltzmann surface areas (MM/PBSA) [28] and molecular mechanics 

generalized Born surface areas (MM/GBSA) [29] are low computational cost while 

providing the approximate binding free energy with whole protein–ligand complexes. 

Notably, SQM methods have shown the performance for calculating the binding free 

energy in thousands of atoms of protein–ligand complexes with low-time-cost and good 

accuracy. With the implementation of COSMO solvation model, both PM6-D3H4X and 

DFTB3-D3H4X methods have demonstrated reductions in the occurrence of false-

positive ligand poses in diverse classes of protein–ligand complexes [30]. GFN force-

field (GFN-FF) method [31] and GBSA solvation model has simulated the dynamics of 

a met-myoglobin mutant and reproduces the experimental EPR-distance measurements 

excellently [31]. GFN-FF method has performed good performance in whole protein–

ligand complexes, considering Pearson correlation coefficient (rp) [32]. Furthermore, 

GFN2-xTB method and analytical linearized Poisson–Boltzmann (ALPB) solvation 

model outperformed GFN2-xTB (GBSA) and GFN-FF (ALPB), with a small MAD of 

hydration free energy for the neutral molecules of the FreeSolv database [33]. In 

comparison, the performance of GFN2-xTB is much better than the GFN-FF in 

truncated protein–ligand complexes. Additionally, the GFN2-xTB has shown a better 

performance than the PM6-D3H4 method in terms of binding free energy [32].   

In this work, we explore the binding affinity of cannabinoids at the active 

sites of COX-2 and CB2 receptors by using SQM and molecular docking methods. 

Validations of SQM method with noncovalent benchmark dimers and complexes are 

presented to evaluate parameter sets and performance of SQM methods. The use of 
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outperforming GFN2-xTB methods for improving docking results are discussed. The 

ALPB solvation model and GFN2-xTB method are used to compute the binding free 

energy of receptor/cannabinoids complexes, considering both unrelaxed and fully 

relaxed geometry of receptors. Furthermore, cannabinoid analogs are modified to 

enhance the highest binding affinity comparable to that of NSAIDs. Druglike properties 

are used to predict a lead identification as novel oral anti-inflammatory drugs.  

 

1.2 Research objectives 

 

1.2.1 To explore the binding affinity of cannabinoids at the active sites of 

COX-2 and CB2 receptors by using SQM and molecular docking methods. 

1.2.2 To explore the use of SQM potentials as scoring functions for 

improving docking results. 

1.2.3 To identify potential novel analogs of cannabinoids with anti-

inflammatory activities.  
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Inflammation 

 

Inflammation is an essential immune response which allows survival during 

infection or injury. Redness and swelling with heat and pain can occur at the site of tissue 

injury. The inflammatory pathway shown in Figure 2.1 consists of inducers, sensors, 

mediators, and target tissues. After infection, inducers initiate the inflammatory response, 

followed by sensors such as Toll-like receptors (TLRs). The sensor induces the 

production of mediators, including tumor-necrosis factor-α (TNF-α), interleukin (IL-1 

and IL-6), and cyclooxygenases (COX-1 and COX-2). These inflammatory mediators 

then act on various target tissues [1, 2]. 

 

 
 

Figure 2.1 Inflammatory pathway [2].  

 

2.2 Cyclooxygenase (COX) enzyme 

 

Two isoforms of the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 

(COX-2) engage in the biosynthetic mechanism of transforming arachidonic acid into 

mediators such as prostaglandins (PGE2), prostacyclin (PGI2), and thromboxane 

(TXA2) (Figure 2.2). COX-1 is constitutively expressed as a housekeeping enzyme in 

many tissues whereas COX-2 is a major therapeutic target for inflammation [3]. 
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Figure 2.2 Schematic presentation of COX-1 and COX-2 pathways [3]. 

 

2.3 Non-steroidal anti-inflammatory drugs (NSAIDs) 

 

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to 

treat pain and inflammation by inhibiting COX enzymes. NSAIDs are typically divided 

into groups based on their selectivity and chemical structures. For instance, aspirin is 

COX-1 selective NSAID, celecoxib is COX-2 selective NSAID, and ibuprofen is non-

selective NSAID [6] (Table 2.1).  

 

Table 2.1 NSAIDs selectivity [6]. 

 

COX-1 selective Non-selective COX-2 selective 

Aspirin 

Diclofenac 

Naproxen 

Ibuprofen 

Celecoxib 

Etoricoib 

Valdecoxib 

Meloxicam 
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Table 2.2 shows the half-maximal inhibitory concentration (IC50) of 

NSAIDs with cyclooxygenase enzyme in micromolar unit reported in the previous 

study [34-36].  

 

Table 2.2 In vitro IC50 of NSAIDs tested as inhibitors of prostanoid formation 

determined in the COX-1 and COX-2 assays.  

 

 

Based on their chemical structure, as shown in Figure 2.3, NSAIDs can be 

classified into diverse types such as salicylic acid, heteroaryl acetic acid and enolic acid 

derivatives. The hydroxyl and carboxylic acid groups are attached to an aromatic 

structure. Additionally, nitrogen and sulfur atoms are mostly found in the structure of 

NSAIDs. For example, ibuprofen and naproxen are aryl and heteroaryl acetic acid 

derivatives whereas meloxicam and piroxicam are enolic acid derivatives [37, 38]. 

 

NSIADs 
IC50 / (µM) 

COX-1 COX-2 

Etoricoxib 162.00 0.47 

Celecoxib 16.00 0.54 

Diclofenac 0.08 0.04 

Naproxen 9.30 28.00 

Ibuprofen 7.60 20.00 

Flurbiprofen 0.08 5.50 

Aspirin 1.70 7.5 

Ref. code: 25676309040050KWL



8 

 

 
 

Figure 2.3 Classification of NSAIDs based on a chemical structure [37]. 

 

2.4 Cannabinoids and cannabinoid (CB) receptors 

 

Cannabis sativa L. or marijuana is in Cannabaceae family. The active 

compound of cannabis is called cannabinoids. Among their diverse structure, natural 

cannabinoids can be classified into eight general types [39], presented in Figure 2.4. 

∆9-THC, CBD, CBDA and CBG could exhibit COX enzymes with the half-maximal 

inhibitory concentration (IC50) values ranging from 0.2 to 1.7 mM [12]. CBDA could 

also inhibit COX-2 selectively with an IC50 of approximately 2 µM [40].  
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Figure 2.4 Chemical structures of cannabinoids: (a) Δ9-tetrahydrocannabinol (∆9-

THC), (b) cannabinol (CBN), (c) cannabidiol (CBD), (d) cannabigerol 

(CBG), (e) cannabitriol (CBT), (f) cannabichromene (CBC), (g) 

cannabicyclol (CBL), and (h) cannabielsoin (CBE). 

 

Cannabinoids are related to the endocannabinoid system, cannabinoid 

receptor types 1 (CB1) and cannabinoid receptor types 2 (CB2). Cannabinoid receptors 

are identified as G-protein coupled receptors (GPCRs) [41, 42]. GPCRs are a diverse 

family of eukaryote-specific membrane receptors which translate external signals into 

specific cellular responses. GPCR ligands can classified into four categories depending 

on their interactions: agonists, antagonists, partial agonists, and inverse agonists 

(Figure 2.5). Agonists bind to the receptor, producing a full response. Antagonists bind 

to the receptor without a response. Partial agonists bind and activate to the receptor with 

only partial response. Inverse agonists bind to a receptor but produce a response 

opposite to an agonist [43]. 
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Figure 2.5 Schematic representation of signal transduction by ligand interactions 

with the cannabinoid receptors [43]. 

 

Dongchen, et. al. reported that the psychoactive ∆9-THC acts as an agonist 

of CB1 and CB2 whereas CBD is a non-psychoactive antagonist or inverse agonist [44]. 

CB1 is expressed in the central nervous system and associated with the psychotropic 

effects of ∆9-THC [14]. In contrast, CB2 is expressed in the immune system and 

regulates inflammatory response without psychoactivity [45] (Figure 2.6). 

 

 
 

Figure 2.6 Distribution of CB1 and CB1 and their associated functions [46]. 

  

Cannabinoids can reduce inflammation by acting on the CB2 receptor, 

leading to downregulation of enzymes involved in the production of prostaglandins, 

COX-2, inducible nitric oxide synthase (iNOS), and TNF-α [13] (Figure 2.7). 
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Figure 2.7 Schematic presentation of the signaling pathways for anti-inflammatory 

effects [13]. 

 

The inhibitory constants (Ki) of cannabinoids including ∆9-THC, ∆9-

THCA, CBD, CBG, and CBN with cannabinoid receptors in a nanomolar unit have 

been reported in the previous study [16] (Table 2.3). 

 

Table 2.3 The Ki values (in nM) of cannabinoids with cannabinoid (CB) receptors. 

 

Cannabinoids CB1 / (Ki, nM) CB2 / (Ki, nM) Ref. 

∆9-THC 5.05 3.13 [47] 

35.6 8.5 [48] 

21 36.4 [49] 

53.3 75.3 [50] 

∆9-THCA 23.5 56.1 [48] 

CBD 1458.5 372.4 [48] 

4350 2860 [49] 

4900 4200 [51, 52] 

CBG 896.8 153.4 [48] 

CBN 12.7 16.4 [48] 

120.2 100 [53] 

326 96.3 [49] 
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2.5  Protein–ligand interactions 

 

A drug (or ligand) is a small molecule which can interact with protein 

receptors (e.g., enzymes and hormones) for various biological processes. Protein–

ligand (P–L) interactions play a key role in the binding affinity of a protein–ligand 

complex, such as signal transduction, cell regulation, and immune response [54]. 

Noncovalent interactions, e.g., dispersion, hydrogen bonding, halogen bonding, salt 

bridge, and π–π stacking, pi-alkyl, pi-pi, and hydrophobic force can be observed 

between bound ligand and amino acid residues of receptor [55]. The Protein Data Bank 

(PDB) is the primary source for the data of X-ray crystallographic structure [56].  

 

2.5.1 COX binding pockets 

Although the three-dimensional structures of the COX-1 and COX-2 

are similar and share 60% identical sequence of amino acid [16], the active sites of both 

receptors are partially different. Figure 2.8 shows the key residues of amino acids at 

the active sites of COX-1 and COX-2. Tyr385 and Ser530 are at the apex of the channel 

whereas Arg120 and Tyr355 are at the bottom of the active sites for both COX isoforms. 

The COX-2 binding pockets are bordered by Val523 and Arg513, while COX-1 is 

surrounded by Ile523 and His513 at the base of the pockets [57, 58]. According to the 

protein structure of COX-2 (PDB code: 3LN1, as explored in this study), the valine and 

arginine residues are, respectively, numbered 509 and 499 [5]. 

 

 
 

Figure 2.8 Comparison of the key amino acid residues of COX-1 and COX-2 binding 

pockets [57, 58]. 
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Binding interactions with key amino acid residues can be found in 

NSAIDs. The hydrogen bonding interactions between the carboxyl group of ibuprofen 

and amino acid Tyr355 and Arg120 could be observed within 3 Å (Figure 2.9). In 

contrast, pi-alkyl interaction occurs with Val349 [59].  

 

 
 

Figure 2.9 Binding interaction of ibuprofen with COX-2 active site. The hydrogen 

bonds are displayed as black dashed lines, and hydrophobic interactions 

are in yellow dashed lines. All distances are measured in angstroms. 

 

Cannabigerol (CBG) has showed strong binding interactions with key 

amino acid residues, Arg120, Tyr355, and Val523 at the active sites of COX-2. The 

oxygen atom of the phenyl group interacted with Leu352 via hydrogen bonding in 3.32 

Å. The carbon-5 (C5) of pentyl side chain showed hydrophobic contact with Leu384, 

while the carbon-3 (C3) interacted with Trp387 and Met522 [60] (Figure 2.10). 

 

 
 

Figure 2.10  Molecular interactions of CBG with key amino acid residues inside 

binding pocket of COX-2 enzyme [60].  
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2.5.2 CB binding pockets 

Cannabinoid receptors, CB1 and CB2, share 44% amino acid 

similarity and 68% homology in the transmembrane regions [61, 62]. CB1 with a 

tetrahydrocannabinol (AM11542) has been reported at a high resolution of 2.80 Å with 

the PDB code of 5XRA. The chemical structure of AM11542 contains a tricyclic ring 

system and the hydroxyl group, greatly resemble the structure of Δ9-THC. The key 

binding interactions of Δ9-THC are similar to that of co-crystallized 

tetrahydrocannabinol (Figure 2.11a). Hydrogen bonding interactions are observed 

between the hydroxyl group of ∆9-THC and Ser383 of CB-1. Pi-pi interactions also 

occur with Phe177, Phe189, Phe200, Phe268, and Phe379 residues. Additionally, the 

alkyl side chain extended into the long channel and interacts with Leu193, Val196, 

Tyr275, Leu276, L359, and Met363 [14]. CB2 bound to the potent aminoalkylindole 

derivative (WIN 55,212-2) with a resolution of 3.20 Å (PDB ID: 6PT0) (Figure 2.11b). 

The naphthalene moiety of WIN 55,212-2 forms strong pi-pi interactions with Phe91 

and Phe94, while hydrophobic interactions occurred with Phe87, His95, Pro184, and 

Phe281. In addition, the core structure of WIN 55,212-2 engages the pi-pi interactions 

with Ile110, Val113, Phe117, Phe183, Trp258, Val261, and Met265 [15]. 

 

 
 

Figure 2.11 Comparison of the key amino acid residues (deep teal and magenta sticks) 

of (a) CB-1 receptors with AM11542 (yellow sticks) and (b) CB-2 

receptors with WIN 55,212-2 (cyan sticks). The water is shown as a red 

sphere. The hydrogen bonds are shown as dashed lines [14, 15]. 
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Ring systems and hydroxyl groups of cannabinoids play a key role 

for their binding affinity at the active sites of cannabinoid receptors. Figure 2.12 shows 

the binding interactions of (−)-trans-∆9-THC and their derivatives with CB1 receptor. 

The ring of cannabinoid analogs made pi-pi interaction with Phe170 and Phe268 

whereas the hydroxy group formed a hydrogen bond with Ser383 [63]. The other amino 

acid residues were observed at the position of the aliphatic side chain listed in Table 

2.4. 

 

 
 

Figure 2.12  Binding interactions of (a) (−)-trans-Δ9-THCV, (b) (−)-trans-Δ9-THCB, 

and (c) (−)-trans-Δ9-THC in complex with CB-1 (PDB ID 5XRA) [63]. 

 

Table 2.4  List of the binding interactions of cannabinoids. 

 

 
(-)-trans-∆9-THCV (-)-trans-∆9-THCB (-)-trans-∆9-THC 

Propyl side chain Butyl side chain Pentyl side chain 

Hydrogen bond Ser383 

pi–pi interaction Phe170 and Phe268 

Hydrophobic 

interactions 

Phe170, Phe200, 

Leu387, Met363, 

Leu359, and Cys386 

Phe170, Phe200, 

and Leu387 

Leu193, Val196, 

Tyr275, Leu276, 

Trp279, and Met363 

 

Hydrogen bonding interactions and pi-pi interactions at the active 

sites of CB1 and CB2 receptors with various PDB codes have been reported in the 

previous study (Table 2.5 and Table 2.6). 
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Table 2.5  Information of ligand binding interactions with CB1. 

 

CB1 receptor 

PDB ID 6KPG 5XR8 5XRA 6N4B 5TGZ 

Ligand AM12033 AM841 AM11542 FUB AM6538 

Hydrogen bond Ser385 

Ser383 

Ile267 

Tyr275 

Ser383 
Ser383 

His178 
 

pi-pi interaction 

Phe94 

Phe183 

Phe281 

Phe170 

Phe268 

Phe379 

Phe189 

Phe177 

Phe170 

Phe268 

Phe379 

Phe189 

Phe177 

Try279 

Phe170 

Phe268 

Phe170 

Phe268 

Phe102 

Try356 

Ref. [64] [14] [14] [65] [66] 

 

Table 2.6  Information of ligand binding interactions with CB2. 

 

CB2 receptor 

PDB ID 6PT0 5ZTY 

Ligand WIN 55,212-2 AM10257 

Hydrogen bond - Ser165 

pi-pi interaction 

Phe91 

Phe94 

Phe117 

Try258 

Phe117 

Phe183 

Try258 

Ref. [15] [45] 
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2.6 Challenge in protein–ligand binding affinity predictions 

  

2.6.1 Molecular docking algorithm  

Molecular docking technique is used to propose the orientations of 

ligands (or drugs) within the protein binding sites, visualize the protein–ligand 

interactions, and estimate binding free energies. A docking scheme requires X-ray 

crystallographic structure of a protein receptor determined by a biophysical technique 

such as X-ray crystallography and NMR spectroscopy. Docking engines, such as Glide 

XP [67], UCSF Dock [68], GOLD Suite [69], DOCK [70], FlexX [71], Discovery 

Studio [72], AutoDock Vina [73], and AutoDock4 [74] have different algorithms for 

solving chemical problems. The success of docking approaches relies on both the search 

algorithm and the scoring function. The former is responsible for exploring various 

ligand conformations within a specific target protein. The latter is responsible for 

estimating the binding affinities of the generated poses. 

The search algorithm can be divided into three fundamental classes: 

deterministic (or systematic search), stochastic (or random search), and simulation 

methods [18]. Deterministic method is an algorithm which explores all the degrees of 

freedom in a molecule. Thus, ligands are incrementally grown into active sites. 

Stochastic methods are useful for flexible molecules [19]. This method performs by 

making a population of ligands. The popular random approaches are Monte Carlo (MC) 

and genetic algorithms (GA). Simulation methods is an approach in which the 

temperature of a system is adjustable. Molecular dynamics (MD) is the most popular 

simulation [75]. 

Scoring functions are derived by the approximate mathematical 

methods. Binding free energy is estimated by the strength of noncovalent interactions 

in protein –ligand complexes. The best candidate ligand should have the strongest 

binding affinity [20]. Scoring functions can be divided into three classes: the force-

field-based, the empirical, and the knowledge-based scoring functions. Force-field-

based scoring functions depend on classical molecular mechanics (MM) methods, 

representing the force fields. Empirical scoring functions are based on the 

parameterization of several types of interactions contributed to energy terms. The 

energy terms can be approximated by a sum of individual interactions, e.g., hydrogen 
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bonding, binding entropy, ionic and lipophilic interactions [20]. Knowledge-based 

scoring functions are derived from statistical analysis of the known 3D structures of 

protein–ligand complexes. The binding free energy of docking is the sum of the 

intermolecular forces acting upon the protein–ligand complex [76], as shown in 

Equation 2.1.  

∆Gbind = ∆Gvdw + ∆Ghbond + ∆Gelec + ∆Gtor + ∆Gsol                                       (Equation 2.1)  

where the molecular mechanics terms are dispersion/repulsion, hydrogen bonding, and 

electrostatics. ∆Gtor is rotation and translation. ∆Gsol is hydrophobic effect (solvent-

entropy changes at solute-solvent interfaces).  

 

2.6.2 Dispersion corrected methods for modelling noncovalent 

interactions 

Noncovalent interactions, e.g., dispersion, hydrogen bonding, pi-

alkyl, pi-pi and hydrophobic force involve in protein–ligand (P-L) binding interactions. 

These interactions play a role in contributing to binding affinity. Scoring functions of 

docking are limited to correct noncovalent interactions due to approximate term in 

energy calculation. High-level quantum mechanical (QM) methods can be used to 

describe noncovalent interactions. However, accurate QM calculations are high 

computational cost with small-sized system. To address this concern, semiempirical 

quantum mechanical (SQM) methods offer the advantage of reducing computational 

costs with thousands of atoms while improving the description of noncovalent 

interactions. The classical SQM methods, e.g., AM1 [77], PM6 [78], PM7 [79], SCC-

DFTB [80], are based on the neglect of differential diatomic overlap approximations 

[81]. To enhance the accuracy of SQM, dispersion corrections (D, D3) have been added 

to semiempirical methods [82, 83] Additionally, corrections of hydrogen bonding (H, 

H+, H2, H4, H5) [84] and halogen bonding (X) have been improved the potential SQM 

methods [85]. SQM parameter sets have been parametrized to reproduce accurate 

interaction energies using CCSD(T)/CBS tested against benchmark dimers and 

complexes [24, 26, 86-90] (Table 2.7).  
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Table 2.7  The root mean square errors (RMSEs) in kcal/mol of the SQM methods 

tested against the benchmark datasets.  

 

Data set 
PM6 DFTB3 

GFN2-xTB 

D3H4 D3H4X D3H4 D3H5 

S66 0.67 [86] 0.68 [87] 0.66 [24] 0.58 [86] 0.65 [26] 

X40 2.59 [87] 2.32 [87] - - - 

HB375 1.09 [89] - 1.23 [89] 1.05 [89] 1.22 [89] 

HB300SPX 3.95 [90] 4.44 [90] 2.79 [90] 2.71 [90] 1.58 [90] 

PLA15 21.00 [88] - 21.40 [88] 15.20 [88] 13.40 [88] 

 

PM6-DH2 method [22] has shown promise by accurately reproducing 

interaction energies for noncovalent geometries obtained from high-level quantum 

mechanical calculations and identifying correct binding modes and bioactive 

conformations of bound ligands. Table 2.8 shows the calculated binding free energy of 

the top-ranked poses by using AutoDock4 and PM6-DH2. It was found that PM6-DH2 

optimization can identify the bound pose of carboxamide ligand that suggested a false 

negative error, with the recomputed BE of -24.9 kcal/mol. The orientation of the false 

negative pose was close to the X-ray crystallographic ligand. Additionally, The PM6-

DH2 single point energy calculation can identify the bound pose of carboxamide ligand 

that suggested a false positive error, with the positive BE value of +10.2 kcal/mol [23]. 
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Table 2.8  Calculated binding free energies in kcal/mol of the top-ranked poses from 

Autodock Vina and PM6-DH2 calculations [23]. 

 

Ligand 
Protein 

code 

Autodock 

Vina 
PM6-DH2 

E
vina 

(rank) 
Single point 

E
sp 

(rank) 

Optimization 

E
opt

 (rank) 

Carboxamide 

derivative (d11)  

1P44 −7.3 (3) −2.7 (1) −24.9 (1) 

3FNE −7.7 (1) 10.2 (10) −3.6 (10) 

 

The performance of SQM method has been explored and tested with 

15 protein-ligand active site complexes (PLA15 dataset) [88]. PM6-D3H4, DFTB3-

D3H4, DFTB3-D3H5, and GFN2-xTB outperformed other SQM methods with small 

error of interaction energy (Figure 2.13).  

 

 
 

Figure 2.13  Distribution of the relative errors of interaction energies obtained from the 

tested methods using the PLA15 data [88]. 

 

GFN-xTB includes the electrostatic and exchange-correlation 

Hamiltonian terms without dispersion, hydrogen, and halogen bond specific 

corrections. It has been reported that the error of GFN-xTB [91] and DFTB3-D3(BJ) 

[92] were much smaller in magnitude compared to PM6-D3H4X for PL24 protein-

ligand binding set [91]. Furthermore, GFN2-xTB outperforms GFN-xTB, DFTB3-
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D3(BJ), and PM6-D3H4X with a small error of MAD for the noncovalent interaction 

energies of different benchmark sets from the GMTKN55 database [26] (Figure 2.14).  

 

 
 

Figure 2.14  Mean absolute deviations (MADs) in kcal/mol for the noncovalent 

energies of different benchmark sets. 

 

2.6.3 Solvation model and predicted binding free energy 

Solvation plays a key role in protein–ligand interactions for many 

biochemical applications and has a strong impact on the calculation of binding free 

energies. Free energy perturbation (FEP) [27] has the highest accuracy in calculating 

the accurate binding free energy. FEP refers to an ensemble of rigorous statistical 

mechanical methods for calculating the free energy in an alchemical process [93]. 

Figure 2.15 shows alchemical free-energy calculations according to the 

thermodynamic cycle. The binding free energy of a compound consists of four different 

states: the protein–ligand complexes of molecules A and B, as well as A and B in a 

water box. Figure 2.16 shows the transformation from A to B by varying a number of 

alchemical intermediates characterized by intermediate λ values [94]. The binding free 

energy (ΔGbind) of A–B are calculated using Equation 2.1.  

 

∆Gbind,A  − ∆Gbind,B  = ∆Gbound − ∆Gsolvated                                                 (Equation 2.1) 
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Figure 2.15  Schematic representation of alchemical free-energy calculations [93]. 

 

   
 

Figure 2.16  Schematic representation of alchemical intermediates [93, 94]. 

 

Free energy perturbation has predicted the binding free energy 

(ΔGFEP) of protein–ligand complexes, with the mean absolute 

deviations |ΔGFEP−ΔGEXP| lower than 2 kcal/mol [95]. However, FEP is 

computationally costly and difficult to converge a large number of the protein–ligand 

complexes. 

Molecular mechanics Poisson–Boltzmann surface areas (MM/PBSA) 

[28] and molecular mechanics generalized Born surface areas (MM/GBSA) [29] are 

low computational cost while providing the approximate binding free energy with 

whole protein–ligand complexes. These methods employ ensembles derived from 

molecular dynamic simulation and force field. The binding free energy (ΔGbind) of the 

protein–ligand complex [96] is calculated using Equation 2.2. 

 

∆Gbind = Gcomplex − (Greceptor + Gligand)                                                        (Equation 2.2) 

 

where Gcomplex is the free energy of protein–ligand complex and Greceptor and Gligand are 

the free energy of the protein and ligand respectively. 
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The binding free energy of protein–ligand can also be calculated in 

terms of thermodynamics using Equation 2.3 and 2.4.  

 

∆Gbind = ∆H − T∆S                                                                                    (Equation 2.3) 

 

 ∆Gbind,solv = ∆Gbind,vac + ∆Gsolv,complex − (∆Gsolv,ligand − ∆Gsolv,receptor)         (Equation 2.4) 

 

where ΔGsolv is solvation free energy, which can be either polar or non-polar 

components (ΔGsolv = ΔGpolar + ΔGnonpolar) and ΔGvac is the free energy in vacuum which 

constitute of electrostatic energy (ΔEelectrostatic) and entropy (TΔS) (ΔGvac = ΔE(MM) − 

TΔS). Figure 2.17a shows protein–ligand binding free energy in solvation (ΔGbind). 

Figure 2.17b shows thermodynamic cycle for estimating the binding free binding 

energy of protein–ligand complexes. ∆Gsolv,ligand and ∆Gsolv,receptor is difference in 

binding energy in vacuum and solvation of ligand and protein, respectively. ∆Gbind,vac 

and ∆Gbind,solv is binding energy of protein and ligand in vacuum and solvation, 

respectively. ∆Gsolv,complex is difference in binding energy of protein–ligand complex in 

solvation.  

 

 
 

Figure 2.17  (a) protein–ligand binding free energy in solvation. (b) thermodynamic 

cycle for estimating the binding free energy of protein–ligand complexes. 

Ligand is presented in green. Protein is presented in red. Solvent is 

presented in blue [96]. 
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SQM methods have shown the performance for calculating the 

binding free energy in thousands of atoms of protein–ligand complexes with low-time-

cost and good accuracy. With the implementation of COSMO solvation model, both 

PM6-D3H4X and DFTB3-D3H4X methods have demonstrated reductions in the 

occurrence of false-positive ligand poses in diverse classes of protein–ligand complexes 

[30] (Figure 2.18).  

 

 
 

Figure 2.18  Number of false positive poses for the six methods across all the 17 

protein–ligand complexes [30]. 

 

GFN force-field (GFN-FF) [31] is designed to combine high force-

field speed with the accuracy of QM methods with low computational cost. GFN-FF 

introduces an approximation to the remaining quantum mechanics by replacing the 

extended Hückel theory with molecular mechanics for the description of covalent 

bonds. The total GFN-FF energy is calculated using Equation 2.5. 

 

EGFN-FF = Ecov + ENCI                                                                                 (Equation 2.5) 

 

where Ecov refers to the bonded FF energy and ENCI describes the intra- and 

intermolecular noncovalent interactions.  

In the covalent part, as shown in Equation 2.6, interactions are 

described by correcting bond stretch, bond angle, and torsional terms. Repulsive terms 

are added for bonded and non-bonded interactions. A new three-body bonding 

correction is the sum of pairwise interactions.  

Ref. code: 25676309040050KWL



25 

 

 

Ecov = Ebond + Ebend + Etors + Ebond,rep + Ebond,abc                                          (Equation 2.6) 

 

In the non-covalent part, as shown in Equation 2.7, electrostatic 

interactions are described by the EEQ model. The correction terms of dispersion 

hydrogen bonding, and halogen bonding correction are accounted to the energy. 

 

ENCI = EIES + Edisp + EHB + EXB + ENCI,rep                                                  (Equation 2.7) 

 

GFN-FF method and GBSA solvation model has simulated the 

dynamics of a met-myoglobin mutant and reproduces the experimental EPR-distance 

measurements excellently [31]. Furthermore, the performance of the GFN-FF method 

is quite good in a neutral–ligand system since the Pearson correlation coefficient (rp) is 

0.70 and the mean absolute error (MAE) is 5.49 kcal/mol. However, it may fail in a 

charge–ligand system (the MAE is 18.98 kcal/mol) [32].  

To enhance the accuracy, GFN2-xTB method has been used to 

compute the binding free energy of truncated protein–ligand complexes [32]. The 

binding free energy (ΔGbind,solv) of the protein–ligand complex is calculated using 

Equation 2.2. For a more detailed, the binding free energy can be described in three 

contributions shown in Equation 2.8. The free energy (G) consists of three 

contributions: the total gas-phase energy (Evac), the solvation free energy (Gsolv), and 

the thermostatistical contribution to the free energy (−T)∆Ssolv,mRRHO. GmRRHO is 

modified rigid-rotor-harmonic-oscillator approximation at 298.15K, including 

translation, rotation, vibration of molecule. 

 

∆Gbind,solv = ∆Evac(GFN2-xTB) + ∆Gsolv + (−T)∆Ssolv,mRRHO                          (Equation 2.8) 

 

GFN2-xTB method and analytical linearized Poisson–Boltzmann 

(ALPB) solvation model outperformed GFN2-xTB with GBSA solvation model and 

GFN-FF with ALPB solvation model, with a small MAD of hydration free energy for 

the neutral molecules of the FreeSolv database [33] (Figure 2.19). 
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Figure 2.19  Mean deviation in kcal/mol of hydration free energies for the neutral 

species of the FreeSolv database [33]. 

 

In comparison, the performance of GFN2-xTB is much better than 

the GFN-FF in truncated protein–ligand complexes. (MAE is 4.91 kcal/mol in neutral–

ligand system and 10.25 kcal/mol in the charged–ligand systems). The Pearson 

correlation coefficient was not increased when using the GFN2-xTB. As shown in 

Figure 2.20, the GFN2-xTB had a smaller error than the PM6-D3H4 for accurate 

binding free energy in most cases of truncated protein–ligand complexes [32].   

 

 
 

Figure 2.20  Absolute error (i.e., |ΔGexp-ΔGcal|) for the binding free energy of the 

truncated systems with the PM6-D3H4 and GFNn-xTB methods. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

In this study, the protein receptors and studied NSAIDs and cannabinoids 

were prepared for molecular docking simulations. The noncovalent datasets were used 

to benchmark the parameters used for semiempirical quantum mechanical (SQM) 

method and the solvation model. Docked poses of cannabinoids were then reoptimized 

at the prepared active site of protein receptor using the outperforming SQM method. 

The binding free energy of fully relaxed protein-ligand complexes was computed in 

implicit aqueous solvation at the same level of theory. The highest-scored complex with 

a more negative binding energy is predicted to be more stable. The binding affinity and 

selectivity index of calculated inhibitory constant of the highest-scored complex were 

examined and compared with NSAIDs. Finally, 3D graphic representations of the 

protein-ligand complexes were generated for analysis of the binding interactions.  

 

3.1 Preparation of receptors 

 

Structures of COX-1 and COX-2 with co-crystallized ligand in Table 3.1 

were used for validation of docking and GFN2-xTB. The multiple structures of COX-

1 and COX-2 were used due to having difference co-crystallized ligand. The X-ray 

crystallographic structures of COX-1 (PDB code: 3KK6 [97], 3N8Y [98], 1EQG [99], 

1EQH [99]), COX-2 (PDB code: 3LN1 [100], 1PXX [101], 4PH9 [102], 3PGH [103]), 

CB1 (PDB code: 5XRA [14]), and CB2 (PDB code: 6PT0 [15]) receptors with a 

resolution < 3.50 Å were downloaded from the RCSB protein data bank (PDB) [56]. 

Only chain A of the receptor was selected. Water molecules and other heteroatoms were 

removed from the protein-ligand complexes. Hydrogen atoms were then added to the 

complexes. The protonation states of amino acids were adjusted at pH of 7.4 using the 

PROPKA plugin under the APBS-PDB2PQR software suite [104]. We noted that COX-

1 with the PDB code of 1EQH and COX-2 with the PDB code of 3LN1 were used for 

molecular docking and GFN2-xTB optimization. 
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Table 3.1  X-ray crystallographic structures of protein receptors. 

 

Protein 
PDB 

code 

Res 

(Å) 
Co-crystallized ligand Source 

COX-1 

3KK6 2.75 Celecoxib Ovis aries 

3N8Y 2.60 Diclofenac Ovis aries 

1EQG 2.61 Ibuprofen Ovis aries 

1EQH 2.70 Flurbiprofen Mus musculus 

COX-2 

 

3LN1 2.40 Celecoxib Mus musculus 

1PXX 2.90 Diclofenac Mus musculus 

4PH9 1.81 Ibuprofen Mus musculus 

3PGH 2.50 Flurbiprofen Mus musculus 

CB1 5XRA 2.80 Tetrahydrocannabinol (AM11542) Homo sapiens 

CB2 6PT0 3.20 
Aminoalkylindole derivative 

(WIN 55212-2) 
Homo sapiens 

 

The key residues of amino acids at the binding region for each receptor 

(COX-1, COX-2 [5, 57, 58], CB1 [14], and CB2 [15]) were selected based on the 

binding interaction of protein-ligand complex, as listed in Table 3.2. The binding 

pockets of these protein receptors were subjected to determining binding affinity using 

SQM theory, either in their native form or in a fully relaxed pose. 

 

Table 3.2  The list of amino acid residues in the pocket of protein receptors. 

 

Protein PDB code Amino acid residues in the pocket 

COX-1 

3KK6 
His90, Leu93, Thr94, Met113, Arg114, Val116, Arg120, 

Gln192, Phe198, Phe205, Val344, Ile345, Tyr348, 

Val349, Gln351, Leu352, Ser353, Gly354, Tyr355, 

Leu357, Leu359, Phe381, Leu384, Tyr385, Trp387, 

Ile434, His513, Asn515, Ser516, Ile517, Phe518, 

Gly519, Met522, Ile523, Glu524, Met525, Gly526, 

Ala527, Ser530, Leu531, Leu534 

3N8Y 

1EQG 

1EQH 
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Table 3.2  The list of amino acid residues in the pocket of protein receptors. (cont.) 

 

Protein PDB code Amino acid residues in the pocket 

COX-2 

3LN1 

His75, Leu78, Thr79, Met99, Val102, Leu103, Arg106, 

Gln178, Phe191, Thr192, Phe195, Val330, Ile331, 

Tyr334, Val335, Leu338, Ser339, Gly340, Tyr341, 

Leu345, Phe367, Leu370, Tyr371, Trp373, Val420, 

Arg499, Ala502, Ile503, Phe504, Met508, Val509, 

Glu510, Leu511, Gly512, Ala513, Ser516, Leu517, 

Leu520 

1PXX 

His90, Leu93, Thr94, Met113, Val116, Leu117, Arg120, 

Gln192, Phe205, Thr206, Phe209, Val344, Ile345, 

Tyr348, Val349, Leu352, Ser353, Gly354, Tyr355, 

Leu359, Phe381, Leu384, Tyr385, Trp387, Val434, 

Arg513, Ala516, Ile517, Phe518, Met522, Val523, 

Glu524, Leu525, Gly526, Ala527, Ser530, Leu531, 

Leu534 

4PH9 

His90, Leu93, Thr94, Met114, Val117, Leu118, Arg121, 

Gln193, Phe206, Thr207, Phe210, Val345, Ile346, 

Tyr349, Val350, Leu353, Ser354, Gly355, Tyr356, 

Leu360, Phe382, Leu385, Tyr386, Trp388, Val435, 

Arg514, Ala517, Ile518, Phe519, Met523, Val524, 

Glu525, Leu526, Gly527, Ala528, Ser531, Leu532, 

Leu535 

3PGH 

His90, Leu93, Thr94, Met113, Val116, Leu117, Arg120, 

Gln192, Phe205, Thr206, Phe209, Val344, Ile345, 

Tyr348, Val349, Leu352, Ser353, Gly354, Tyr355, 

Leu359, Phe381, Leu384, Tyr385, Trp387, Val434, 

Arg513, Ala516, Ile517, Phe518, Met522, Val523, 

Glu524, Leu525, Gly526, Ala527, Ser530, Leu531, 

Leu534 
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Table 3.2  The list of amino acid residues in the pocket of protein receptors. (cont.) 

 

Protein PDB code Amino acid residues in the pocket 

CB1 5XRA 

Phe108, Ile169, Phe170, Ser173, Phe174, Phe177, 

His178, Phe189, Lys192, Leu193, Val196, Thr197, 

Phe200, Ile267, Phe268, Pro269, Ile271, Tyr275, 

Leu276, Trp279, Ile280, Trp356, Leu359, Met363, 

Phe379, Ala380, Ser383, Cys386 

CB2 6PT0 

Tyr25, Val86, Phe87, Ser90, Phe91, Phe94, His95, 

Phe106, Lys109, Ile110, Gly111, Val113, Thr114, 

Phe117, Ser165, Pro168, Leu182, Phe183, Pro184, 

Ile186, Tyr190, Leu191, Trp194, Leu195, Trp258, 

Val261, Met265, Phe281, Ala282, Ser285, Cys288 

 

To complete the binding pockets, all dangling bonds of the cleaved amino 

acid residues were then capped with the hydrogen atoms. The number of amino acid 

residues in the binding site was, respectively, 41, 38, 28, and 31 for COX-1, COX-2, 

CB1, and CB2 receptors. The size of protein pocket ranges from 494 to 657 atoms with 

their total charge of +1 and +2 (Table 3.3). 

 

Table 3.3  The number of amino acid residue, atoms, and total charge at the pocket 

of protein receptors. 

 

Protein 
The binding site 

Residues Atoms Charge 

COX-1 41 657 +1 

COX-2 38 607 +1 

CB1 28 504 +1 

CB2 31 494 +2 
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3.2 Preparation of ligands 

 

The Simplified Molecular-Input Line-Entry System (SMILES) of 7 

NSAIDs (etoricoxib, celecoxib, diclofenac, naproxen, ibuprofen, flurbiprofen, and 

aspirin) were retrieved from ChEMBL database [105] and converted to the 3D 

structures using OpenBabel [106]. The 2D structure of NSAIDs are shown in Figure 

3.1.  

 

 
 

Figure 3.1  Chemical structures of NSAIDs: (a) celecoxib, (b) etoricoxib, (c) 

diclofenac, (d) flurbiprofen, (e) ibuprofen, (f) naproxen, and (g) aspirin.  

 

The 3D structures of 54 phytocannabinoids were retrieved from cannabis 

database [107]. We note that CBTA was built by using IQmol [108] because its 

structure cannot be found in the database. All structures were manually checked and 

minimized using MMFF94s force field in IQmol. The compliance of all studied ligands 

with Lipinski’s rules of five [109] was checked by using the additional information in 

the cannabis database and Swiss ADME [110] online tool. According to diverse 

structure of cannabinoids, our selected cannabinoids can be classified into 16 main 

classes, including their acid analogs (Figure 3.2): Δ9-tetrahydrocannabinol (∆9-THC-

type), cannabinol (CBN-type), cannabidiol (CBD-type), cannabigerol (CBG-type), 
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cannabitriol (CBT-type), cannabichromene (CBC-type), cannabicyclol (CBL-type), and 

cannabielsoin (CBE-type). 

 

 
 

Figure 3.2  Chemical structures of cannabinoids: (a) Δ9-tetrahydrocannabinol (∆9-

THC), (b) cannabinol (CBN), (c) cannabidiol (CBD), (d) cannabigerol 

(CBG), (e) cannabitriol (CBT), (f) cannabichromene (CBC), (g) 

cannabicyclol (CBL), (h) cannabielsoin (CBE), (i) Δ9-

tetrahydrocannabinolic acid (∆9-THCA), (j) cannabinolic acid (CBNA), 

(k) cannabidiolic acid (CBDA), (l) cannabigerolic acid (CBGA), (m) 

cannabitriolic acid (CBTA), (n) cannabichromenic acid (CBCA), (o) 

cannabicyclolic acid (CBLA), and (p) cannabielsoic acid (CBEA). 
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3.3 Molecular docking protocols 

 

The docking process was applied to NSAIDs and cannabinoids at the active 

sites of each receptor by using the Lamarckian genetic algorithm (LGA) in the 

AutoDock4 version 4.2.6 [111]. To validate docking parameters, co-crystallized 

ligands were docked into the active sites of their receptors. The grid box used for all 

four receptors was 50  50  50 Å in size with 0.375 Å grid spacing, covered the binding 

region of all protein-ligand systems: COX-1/flurbiprofen, COX-2/celecoxib, 

CB1/tetrahydrocannabinol (AM11542), and CB2/aminoalkylindole derivative (WIN55 

212-2), as shown in Figure 3.3.  

 

 
 

Figure 3.3  The size of a grid box at the binding regions of (a) COX-1, (b) COX-2, 

(c) CB1, and (d) CB2. 

 

The docking scheme was run with 150 individuals in the population, 

250,000 for maximum energy evaluations and 27,000 for maximum generation. The 

top-ten docked poses were ranked based on their binding energy, computed using 

AutoDock4 scoring function. AutoDock4 can reproduce bound ligand poses for all four 

receptors with an RMSD value ranging from approximately 1.0 - 2.0 Å (Table 3.4). 

Note that the best-aligned pose corresponds to the lowest binding energy pose for COX-

1, COX-2, and CB1, but it is the third-ranked pose for CB2.  
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Table 3.4  RMSD of the best-docked poses of co-crystallized ligands with protein 

receptors.  

 

Protein-ligand system RMSD / (Å) 

COX-1/flurbiprofen 1.05 

COX-2/celecoxib 0.84 

CB1/AM11542 0.89 

CB2/WIN55 212-2 1.55 

 

All studied ligands were then docked into the validated grid box at the 

binding sites of protein receptors. Protein-ligand interactions were visualized using 

Discovery Studio (DS) visualizer [72].  

 

3.4 Benchmark datasets 

 

We performed benchmarking of the SQM methods and the ALPB solvation 

model using noncovalent dimers and complexes listed in Table 3.5. 

 

Table 3.5  Description of noncovalent benchmark datasets. 

 

Dataset Entries Description 

S66 66 Organic noncovalent dimers 

X40 40 Organic noncovalent dimers with halogen atoms 

HB375 262 Hydrogen bonding in organic dimers 

HB300SPX 300 
Hydrogen bonding extended to S, P, and halogens in 

organic dimers 

PLA15 15 Protein-ligand active site complexes 

MNSOL 533 
Neutral and ionic solutes including the elements H, C, N, 

O, F, Si, P, S, Cl, Br, and I. 

SAMPL2 21 Organic molecule and drug 
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The S66 dataset consists of 66 organic noncovalent dimers. This dataset 

represents a wide distribution of electrostatic and dispersion interaction; however, it 

does not contain the halogen atoms in system [112]. Thus, we used X40 dataset to 

describe noncovalent interactions of molecular dimers containing halogen atoms. This 

dataset includes electrostatic, dispersion, hydrogen bonding and halogen bonding 

interactions [87]. For a more detailed analysis of hydrogen bonding, we used HB375 

dataset, which comprises six different types of hydrogen bonds: OH−O, NH−O, OH−N, 

NH−N, CH−O and CH−N [89]. Moreover, HB300SPX dataset was used to investigate 

the hydrogen and halogen bonding interactions. This dataset covers hydrogen bonds to 

sulfur, phosphorus, and halogens (F, Cl, Br, and I), and classified into eight groups 

labeled XH−N, XH−O, XH−P, XH−S, XH−F, XH−Cl, XH− Br, and XH−I [90]. For 

the dataset to be more relevant for the large system, we selected the PLA15 dataset, 

built from 15 protein-ligand active-site complexes with systems of sizes ranging from 

259 to 584 atoms. Their ligands in these complexes have a net charge of either 1, 0, or 

+1, and range in size from 37 to 95 atoms [88]. With ALPB solvation model, MNSOL 

and SAMPL2 datasets were used to validate our computed solvation free energies. The 

MNSOL dataset contains 533 experimental solvation free energies for 390 neutral and 

143 ionic solutes. The reference solvation free energies of this dataset refer to the 

process of transferring the molecule from the gas phase to the liquid phase [113]. The 

SAMPL2 dataset consists of 23 organic molecules and drugs [114]. It is worth noting 

that we focused only on 20 molecules, which include the NSAIDs: ibuprofen, 

flurbiprofen, ketoprofen, and naproxen.  

  

3.5 SQM methods 

 

The performance of SQM methods with dispersion (D), hydrogen bonding 

(H), and halogen bonding (X) corrections—specifically PM6-D3H4, PM6-D3H4X, 

DFTB3-D3H4, DFTB3-D3H5, and GFN2-xTB—was examined using noncovalent 

complexes from benchmark datasets. For the PM6 method, the MOZYME keyword 

was applied to speed up the SCF calculations in large protein-ligand complexes. For 

Grimme’s D3 dispersion correction, the scaling coefficient s6 of 0.88 was used for PM6 

[25] whereas the scaling coefficient s6 of 1.0 with Becke–Johnson damping (BJ) was 
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used for DFTB3 [24]. Detailed parameter sets for dispersion, hydrogen-bonding 

corrections, H4 [24] and H5 [86], and halogen bonding corrections [115] are provided 

in Table 3.6, Table 3.7, and Table 3.8, respectively. The PM6 calculations were carried 

out using MOPAC2016 [116]. DFTB3 calculations were performed using DFTB+ 

program version 21.2 [117].  

 

Table 3.6  The parameters for dispersion correction used in the PM6 and DFTB3. 

 

Parameter PM6 DFTB3 

a1 - 0.746 

a2 - 4.191 

s6 0.88 1.0 

s8 - 3.209 

sr 1.18 - 

a 22 - 

 

Table 3.7  The parameters for hydrogen-bonding correction used in the PM6 and DFTB3. 

 

Correction term Parameter PM6 DFTB3 

H4  cOO  2.32 1.28 

cON  3.10 3.84 

cNO  1.07 0.88 

cNN  2.01 2.83 

cwat 0.42 1.00 

cS, COO- 1.41 1.75 

cS, NH4 3.61 4.01 

cS, gua 1.26 2.68 

cS, imz 2.29 3.44 

H5  sr - 0.714 

sw - 0.25 

kOH - 0.06 

kNH - 0.18 

kSH - 0.21 
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Table 3.8  The parameters for halogen-bonding correction used in the PM6 method. 

 

Halogen bond a (kcal/mol) b (Å-1) 

Cl-O 1.871 x 109 7.44 

Br-O     2.160 x 104 3.30 

I-O 2.436 x 106 4.71 

Cl-N 1.049 x 1012 9.95 

Br-N 5.560 x 104 3.04 

I-N 5.237 x 108 6.77 

 

The parameter sets of GFN2-xTB method [26] are shown in Table 3.9. 

Implicit aqueous solvation was implemented using the ALPB solvation model and a 

water solvent with the P16 interaction kernel [33]. The GFN2-xTB method and ALPB 

solvation model were executed using the xtb program, version 6.6.0 [118].  

 

Table 3.9  The parameter sets used in GFN2-xTB method. 

 

Correction term Parameter Value 

 kss 1.85 

 kpp, kdd 2.23 

 ksp 2.04 

 ksd, kpd 2.00 

 krep 1.5 

 Ks 1.0 

 Kp 0.5 

 Kd 0.25 

 kEN 0.02 

Multipole  Dval 1.2 

 Rmax 5.0 

 a3 3.0 

 a5 4.0 
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Table 3.9  The parameter sets used in GFN2-xTB method. (cont.) 

 

Correction term Parameter Value 

Dispersion  a1 0.52 

 a2 5.0 

 s6 1.0 

 s8 2.7 

 s9 5.0 

 

3.6 Computation of binding energy and binding free energy 

 

To validate the SQM methods, the interaction energy (IE) of noncovalent 

dimers from S66, X40, HB375, and HB300 datasets was calculated using Equation 

3.1. Similarly, the binding energy (BE) of protein-ligand complexes from PLA15 

dataset was calculated using Equation 3.2.  

 

 IE = Edimer – (Emonomer_a + Emonomer_b)                                             (Equation 3.1) 

 

 BE = Ecomplex – (Ereceptor + Eligand)                                                        (Equation 3.2) 

 

The hydration free energy (Ghyd) for the SAMPL2 and MNSOL datasets 

was computed, as shown in Equation 3.3, by evaluating the difference between the 

total Gibbs free energy (G) in the two states: vacuum and solvation. This computation 

requires both full geometry optimizations and Hessian calculations. 

 

Ghyd = Gsolv − Gvac                                                                                   (Equation 3.3) 

 

The statistical values of computed IEs and BEs of benchmark datasets 

including root mean square errors (RMSE), mean signed error (MSE), mean absolute 

deviation (MAD), maximum deviation (DMAX), and minimum deviation (DMIN) were 

then evaluated and analyzed. 
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To determine the binding affinity of receptor-cannabinoid complexes, the 

corrected binding free energy (∆Gbind) of receptor and ligand was calculated by using 

GFN2-xTB method, as shown in Equation 3.4., where Gcomplex is the free energy of the 

protein–ligand complex, Greceptor is the free energy of the protein receptor and Gligand is 

the free energy of the ligand.  

 

∆Gbind = Gcomplex − (Greceptor + Gligand)                                                        (Equation 3.4) 

 

The free energy (G) consists of three contributions: the total gas-phase 

energy (Evac), the solvation free energy (Gsolv), and the thermostatistical contribution 

to the free energy (T∆SmRRHO). To obtain the three contributions, each of ten docked 

poses ranked by using AutoDock4 scoring function was reoptimized at the native 

pockets of the receptors in vacuum by using GFN2-xTB method. This step provided 

the total gas-phase energy (∆Evac). Next, the ten optimized poses in vacuum were then 

reoptimized in implicit aqueous solvation with ALPB solvation model. The solvation 

free energy (∆Gsolv) was included in the calculation. Therefore, the free energy is 

defined by the uncorrected binding free energy (∆Gbind,solv). Third, the lowest-energy 

complexes suggested by computed ∆Gbind,solv were fully optimized at the same level of 

theory at 298.15 K. This step provided the energy in terms of the corrected binding free 

energy (∆Gbind,solv), included the thermostatistical contribution (−T)∆Ssolv,mRRHO. All 

terms of computed energy were clarified in Equation 3.5.  

 

∆Gbind,solv =  ∆Evac(GFN2-xTB) + ∆Gsolv + (−T)∆Ssolv,mRRHO 

                =        ∆Gbind,solv        + (−T)∆Ssolv,mRRHO                                     (Equation 3.5) 

 

3.7 Calculation of inhibitory constant (Ki) and selectivity index (SI) 

 

The corrected binding free energy (∆Gbind,solv) and the uncorrected binding 

free energy (∆Gbind,solv) in a unit of cal/mol can be converted to the inhibitory constant 

(Ki), as shown in Equation 3.6. 
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Ki = exp (∆Gbind,solv / RT)                                                                    (Equation 3.6) 

 

The gas constant, R, is 1.98 cal/K mol and T is the absolute temperature of 

298.15 K. The inhibitory constant (Ki) was then used to estimate the selectivity index 

(SI) for COX-2/COX-1 ratio in Equation 3.7 and CB2/CB1 ratio in Equation 3.8. The 

experimental selectivity index from literature was calculated from 50% inhibitory 

concentration (IC50), as in Equation 3.9. 

 

Calculated SICOX-2/COX-1 = Log (Ki of COX-2 / Ki of COX-1)        (Equation 3.7) 

Calculated SICB2/CB1 = Log (Ki of CB2 / Ki of CB1)                     (Equation 3.8) 

 Experimental SICOX-2/COX-1 = Log (IC50 of COX-2 / IC50 of COX-1)      (Equation 3.9) 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 NSAIDs 

 

This section explores the binding energies of the top-ten docked poses of 

NSIADs with COX-1 and COX-2. The ALPB solvation model and GFN2-xTB method 

were then used to compute the binding free energy of COX/NSAID complexes, 

considering unrelaxed geometry of receptors. Additionally, the selectivity index of 

COX-2 to COX-1 ratio was estimated to predict the anti-inflammatory potency of 

NSAIDs. 

 

4.1.1 The binding affinity of protein-ligand complexes 

The binding affinity of ligand in the pockets of studied protein 

receptors can be estimated using binding energies. First, we docked seven NSAIDs into 

the binding sites of COX-1 and COX-2 receptors by using AutoDock4. Table 4.1 shows 

the top-ten docked poses of each NSAIDs ranked according to their binding energy. It 

was found that AutoDock4 can effectively predict the bound pose of NSAIDs with 

COX-1 and COX-2 receptors, displaying strong binding affinity comparable to that of 

the co-crystallized poses. As the COX-2 selective NSAIDs, etoricoxib and celecoxib 

showed the highest affinity with COX-2 with the binding energies (BEs) of −10.93 and 

−10.83 kcal/mol, respectively. In contrast, non-selective NSAIDs such as diclofenac, 

ibuprofen, naproxen, and flurbiprofen exhibited the binding affinity with both COX-1 

and COX-2. Their BEs of the non-selective NSAIDs were ranging from −7.65 to −8.93 

kcal/mol for COX-1 and −6.47 to −7.56 kcal/mol for COX-2. It is noteworthy that the 

difference in BE of NSAIDs from AutoDock4 was within a few kcal/mol.  

 

  

Ref. code: 25676309040050KWL



42 

 

Table 4.1  Binding energy (BE) in kcal/mol of top-ten docked poses of NSAIDs from 

AutoDock4. 

 

NSAIDs 

COX-1 COX-2 

Rank 
BEautodock4 / 

(kcal/mol) 
Rank 

BEautodock4 / 

(kcal/mol) 

Etoricoxib 

1 −6.83 1 −10.93 

2 −6.27 2 −10.90 

3 −5.38 3 −10.85 

4 −5.38 4 −10.83 

5 −5.28 5 −10.83 

6 −5.21 6 −10.80 

7 −5.05 7 −10.69 

8 −4.95 8 −10.69 

9 −3.62 9 −10.45 

10 −2.77 10 −10.05 

Celecoxib 

1 −6.89 1 −10.83 

2 −5.54 2 −10.81 

3 −5.39 3 −10.71 

4 −3.97 4 −10.65 

5 −5.02 5 −10.62 

6 −4.69 6 −10.61 

7 −4.41 7 −10.60 

8 −5.01 8 −10.59 

9 −4.96 9 −10.54 

10 −4.61 10 −10.51 

Diclofenac 

1 −7.65 1 −7.43 

2 −7.32 2 −7.32 

3 −7.26 3 −7.31 
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Table 4.1 Binding energy (BE) in kcal/mol of top-ten docked poses of NSAIDs from 

AutoDock4. (cont.) 

 

NSAIDs 

COX-1 COX-2 

Rank 
BEautodock4 / 

(kcal/mol) 
Rank 

BEautodock4 / 

(kcal/mol) 

Diclofenac 

4 −7.23 4 −7.31 

5 −7.08 5 −7.19 

6 −6.98 6 −7.08 

7 −7.44 7 −7.32 

8 −6.92 8 −7.19 

9 −7.40 9 −7.18 

10 −7.13 10 −7.08 

Ibuprofen 

1 −7.73 1 −6.47 

2 −7.68 2 −6.29 

3 −7.65 3 −6.08 

4 −7.63 4 −6.01 

5 −7.52 5 −5.87 

6 −7.45 6 −5.68 

7 −7.32 7 −5.91 

8 −7.13 8 −5.70 

9 −6.78 9 −5.51 

10 −6.53 10 −5.53 

Naproxen 

1 −8.58 1 −7.17 

2 −8.58 2 −6.70 

3 −8.56 3 −6.67 

4 −8.55 4 −6.75 

5 −8.54 5 −6.41 

6 −8.51 6 −6.71 
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Table 4.1  Binding energy (BE) in kcal/mol of top-ten docked poses of NSAIDs from 

AutoDock4. (cont.) 

 

NSAIDs 

COX-1 COX-2 

Rank 
BEautodock4 / 

(kcal/mol) 
Rank 

BEautodock4 / 

(kcal/mol) 

Naproxen 

7 −8.51 7 −6.69 

8 −8.45 8 −6.52 

9 −8.32 9 −5.96 

10 −8.28 10 −5.87 

Aspirin 

1 −5.80 1 −5.95 

2 −5.72 2 −5.85 

3 −5.67 3 −5.73 

4 −5.40 4 −5.71 

5 −5.53 5 −5.61 

6 −5.48 6 −5.57 

7 −5.33 7 −5.55 

8 −5.06 8 −5.51 

9 −5.02 9 −5.35 

10 −4.95 10 −5.30 

Flurbiprofen 

1 −8.93 1 −7.56 

2 −8.87 2 −7.50 

3 −8.83 3 −7.34 

4 −8.78 4 −7.32 

5 −8.75 5 −7.50 

6 −8.72 6 −7.50 

7 −8.57 7 −7.40 

8 −8.49 8 −7.19 

9 −8.35 9 −7.18 

10 −8.29 10 −6.87 
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The GFN2-xTB method coupled with the ALPB solvation model 

effectively discriminates between the top-ranked poses obtained from the Autodock4 

scoring function with a wide range of binding free energies. Table 4.2 shows the 

lowest-energy optimized pose of each NSAIDs, considering the uncorrected binding 

free energy in implicit aqueous solvation (∆Gbind,solv). For the non-selective NSAIDs, 

their ∆Gbinding ranged from −24.13 to −26.73 kcal/mol for COX-1 and −21.70 to −25.26 

kcal/mol for COX-2. In contrast, etoricoxib and celecoxib exhibited stronger binding 

to the active sites of COX-2, with the uncorrected binding free energy (∆Gbinding) of 

−39.75 and −43.86 kcal/mol, respectively. In addition, the binding affinities of 

etoricoxib and celecoxib with COX-1 were +3.01 and +2.56 kcal/mol, respectively, 

indicating weaker binding compared to COX-2. It is evident that COX-2 selective 

NSAIDs exhibit lower affinity for COX-1.  

 

Table 4.2  Uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the lowest-

energy optimized pose by using GFN2-xTB method with ALPB solvation 

model. 

 

 

4.1.2 The performance of AutoDock4 and GFN2-xTB for predicting 

the correct conformations 

The geometry optimization of docked poses using the GFN2-xTB 

method provides lowest-energy poses comparable to their co-crystallized 

conformations. Each of top-ten docked poses obtained from AutoDock4 was solely 

NSAIDs COX-1 COX-2 

Celecoxib +2.56 −43.86 

Etoricoxib +3.01 −39.75 

Flurbiprofen −25.29 −25.26 

Diclofenac −24.13 −23.81 

Aspirin −17.26 −19.02 

Ibuprofen −24.73 −21.70 

Naproxen −26.73 −24.21 

Ref. code: 25676309040050KWL



46 

 

reoptimized within the binding pocket of the prepared receptors. The deviation of these 

optimized poses was then compared to their corresponding X-ray crystallographic 

poses. Table 4.3 shows the root mean square deviations of the optimized poses for all 

four receptors, with a range of 1.0 - 2.0 Å. Note that the analyzed poses were the lowest-

energy optimized poses for flurbiprofen, celecoxib, and tetrahydrocannabinol, with the 

exception of the fifth-ranked pose for aminoalkylindole derivative. 

 

Table 4.3  Root mean square deviations (RMSD) of lowest-energy optimized poses 

of co-crystallized ligands of protein receptors.  

 

Protein-ligand system Average RMSD / (Å) 

COX-1/flurbiprofen 1.01 

COX-2/celecoxib 1.04 

CB1/tetrahydrocannabinol 1.95 

CB2/aminoalkylindole derivative 1.76 

 

The binding interactions of the optimized NSAID poses at the active 

sites of COX-1 and COX-2 were examined and compared with those of the best-docked 

poses. Figure 4.1 shows the binding interactions between the best-docked poses and 

the lowest-energy-optimized poses of aspirin and diclofenac at the active site of COX-

1. GFN2-xTB method gave the lowest-energy optimized pose of aspirin, while 

AutoDock4 suggested a false negative. The orientations of both lowest-energy 

optimized poses were closely aligned with their X-ray crystallographic poses. This can 

be seen from the carboxyl group of the lowest-energy optimized pose of aspirin (pink 

in Figure 4.1a) aligned at the same position as its X-ray crystallographic pose. 

Hydrogen bonding interactions of the lowest-energy optimized pose of aspirin included 

bonds between the carboxylic acid group and Tyr355 (1.65 Å), the ester group and 

Ser353 (2.79 Å), and the ester group and Ala527 (2.97 Å) with COX-1 (Figure 4.1a). 

Similarly, the carboxyl groups of the lowest-energy optimized pose and the X-ray 

crystallographic pose of diclofenac also aligned at the same position, displaying 

hydrogen bonding interactions with Arg120 within 2 Å (Figure 4.1b). It is noteworthy 

that the best-docked poses of aspirin and diclofenac were flipped compared to their X-
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ray crystallographic poses. Arg120 and Tyr355 were identified as key amino acids at 

the binding entrance of COX-1, agreed with previous study [58]. Figure 4.2 shows the 

binding interactions of the best-docked poses and the lowest-energy-optimized poses 

of flurbiprofen at the active sites of COX-2. The carboxyl group of the lowest-energy 

optimized pose of flurbiprofen aligned with the same position as the sulfonamide group 

of celecoxib, an NSIAD. Hydrogen bonding interactions between the carboxyl group 

of flurbiprofen and the amino group of Arg499 and Phe504 were observed within 3 Å. 

This agreed well with the crucial amino acids of COX-2 [5]. 

 

 
 

Figure 4.1  Hydrogen bonding interactions between the best-docked pose (stick 

representation in yellow) and the lowest-energy optimized pose (stick 

representation in pink) of (a) aspirin and (b) diclofenac at the active sites 

of COX-1.  
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Figure 4.2  Hydrogen bonding interactions between the best-docked pose (stick 

representation in yellow) and the lowest-energy optimized pose (stick 

representation in pink) of flurbiprofen at the active sites of COX-2. 

 

4.1.3 Validation of calculated selectivity index  

The binding stability of an active compound with its target receptor 

can be evaluated by examining the binding free energy. The more negative binding free 

energy indicates that the ligand can bind strongly to its receptor. Considering the non-

competitive mechanism of protein-ligand inhibition, the inhibitory constant (Ki) value 

is directly proportional to the 50% inhibitory concentration (IC50). Thus, the higher 

affinity of inhibitors corresponds to lower value of Ki and IC50.  

The selectivity index (SI) is typically derived from the ratio of IC50 

value for COX-2 to that for COX-1, reflecting the anti-inflammatory potency of 

NSAIDs. In our study, the uncorrected binding free energy (∆Gbind,solv) calculated using 

GFN2-xTB method with the ALPB solvation model was converted to the inhibitory 

constant (Ki). This Ki value was then used to calculate the selectivity index. Table 4.4 

shows the calculated and experimental selectivity indexes [34, 35] of NSAIDs for 
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COX-2 to COX-1 ratio, determined using Spearman rank correlation [119]. We found 

that our calculated and the experimental selectivity indexes of four NSAIDs in Table 

4.4 were closely matched (r = 1, P-value = 0.083). Thus, when a ligand specifically 

binds to the anti-inflammatory COX-2 and CB2 receptors, the SI value is low. 

Conversely, when a ligand binds to COX-1 and psychoactive CB1 receptors, the SI 

value is high. Consequently, the calculated selectivity index in this study was used to 

predict the anti-inflammatory potency of cannabinoids. 

 

Table 4.4  Experimental selectivity index (Exp. SI) and calculated selectivity index 

(Calc. SI) of NSIADs. 

 

1 Experimental value was obtained from [34, 35] 

 

4.1.4 Validation of binding free energy  

The GFN2-xTB method with ALPB solvation model can compute 

binding free energy values that agree with experimental data. The experimental binding 

free energy is estimated as ∆G = − RTlnKd = RTlnKa = RTlnKi, where Kd is the 

equilibrium dissociation constant, Ka is the equilibrium association constant, and Ki is 

the inhibitory constant. The Pearson correlation coefficient (rp) [120] was used to 

evaluate the correlation between the calculated binding free energy and the 

experimental binding free energy of seven NSAIDs. As shown in Figure 4.3a, the 

Pearson correlation coefficient (rp) was approximately 0.40, indicating moderate 

performance of the computational method used. Additionally, the performance of the 

method improved significantly (rp = 0.60), indicating strong performance, when using 

NSAIDs 

Experimental value 1 GFN2-xTB (ALPB) 

IC50 

(µM) 

COX-1 

IC50 

(µM) 

COX-2 

Exp. SI 
Calc. Ki

 

COX-1 

Calc. Ki
 

COX-2 
Calc. SI 

Celecoxib 16.00 0.54 −1.47 2.20 x10-5 2.38 x10-22 −16.97 

Diclofenac 0.08 0.04 −0.30 2.57 x10-17 2.54 x10-14 3.00 

Ibuprofen 7.60 20.00 0.42 1.41 x10-17 2.42 x10-12 5.23 

Flurbiprofen 0.08 5.50 1.84 5.87 x10-17 5.40 x10-6 10.96 
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the corrected binding free energy in implicit aqueous solvation (∆Gbind,solv) with fully-

relaxed pocket protein-ligand geometries (Figure 4.3b). 

 

 
 

Figure 4.3. Pearson correlation between experimental binding free energy values and 

(a) uncorrected binding free energy (∆G'bind,solv) and (b) corrected binding 

free energy in implicit aqueous solvation (∆Gbind,solv) by using the GFN2-

xTB method with ALPB solvation model of NSAIDs.  

 

4.2 Cannabinoids 

 

This section examines the binding affinity of cannabinoids with COX-1, 

COX-2, CB1, and CB2. The ALPB solvation model and GFN2-xTB method were used 

to compute the binding free energy of receptors/cannabinoids complexes, considering 

both unrelaxed and fully relaxed geometries of the receptors. Additionally, the 

selectivity indexes of COX-2 to COX-1 and CB2 to CB1 ratios were estimated to 

predict the anti-inflammatory potency of cannabinoids. The predicted drug-like 

properties of modified cannabinoid analogs were compared to those of celecoxib.  

 

4.2.1 The binding affinity of receptors/cannabinoids complexes 

The GFN2-xTB method with the ALPB solvation model can 

differentiate the best-bound pose of a ligand. The binding enthalpy obtained from 

molecular docking and GFN2-xTB methods in a vacuum for 55 cannabinoids at the 

active sites of COX and CB receptors is reported in Appendix A. The binding free 

energy for all cannabinoids in native conformations of the studied receptors was 
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analyzed and is presented in Table 4.5. The number of bound-cannabinoids was 

clustered based on either the binding enthalpy obtained from the docking scheme or the 

uncorrected binding free energy in implicit aqueous solvation (∆G'bind,solv) obtained 

from the GFN2-xTB method. The GFN2-xTB method with the ALPB solvation model 

effectively differentiates the binding free energy of each optimized ligand pose, 

resulting in a wide range of MAX-MIN values, a higher RMSE, and a higher mean 

absolute deviation for all studied receptors. Considering the number of bound 

cannabinoids classified into three clusters, it was found that the GFN2-xTB method 

with the ALPB solvation model identified 7 cannabinoids with strong binding affinity 

to COX-1, ranging from −11 kcal/mol to −20 kcal/mol, out of 48 compounds. In 

addition, CB1 and CB2 receptors consistently showed the highest number of bound 

cannabinoids in the best cluster (number 1), with binding free energies more negative 

than −21 kcal/mol for both methods, as these receptors are well-known cannabinoid 

receptors.   
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Table 4.5 Statistical data of binding energies and uncorrected binding free energies in kcal/mol of 55 cannabinoids calculated by AutoDock4 and GFN2-xTB 

method with ALPB solvation model.  

 

Receptor Statistical data 

Autodock4 GFN2-xTB (ALPB) 

cluster 1 

 −10 

cluster 2 

−8 to −9 

cluster 3 

−5 to −7 

cluster 1 

> −21 

cluster 2 

−11 to −20 

cluster 3 

< −10 

COX-1 

n 4 35 16 0 7 48 

Mean −9.90 −8.32 −6.73 NA −12.02 7.89 

RMSE 0.32 0.44 0.58 NA 1.31 7.59 

MAD 0.26 0.36 0.46 NA 1.11 6.05 

MIN −0.49 −1.08 −0.68 NA −2.55 −16.56 

MAX 0.38 0.80 1.33 NA 1.43 18.30 

COX-2 

n 10 36 9 5 18 32 

Mean −9.97 −8.65 −6.50 −21.74 −14.57 −4.68 

RMSE 0.20 0.51 0.55 1.00 2.33 3.77 

MAD 0.17 0.44 0.48 0.80 1.83 3.03 

MIN −0.30 −0.79 −0.89 −1.88 −5.83 −5.71 

MAX 0.26 1.04 0.69 0.95 3.96 7.67 

CB1 

n 37 14 4 39 15 1 

Mean −10.38 −8.86 −6.33 −27.61 −16.76 −8.83 

RMSE 0.62 0.31 0.26 2.42 2.93 0.00 

MAD 0.52 0.24 0.21 1.87 2.38 0.00 

MIN −1.49 −0.55 −0.42 −5.81 −3.56 0.00 

MAX 0.88 0.66 0.29 5.64 5.73 0.00 

CB2 

n 12 38 5 48 8 1 

Mean −9.81 −8.52 −6.20 −25.15 −17.00 −10.44 

RMSE 0.36 0.55 0.68 2.81 2.02 0.00 

MAD 0.30 0.48 0.47 2.39 1.90 0.00 

MIN −0.71 −0.88 −1.15 −5.57 −2.68 0.00 

MAX 0.36 1.07 0.97 4.71 2.89 0.00 
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Next, we examined the ∆Gbind,solv of common parent cannabinoids 

and their acid derivatives. It was found that the studied cannabinoids exhibit strong 

binding affinity with cannabinoid receptors, CB1 and CB2 (Table 4.6). The ∆Gbind,solv 

of the acid derivatives was more negative than that of the parent cannabinoids, 

indicating higher affinity. The ∆Gbind,solv of the optimized poses of CBNA, ∆9-THCA, 

∆9-THC, CBGA, CBDA, CBTA, CBG, and CBD with psychoactive CB1 were, 

respectively, −32.89, −31.11, −30.23, −29.69, −29.33, −28.36, −28.22, and −27.26 

kcal/mol. Regarding the anti-inflammatory CB2 receptor, it was found that CBCA, 

CBEA, CBC, CBT, CBE, CBLA, CBL, and CBN showed strong affinity, with 

uncorrected binding free energy ranging from −22.34 to −29.13 kcal/mol.  

 

Table 4.6  The uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the 

lowest-energy optimized pose of parent cannabinoids and acid derivatives 

with CB1 and CB2 using the GFN2-xTB method with the ALPB solvation 

model. 

 

Cannabinoid 
∆Gbind,solv / (kcal/mol) 

CB1 CB2 

CBNA −32.89 −25.64 

∆9-THCA −31.11 −22.42 

∆9-THC −30.23 −25.43 

CBGA −29.69 −30.73 

CBDA −29.33 −22.36 

CBTA −28.36 −27.27 

CBG −28.22 −26.59 

CBD −27.26 −23.47 

CBCA −26.45 −29.13 

CBEA −25.23 −25.89 

CBC −23.47 −27.11 

CBT −19.76 −26.03 
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Table 4.6  The uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the 

lowest-energy optimized pose of parent cannabinoids and acid derivatives 

with CB1 and CB2 using the GFN2-xTB method with the ALPB solvation 

model. (cont.) 

 

 

Furthermore, we explored the length of alkyl sidechains of parent 

cannabinoids and their acid derivatives upon their binding affinity. It was found that  

∆9-THC, ∆9-THCA, CBD, CBDA, and CBGA containing three or four methylene 

groups still showed the highest affinity with CB1 (Table 4.7). The ∆Gbind,solv of CBGA-

C3, ∆9-THC-C4, CBD-C4, ∆9-THC-C3, CBDA-C3, ∆9-THCA-C3, and CBG-C3 was, 

respectively, −33.42, −28.94, −28.72, −27.54, −27.37, −26.89, and −25.51 kcal/mol. 

However, CBN showed the high affinity with CB2 with the uncorrected binding free 

energy of −30.63, −28.93, and −27.67 kcal/mol, respectively, with C4, C3, and C2 alkyl 

sidechains (Table 4.7). Compared with CB2/CBCA (∆Gbind,solv = −29.13 kcal/mol), 

CBCA with three methylene groups showed the highest affinity with CB2 with the 

uncorrected binding free energy of −28.03 kcal/mol. 

  

Cannabinoid 
∆Gbind,solv / (kcal/mol) 

CB1 CB2 

CBE −19.38 −27.61 

CBLA −19.12 −26.23 

CBL −17.91 −23.09 

CBN −17.16 −22.34 
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Table 4.7  The uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the 

lowest-energy optimized poses of parent cannabinoids and their acid 

derivatives with varying alkyl sidechain lengths using the GFN2-xTB 

method with ALPB solvation model. 

 

 

Apart from common parent cannabinoids, other cannabinoid 

derivatives were also examined. It was found that ∆9-THCA, the acid derivative of ∆9-

THC, showed the highest affinity with CB1 (∆Gbind,solv = −30.69, Table 4.8). For other 

∆9-THC derivatives, the ∆Gbind,solv values for ∆8-THCA, OTHC, ∆8-THC, TriOH-THC, 

2-oxo-∆3(4)-THC, cis-∆9-THC, ∆1(2)-THCM were −28.78, −28.62, −27.53, −26.42, 

−26.00, −23.39 kcal/mol, respectively (Table 4.8). However, 8,9-dihydroxy-∆-6a-

THC, ∆9-THCA-B, 10-ethoxy-9-hydroxy-∆-6a-THC, and ∆7-cis-iso-THCV exhibited 

binding affinity with CB2 comparable to that of CB1. Other than ∆9-THC derivatives, 

Cannabinoid 
∆Gbind,solv / (kcal/mol) 

CB1 CB2 

CBGA-C3 −33.42 −30.61 

CBN-C4 −30.63 −23.83 

∆9-THC-C4 −28.94 −23.12 

CBN-C3 −28.93 −20.98 

CBD-C4 −28.72 −24.06 

CBN-C2 −27.67 −17.82 

∆9-THC-C3 −27.54 −22.11 

CBDA-C3 −27.37 −25.64 

∆9-THCA-C3 −26.89 −23.49 

CBC-C3 −26.74 −26.29 

CBG-C3 −25.51 −24.62 

CBCA-C3 −21.97 −28.03 

CBD-C3 −20.31 −24.06 
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CBND showed the highest affinity with CB1 with the uncorrected binding free energy 

of −28.42 kcal/mol.  

 

Table 4.8  The uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the 

lowest-energy optimized pose of other cannabinoid derivatives using the 

GFN2-xTB method with ALPB solvation model. 

 

Cannabinoid 
∆Gbind,solv / (kcal/mol) 

CB1 CB2 

∆8-THCA −30.69 −23.89 

8,9-dihydroxy-∆-6a-THC −28.93 −30.59 

OTHC −28.78 −27.04 

∆8-THC −28.62 −22.89 

CBND −28.42 −20.77 

TriOH-THC −27.53 −19.52 

H2CBD −26.99 −24.67 

CBGAM −26.90 −30.10 

CBGM −26.65 −29.08 

CBDM −26.59 −28.16 

2-oxo-∆3(4)-THC −26.42 −22.12 

cis-∆9-THC −26.00 −24.30 

CBCT −25.40 −23.37 

CBNM −24.75 −24.27 

CBCM −24.24 −28.69 

∆1(2)-THCM −23.39 −21.83 

∆9-THCA-B −19.99 −23.57 

10-ethoxy-9-hydroxy-∆-6a-THC −17.75 −26.36 

Terpenoids a −17.29 −19.68 

Hydronaphthalene −16.55 −14.11 

∆7-cis-iso-THCV −16.21 −20.82 
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Table 4.8  The uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the 

lowest-energy optimized pose of other cannabinoid derivatives using the 

GFN2-xTB method with ALPB solvation model. (cont.) 

 

a CDB006348. b CDB006347. c CDB006349. d CDB006350. e CDB006346.  
f CDB006352. 

 

Candidate cannabinoids with anti-inflammatory properties should 

have high binding affinity with COX-2 and/or CB2 receptors without psychoactive 

effects. It is noteworthy that CBC, CBL, and CBE and their acid derivatives showed a 

high affinity with CB2. Consequently, we examined the ∆Gbind,solv of cannabinoids with 

COX-1 and COX-2 (Table 4.9). CBC, CBCA, and CBEA were the tightly bound 

cannabinoids with CB2 and COX-2. The ∆Gbind,solv values of CBC, CBCA, and CBEA 

with COX-2 were respectively −14.72, −13.55, and −5.45 kcal/mol. 

 

Table 4.9  The uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the 

lowest-energy optimized pose of parent cannabinoids and acid derivatives 

with COX-1 and COX-2 using the GFN2-xTB method with ALPB 

solvation model. 

 

Cannabinoid 
∆Gbind,solv / (kcal/mol) 

CB1 CB2 

Terpenoids b −14.56 −15.89 

Terpenoids c −12.71 −15.43 

Terpenoids d −11.59 −14.99 

Terpenoids e −11.03 −10.44 

Terpenoids f −8.83 −20.45 

Cannabinoid 
∆Gbind,solv / (kcal/mol) 

COX-1 COX-2 

CBG                −8.67 −16.38 

CBC 0.50 −14.72 
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Table 4.9  The uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the 

lowest-energy optimized pose of parent cannabinoids and acid derivatives 

with COX-1 and COX-2 using the GFN2-xTB method with ALPB 

solvation model. (cont.) 

 

 

Furthermore, we explored the length of alkyl sidechains of parent 

cannabinoids and their acid derivatives upon their binding affinity. It was found that 

CBN showed the high affinity with CB2 with the uncorrected binding free energy of 

−21.87, −23.62, and −20.79 kcal/mol, respectively, with C4, C3, and C2 alkyl 

sidechains (Table 4.10). 

  

Cannabinoid 
∆Gbind,solv / (kcal/mol) 

COX-1 COX-2 

CBCA   4.97             −13.55 

∆9-THC   7.44             −12.63 

CBNA   1.41               −8.56 

CBN   8.84               −8.03 

∆9-THCA 15.54               −7.30 

CBGA               −11.41               −6.01 

CBEA 22.74               −5.45 

CBTA 14.61               −3.51 

CBD   7.45               −3.15 

CBE 12.76               −2.37 

CBT 14.43               −0.58 

CBLA 20.45 2.14 

CBDA   3.58 2.21 

CBL 17.90 2.98 
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Table 4.10  The uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the 

lowest-energy optimized pose of parent cannabinoids and acid derivatives 

with varying alkyl sidechain lengths using the GFN2-xTB method with 

ALPB solvation model. 

 

 

Apart from common parent cannabinoids, other cannabinoid 

derivatives were also examined. It was found that CBND and CBNM showed the 

highest affinity with COX-2 with the uncorrected binding free energy of −17.60 and 

−13.95 kcal/mol, respectively (Table 4.11).  

  

Cannabinoid 
∆Gbind,solv / (kcal/mol) 

COX-1 COX-2 

CBN-C3 −1.69 −23.62 

CBN-C2 −1.01 −21.87 

CBC-C3 −11.08 −21.30 

∆9-THCA-C3 5.49 −21.13 

CBN-C4 0.03 −20.79 

∆9-THC-C3 9.03 −20.40 

CBG-C3 −13.33 −17.86 

∆9-THC-C4 8.09 −16.02 

CBGA-C3 −11.77 −15.48 

CBD-C3 4.66 −14.38 

CBDA-C3 −0.01 −12.91 

CBCA-C3 −14.57 −10.33 

CBD-C4 4.66 -5.90 
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Table 4.11  The uncorrected binding free energy (∆Gbind,solv) in kcal/mol of the 

lowest-energy optimized pose of other cannabinoid derivatives using the 

GFN2-xTB method with ALPB solvation model. 

 

a CDB006347. b CDB006349. c CDB006346. d CDB006348. e CDB006350. f CDB006352. 

Cannabinoid 
∆Gbind,solv / (kcal/mol) 

COX-1 COX-2 

CBND 2.03 −17.60 

8,9-dihydroxy-∆-6a-THC 11.38 −14.03 

CBNM 1.76 −13.95 

∆8-THC 16.12 −13.92 

TriOH-THC 8.22 −13.46 

∆7-cis-iso-THCV 9.83 −12.37 

CBGAM −5.87 −11.99 

Terpenoids a −3.68 −10.61 

Terpenoids b −3.23 −10.39 

CBCM −10.59 −10.06 

∆9-THCA-B 12.58 −9.99 

Terpenoids c 6.11 −8.91 

H2CBD 5.61 −8.85 

CBGM −11.36 −6.56 

∆8-THCA 9.88 −6.33 

cis-∆9-THC 21.98 −5.42 

2-oxo-∆3(4)-THC 1.50 −5.19 

Terpenoids d 4.84 −4.83 

Hydronaphthalene 7.20 −4.30 

10-ethoxy-9-hydroxy-∆-6a-THC 26.19 −4.06 

∆1(2)-THCM 13.76 −3.92 

CBCT 16.34 −3.46 

CBDM 1.50 −3.17 

OTHC 3.67 −1.81 

Terpenoids e 8.01 −1.23 

Terpenoids f 12.84 2.45 
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4.2.2 The selectivity index  

As mentioned in section 4.1.3, the calculated selectivity index (SI) 

was used to examine the anti-inflammatory potency of cannabinoids. The low SI of 

COX-2/COX-1 and CB2/CB1 ratios indicates high anti-inflammatory potency. On the 

other hand, the high SI of CB2/CB1 ratio suggests the psychoactive effects. It was clear 

that the SICB2/CB1 values of 9-THC, CBN, CBD, CBG, and their acid derivatives were 

high (Figure 4.4) due to their high affinity with CB1. This agreed well with their low 

Ki values in µM unit of CB1 (∆9-THC = 0.02 µM [49], CBN = 0.33 µM [49], CBD = 

4.90 µM [51, 52], CBG = 1.05 µM [48]). However, the SICB2/CB1 values for CBN and 

CBT were lower than those of their acid derivatives. Interestingly, the SICB2/CB1 and 

SICOX-2/COX-1 were low in CBC, CBL, CBE, and their acid derivatives. The selectivity 

index of acid derivatives of these cannabinoids was lower than that of their parent 

compounds. From Figure 4.4, the SICB2/CB1 values of CBCA, CBLA, and CBEA were, 

respectively, −1.96, −5.22, and −0.49. The SICOX-2/COX-1 values of CBCA, CBLA, and 

CBEA were, respectively, −13.59, −13.33, and −20.68. Therefore, we suggested that 

CBCA, CBLA, and CBEA were potential candidate compounds with anti-

inflammatory properties targeting COX-2. However, as discussed in Table 4.10 and 

Table 4.11, CBNA exhibited the highest affinity with COX-2; therefore, CBNA was 

also selected as a candidate compound.  
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Figure 4.4  Selectivity index (SI) of COX-2/COX-1 ratio and CB2/CB1 ratio of (a) 

parent cannabinoids and (b) acid derivatives by using GFN2-xTB method 

with ALPB solvation model. 

 

4.2.3 Geometry relaxation and binding interactions 

The influence of thermal energy, entropy, and geometry relaxation 

plays an important role in the calculated binding free energy. The corrected binding 

free energy (∆Gbind,solv) consists of three contributions: the total gas-phase energy in a 

vacuum (∆Evac), the solvation free energy (∆Gsolv), and the thermostatistical 

contribution to the free energy (T∆SmRRHO). To account for these contributions, the 

COX-2/candidate cannabinoids complexes were fully optimized by using GFN2-xTB 
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method with ALPB solvation model. Table 4.12 shows the ∆Gbind,solv values of CBNA, 

CBCA, CBLA, and CBEA, which are comparable to those of NSAIDs.  

 

Table 4.12  The corrected binding free energy (∆Gbind,solv) in kcal/mol of candidate 

cannabinoids and NSIADs at the active sites of COX-2 using GFN2-xTB 

method with ALPB solvation model. 

 

 

Compared to non-selective NSAIDs in Table 4.12, CBCA, CBNA, 

and CBEA showed higher affinities with COX-2. For the COX-2/CBCA complex 

(∆Gbind,solv = −22.80 kcal/mol), hydrogen bonding interactions occurred between 

Tyr341 and the hydroxyl group of CBCA at a distance of 1.83 Å, as well as between 

Ser339 and Val509 with the carboxyl group of CBCA at distances of 1.83 Å and 2.44 

Å, respectively (Figure 4.5a). Similarly, the higher binding affinity of CBNA 

(∆Gbind,solv = −20.20 kcal/mol) compared to CBEA (∆Gbind,solv = −20.05 kcal/mol) is 

attributed to hydrogen bonding interactions with Ser339 in 1.75 Å (Figure 4.5b) and 

Val509 in 1.76 Å (Figure 4.5c). Additionally, hydrogen bonding interactions between 

the carboxyl group of CBNA and Arg499 could be observed within 2.30 Å. In contrast, 

the COX-2/CBLA complex exhibits a lower affinity (∆Gbind,solv = −15.52 kcal/mol) 

Compound ∆Gbind,solv / (kcal/mol) 

celecoxib −32.02 

etoricoxib −25.27 

CBCA −22.80 

CBNA −20.20 

CBEA −20.05 

flurbiprofen −18.26 

diclofenac −16.63 

CBLA −15.52 

aspirin −10.53 

ibuprofen   −9.36 

naproxen   −8.32 
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compared to diclofenac, a non-selective NSAID, (∆Gbind,solv = −16.63 kcal/mol), due to 

the presence of only two amino acids, Leu338 and Arg499 (Figure 4.5d). Our results 

agreed well with the findings previously reported [5].  

 

 
 

Figure 4.5  Binding interactions of (a) CBCA, (b) CBNA, (C) CBEA, and (d) CBLA 

with key amino acid at fully relaxed COX-2 complex. The hydrogen 

bonds are presented in green dashed lines. The unit of distance in 

proximity is angstrom. 
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It is noteworthy that the alkyl side chains of CBNA and CBEA were 

aligned in a similar position to the sulfonamide group of celecoxib, with interactions 

with Arg499 (Figure 4.6a and 4.6b). In addition, the alkyl side chain of CBCA (Figure 

4.6c) could be modified and reoptimized for stronger binding affinity. Therefore, we 

anticipate that modification of the cannabinoid structure at the carbon side chains with 

the sulfonamide group could provide the higher affinity with COX-2.  

 

 
 

Figure 4.6  The optimized poses of (a) CBNA, (b) CBEA, and (C) CBCA aligned on 

celecoxib (gray stick) at fully relaxed COX-2 complex.  

 

4.2.4 Modified cannabinoids analogs 

 

As discussed in Section 4.2.3, structure modifications were made to 

the COX-2/cannabinoid complexes at the carbon side chains by introducing the 

sulfonamide group. Figure 4.7 shows the 2D structures of these modified cannabinoid 

analogs. 
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Figure 4.7  Chemical structures of modified cannabinoid analogs: (a) CBNA-C1, (b) 

CBNA-C2, (c) CBNA-C3 (d) CBEA-C1, (e) CBEA-C2, (f) CBEA-C3, 

(g) CBCA-C3, (h) CBCA-C4, and (i) CBCA-C5. 

 

The complex of modified cannabinoid analogs was redocked and 

fully reoptimized using GFN2-XTB method with ALPB solvation model. It was found 

that the modified cannabinoid analogs of CBNA, CBEA, CBCA were the tightly bound 

cannabinoids with COX-2 (Table 4.13). The modified CBCA at the C3 side chain 

showed the highest affinity (∆Gbind,solv = −48.41 kcal/mol) compared to celecoxib 

(∆Gbind,solv = −32.02 kcal/mol). The ∆Gbind,solv of modified CBEA at the C2 side chain 

and modified CBNA at the C3 side chain was respectively −45.82 and −45.62 kcal/mol.  

 

Table 4.13  The corrected binding free energy (∆Gbind,solv) in kcal/mol of the modified 

cannabinoid analogs at the active sites of COX-2 by using GFN2-xTB 

method with ALPB solvation model. 

 

Compound ∆Gbind,solv / (kcal/mol) 

CBCA-C3-SO2NH2 −48.41 

CBEA-C2-SO2NH2 −45.82 
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Table 4.13  The corrected binding free energy (∆Gbind,solv) in kcal/mol of the modified 

cannabinoid analogs at the active sites of COX-2 by using GFN2-xTB 

method with ALPB solvation model. (cont.) 

 

 

For the fully relaxed COX-2 complexes, hydrogen bonding 

interactions were found at the sulfonyl group (-SO2) of CBCA-C3-SO2NH2, CBNA-

C3-SO2NH2, and CBEA-C2-SO2NH2 with Arg499, Ile503, and Phe504 within 3 Å. The 

sulfonamide group (-SONH2) of those compounds occurred with His75 and Gln178 

within 2 Å (Figure 4.8). Additionally, the carboxyl group of the CBCA-C3-SO2NH2 

interacted with Met508 in 2.62 Å (Figure 4.8a) whereas that of CBNA-C3-SO2NH2 

interacted with Ser339 in 2.09 Å (Figure 4.8b). Hydrogen bonding interactions with 

Val102 (in 1.85 Å) and Ala513 (in 2.56 Å) were observed at the hydroxyl group of 

CBEA-C2-SO2NH2 (Figure 4.8c).  

 

Compound ∆Gbind,solv / (kcal/mol) 

CBNA-C3-SO2NH2 −45.62 

CBEA-C3-SO2NH2 −44.30 

CBCA-C5-SO2NH2 −40.39 

CBEA-C1-SO2NH2 −39.97 

CBCA-C4-SO2NH2 −34.23 

celecoxib −32.02 

CBNA-C2-SO2NH2 −25.42 

CBNA-C1-SO2NH2 −24.00 

Ref. code: 25676309040050KWL



68 

 

 
 

Figure 4.8  Binding interactions of modified (a) CBCA-C3-SO2NH2, (b) CBNA-C3-

SO2NH2, and (C) CBEA-C2-SO2NH2 with key amino acid at fully relaxed 

COX-2 complex. The hydrogen bonds are presented in green dashed lines. 

The unit of distance in proximity is angstrom. 
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4.2.5 Drug-like properties  

 

In drug development, it is important to ensure that drug candidates 

possess certain characteristics such as physicochemical properties, lipophilicity, water 

solubility, pharmacokinetics, and drug-likeness. In this study, drug-like properties of 

the modified cannabinoids were predicted by using Swiss ADME [110] online tool as 

presented in Table 4.14. It was found that CBCA, CBNA, CBEA, and their modified 

structures meet the Lipinski’s rules of five, which state that the molecular weight should 

be less than 500 g/mol, with fewer than 5 hydrogen bond donors and fewer than 10 

acceptors, and a partition coefficient (LogP) less than 5. This indicates that these 

compounds and their modified analogs have appropriate molecular weight, hydrogen 

bond counts, and partition coefficients. 

Interestingly, the predicted LogP values of the modified cannabinoids 

were lower than those of their parent analogs and closed to that of celecoxib. According 

to log S, the CBEA-C2-SO2NH2 was found to be soluble. Conversely, CBCA, CBCA-

C3-SO2NH2, CBNA, CBNA-C3-SO2NH2, and CBEA were moderately soluble. All 

compounds were suitable for oral drug availability, as indicated by their bioavailability 

scores falling within the range of 0−1.  

In addition, we investigate their potential to inhibit cytochromes 

P450, a key factor in pharmacokinetics-related drug-drug interactions. It was found that 

none were found to inhibit CYP2D6 (Table 4.14). The modified cannabinoids had 

almost no effect to inhibit P450 inhibitors. These findings suggest that the modified 

compounds possess favorable physicochemical characteristics for oral bioavailability.  
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Table 4.14 Predicted drug-like properties of the modified cannabinoids and celecoxib. 

 

a Mw = Molecular weigh  
b HBA = Hydrogen bond acceptors 
c HBD = Hydrogen bond donors  

 

 

 

  

 
Mwa 

(g/mol) 
HBAb HBDc 

Consensus 

Log Po/w 

(lipophilicity) 

Log S 

(Water 

solubility) 

Bioavailability 

Score 

Cytochrome P450 inhibitor 

CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 

Celecoxib 381.37 7 1 3.40 -4.57 0.55 Yes No Yes No No 

CBCA 358.47 4 2 4.98 -5.73 0.85 No No Yes No Yes 

CBNA 354.44 4 2 4.48 -5.95 0.85 Yes Yes Yes No No 

CBEA 374.47 5 3 4.04 -5.40 0.56 No No Yes No Yes 

CBCA-C3-

SO2NH2 
409.50 7 3 2.71 -4.43 0.56 No No No No Yes 

CBNA-C3-

SO2NH2 
405.46 7 3 2.64 -4.29 0.56 No No No No Yes 

CBEA-C2-

SO2NH2 
411.47 8 4 1.61 -3.51 0.11 No No No No No 
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4.3 Validation of SQM methods 

 

The performance of the SQM methods in describing noncovalent 

interactions of protein-ligand systems was validated against five datasets of benchmark 

dimers and complexes as detailed in Section 3.4. To accurately describe these 

interactions, additional corrections were applied to the PM6 method including 

Grimme’s dispersion (D) correction, a hydrogen bonding (H) correction, and a 

correction for extra repulsion in halogen atoms (X). For the DFTB3 method, Becke–

Johnson damping function was employed to correct dispersion, along with a more 

advanced correction for hydrogen bonds. Lastly, the GFN2-xTB, an empirical tight 

binding approach, stands out as it does not require any ad-hoc corrections.  

According to the nature of the benchmark dimers, the X correction had no 

effect on the S66 and HB375 datasets (Table 4.15) because these datasets include only 

H, C, O, and N atoms. Using the X40 dataset, PM6-D3H4 had a root mean square error 

(RMSE) of 2.59 kcal/mol, while PM6-D3H4X had a smaller RMSE of 2.31 kcal/mol. 

This indicates that the X correction improves the description of noncovalent 

interactions for specific element pairs, such as [O, N] – [Cl, Br, I] [121]. However, the 

X correction improves the description of noncovalent interactions in XH−I bonds but 

increases the error in XH−Cl and XH−Br groups in the HB300SPX dataset. This can 

be seen from the higher RMSE of 3.76 kcal/mol for PM6-D3H4X.  

When the DFTB3-D3H4 was applied to S66, X40, and HB375 datasets, 

except for HB300SPX, the error remained large because H4 corrections apply only to 

H-bonds involving oxygen and nitrogen atoms [24]. For the DFTB3 methods, the 

DFTB3-D3H5 showed the lowest RMSE values for all five benchmark datasets. The 

H5 corrections provide more accurate interaction energy with fewer specific additional 

adjustments compared to the H4 corrections. H5 corrections also improved the overall 

description of hydrogen bonds involving oxygen, nitrogen, and sulfur atoms [86]. 

Among the studied SQM methods, GFN2-xTB was the most accurate method, 

reproducing the benchmark interaction energies with an RMSE of 1.06 kcal/mol for 

X40 and 1.40 kcal/mol for HB300SPX.  
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Table 4.15  RMSE, MAD, MSE, DMIN, and DMAX in kcal/mol of SQM methods tested 

against S66, X40, HB375, and HB300SPX data sets. 

 

Dataset 
PM6 DFTB3 

GFN2-xTB 
D3H4 D3H4X D3H4 D3H5 

S66 

RMSE 0.69 0.69 1.26 0.60 0.95 

MAD 0.49 0.49 0.86 0.47 0.78 

MSE −0.20 −0.20 −0.65 −0.19 −0.64 

DMIN  −1.11  −1.11  −0.90  −1.18     −0.91 

DMAX 2.51 2.51 3.60 1.94 2.44 

X40 

RMSE 2.59 2.31 2.65 2.32 1.06 

MAD 1.43 1.11 1.93 1.78 0.86 

MSE −0.28 −0.70  0.90  0.97 −0.48 

DMIN  −6.90  −1.12  −6.23  −5.45     −2.25 

DMAX 11.39 11.39 7.40 4.56 2.57 

HB375 

RMSE 1.23 1.23 2.18 1.24 1.37 

MAD 0.96 0.96 1.71 0.94 1.18 

MSE  0.15  0.15 −1.67 −0.59 −1.12 

DMIN  −3.74  −3.74  −1.22  −4.40     −1.55 

DMAX 3.53 3.53 6.72 5.53 4.02 

HB300SPX 

RMSE 3.72 3.76 2.28 2.00 1.40 

MAD 2.57 2.63 1.50 1.37 1.00 

MSE −2.21 −2.35 −0.96 −0.51     0.11 

DMIN  −4.88  −2.40  −4.80  −4.90     −5.26 

DMAX 13.27 13.27 12.71 11.06 4.40 

 

The PLA15 benchmark dataset represents protein-ligand complexes with 

hundreds of atoms only at the binding region. The X correction had no effect on this 

dataset because it only addresses interactions between [O, N] – [Cl, Br, I] pairs of 

atoms, which are not presented in this dataset. For the PLA15 benchmark dataset, 

DFTB3-D3H5 outperformed best, with an RMSE of 15.58 kcal/mol (Table 4.16), 

compared to an RMSE of 13.27 kcal/mol from GFN2-xTB.  
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Table 4.16 RMSE, MAD, MSE, DMIN, and DMAX in kcal/mol of SQM methods tested 

against PLA15 data set. 

 

Dataset 
PM6 DFTB3 

GFN2-xTB 
D3H4 D3H4X D3H4 D3H5 

PLA15 

RMSE 16.03 16.03 16.09 15.58 13.27 

MAD 13.30 13.30 12.47 12.47 10.52 

MSE 10.52 10.51 12.47 12.47 −10.23 

MIN −30.74 −30.74 −38.23 −41.76 −2.18 

MAX 6.72 6.72 −2.78 −1.84 27.28 

 

Figure 4.9 shows the mean absolute deviations (MADs) of GFN2-xTB 

across different datasets. Both the DFTB3-D3H5 and the GFN2-xTB methods 

outperformed the other SQM methods tested. The GFN2-xTB method is particularly 

notable because it has been developed to function without the need for specific, 

additional adjustments, making it user-friendly and straightforward to apply.  

 

 
 

Figure 4.9  Mean absolute deviations (MADs) in kcal/mol for the noncovalent 

interaction energies of different benchmark datasets. 
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Figure 4.10 shows the distribution plot of the mean signed error (MSE) 

across different datasets. For S66, X40, HB375, and HB300SPX datasets, GFN2-xTB 

exhibited a narrow distribution with a significant peak height. However, all tested SQM 

methods displayed a broad distribution for the PLA15 dataset.  

 

 
 

Figure 4.10  Distribution plots of the MSE in the computed interaction energies of (a) 

S66, (b) X40, (c) HB375, (d) HB300SPX, and (e) PLA15 benchmark 

datasets.  
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From the results of method validation, the DFTB3-D3H5 and GFN2-xTB 

methods outperformed other SQM methods testes, with lower RMSE, MAD, and MSE 

values. However, DFTB3-D3H5 failed to optimize the correct geometries of celecoxib, 

as it resulted in the breaking of the S-N bond in the sulfonamide group (Figure 4.11). 

This was evident from the hydrogen bonding observed between the amine group (-NH2) 

of celecoxib and Gln178, Leu338, and Ser339 within 3 Å. Therefore, GFN2-xTB was 

used to examine the binding affinity of NSAIDs and cannabinoids in this study. 

 

 
 

Figure 4.11  Hydrogen bonding interactions of the optimized pose of celecoxib at the 

pocket of COX-2 by using the DFTB3-D3H5 method.  

 

To validate the accuracy of computing the solvation free energy (Gsolv) of 

small molecules, the MNSOL and SAMPL2 benchmark datasets, along with the ALPB 

solvation model, were used with the GFN2-xTB method. For the MNSOL dataset, the 

mean absolute deviation (MAD) of the computed hydration free energy was 3.35 

kcal/mol for the given benchmark geometries, compared to 3.48 kcal/mol for their 

optimized geometries, with an error of less than 0.1 kcal/mol (Table 4.17). Notably, a 

smaller MAD within 2 kcal/mol and a Pearson correlation coefficient (rp) of 0.99 were 

obtained for both given and optimized geometries of the neutral charge compounds 

(Table 4.17, Figure 4.12).   
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Table 4.17  Mean absolute deviation (MAD) for the computed hydration free energy 

in kcal/mol using the GFN2-xTB method, ALPB solvation model, and 

MNSOL benchmark datasets. 

 

  Gsolv / (kcal/mol) 

Subset 
No. of 

entries 
Benchmark geometry Optimized Geometry  

neutral 390 1.89 2.04 

positive 60 4.76 4.93 

negative 83 9.17 9.16 

all charged 143 7.32 7.38 

all 533 3.35 3.48 

 

 
 

Figure 4.12  Pearson correlation between the experimental Gsolv values and the 

computed Gsolv for (a) benchmark geometries and (b) optimized 

geometries of MNSOL dataset using the GFN2-xTB method and ALPB 

solvation model.  

 

Table 4.18 shows the computed hydration free energy of the SAMPL2 

dataset using the GFN2-xTB method and the ALPB solvation model. The computed 

values of flurbiprofen, ibuprofen, ketoprofen, and naproxen closely matched the 

experimental values [114]. Using the GFN2-xTB method, the MAD value for all 20 

compounds in the SAMPL2 dataset was within 3 kcal/mol, depending on the geometries 

and solvation model used [122]. Additionally, the Pearson correlation coefficient (rp) 
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ranged from 0.3 to 0.4, indicating the moderate performance of the method used 

(Figure 4.13). 

 

Table 4.18  The computed hydration free energy in kcal/mol of compounds in the 

SAMPL2 dataset using the GFN2-xTB method with the ALPB solvation 

model.  

 

compound 

Gsolv / (kcal/mol) 

Exp.1 M05-2X/6-31G(d) (SMD)2 

GFN2-xTB (ALPB) 

Benchmark 

geometry 

Optimized 

Geometry  

Flurbiprofen −8.42 −8.20 −10.27 −9.77 

ibuprofen −7.00 −6.10 −8.57 −8.55 

ketoprofen −10.78 −11.10 −11.74 −8.90 

naproxen −10.21 −9.70 −9.83 −9.51 

MAD  

(20 compounds) 
 2.21 2.86 3.18 

1,2 The experimental and computed hydration free energy using SMD solvation model were 

obtained from [114] [122].  

 

 
 

Figure 4.13  Pearson correlation between the experimental Gsolv values and the 

computed Gsolv for (a) benchmark geometries and (b) optimized 

geometries of SAMPL2 dataset using the GFN2-xTB method with ALPB 

solvation model.   
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Concluded remarks 

 

In this work, AutoDock4 scoring function can predict the binding affinity 

of NSAIDs with COX-1 and COX-2 receptors, comparable to that of the co-crystallized 

poses. It is noteworthy that the difference in the binding enthalpy of NSAIDs from 

AutoDock4 was within a few kcal/mol. However, we found a false negative and false 

positive suggested by Autodock4, considering the X-ray crystallographic ligand pose, 

due to the absence of hydrogen bonding interaction with amino acid of receptor. To 

address this concern, semiempirical quantum mechanical (SQM) methods were 

validated with various benchmark datasets. The GFN2-xTB method showed the best 

performance among the tested SQM methods with small RMSE and MAD values of 

interaction energy of benchmark datasets. For the MNSOL and SAMPL2 datasets, the 

MAD for all compounds in the dataset was within 3.5 kcal/mol, depending on both 

given and optimized geometries. The Pearson correlation coefficient (rp) ranged from 

0.3 to 0.9, indicating the moderate and strong performance of the method used. 

The GFN2-TB method along with the ALPB solvation model can 

discriminate the top-ranked poses obtained from Autodock4 scoring function by a wide 

range of computed binding free energies. Interestingly, this method can identify a false 

negative error from AutoDock4 considering the lowest-energy optimized pose of 

flurbiprofen at the active site of COX-2 and its co-crystallized pose. The carboxyl group 

of flurbiprofen were similarly positioned at the sulfonamide group of the co-crystallized 

pose of celecoxib, the commercially available NSAID. 

Hydrogen bonding interactions of NSAIDs with Arg499 and Phe504, the 

crucial amino acids of COX-2 play a key role for their binding affinity. To examine the 

affinity of NSAIDs with their COX-1 and COX-2 receptors, we computed the binding 

free energy at the X-ray crystallographic and fully relaxed binding regions. The Pearson 

correlation coefficient (rp) was used to compare the uncorrected binding free energy 

(∆Gbind,solv) with the experimental binding free energy of NSAIDs. The rp was 0.40, 
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indicating the moderate performance of the GFN2-xTB method used with the ALPB 

solvation model. The lowest-energy optimized pose of celecoxib showed the strongest 

binding affinity to the native pose of COX-2 with the uncorrected binding free energy 

(∆Gbind,solv) of −43.86 kcal/mol. The influence of geometry relaxation of the candidate 

compounds was compared with NSAIDs. The Pearson correlation coefficient (rp) 

between calculated corrected binding free energy (∆Gbind,solv) and experimental binding 

free energy of seven NSAIDs was 0.60, indicating the strong performance of the GFN2-

xTB method used.  

The GFN2-xTB method with ALPB solvation model can differentiate the 

difference in uncorrected binding free energy of cannabinoids, as it was evident by a 

wide range of the MAX and MIN errors as well as the high RMSE and MAD values. 

This method identified 7 lowest-optimized compounds out of 48 compounds as strong 

affinity ligands. According to the uncorrected binding free energy, 9-THC, CBN, 

CBD, CBG, and their acid derivatives showed the highest affinity with CB1. CBCA, 

CBLA, CBEA, CBNA were tightly bound cannabinoids with CB2 and COX-2. 

Conversion of the computed binding free energy for COX receptors to the 

inhibitory constant (Ki), the calculated selectivity index (SI) for Ki of COX-2 and Ki of 

COX-1 ratio was used to predict the anti-inflammatory potency of NSAIDs. The 

calculated selectivity index of selected NSAIDs was matched with the experimental 

selectivity index by the Spearman correlation (r = 1, P-value = 0.083). If cannabinoids 

can bind specifically to the anti-inflammatory COX-2 and CB2 receptors, their SI 

values are low. In contrast, if they specifically bind to COX-1 and psychoactive CB1 

receptors, their SI value would be high. Consequently, the calculated selectivity index 

was used to predict the specific binding and anti-inflammatory potency of 

cannabinoids. It was clear that the SICB2/CB1 values of 9-THC, CBN, CBD, CBG, and 

their acid derivatives were high due to their high affinity with psychoactive CB1. The 

SICB2/CB1 and SICOX-2/COX-1 were low in CBC, CBL, CBE, and their acid derivatives. 

Notably, CBCA, CBLA, CBEA, and CBNA were suggested to be the candidate 

compounds with anti-inflammatory potency targeting the COX-2 receptor.  
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The influence of thermal energy, entropy, and geometry relaxation plays an 

important role in the calculated binding free energy. Compared to non-selective 

NSAIDs, CBCA, CBNA, and CBEA showed higher affinities with COX-2 due to 

hydrogen bonding interactions of their hydroxyl group and carboxyl group. 

Modification of the CBNA, CBEA, and CBCA structures at the carbon side chains with 

the sulfonamide group provided a higher affinity with COX-2. The modified CBCA at 

the C3 side chain exhibited the highest affinity with COX-2 with the corrected binding 

free energy of −48.41 kcal/mol and hydrogen bonding interactions with Arg499, Ile503, 

and Phe504 within 3 Å. Regarding the drug-like properties, it could be assumed that 

the best modified cannabinoids were favorable physicochemical characteristics for oral 

bioavailability. 

 

5.2 Further suggestions 

 

5.2.1 Experimental validation 

To ensure the validity of our computational findings, further 

experimental studies should be carried out for therapeutic applications. 

5.2.2 Exploration of active compounds  

Other active compounds with anti-inflammatory properties can be 

further explored both experimentally and computationally.  
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APPENDIX A 

The binding energy and the uncorrected binding free energy in implicit aqueous 

solvation obtained from AutoDck4 and GFN2-xTB methods. 

 

Table A1.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 cannabinoids 

with COX-1 and COX-2 using Autodock4 and GFN2-xTB method. 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

COX-1 CDB000008 CBCVA −8.22 −26.51 −14.57 

CDB000006 CBGV −7.02 −28.78 −13.33 

CDB000005 CBGVA −6.70 −24.76 −11.77 

CDB000018  CBGA −6.84 −26.53 −11.41 

CDB000004 CBGM −8.65 −24.41 −11.36 

CDB000009 CBCV −7.23 −23.54 −11.08 

CDB000042 CBCM −8.72 −20.42 −10.59 

CDB000003  CBG −6.72 −21.27 −8.67 

CDB000011 CBGAM −6.53 −20.07 −5.87 

CDB006347 Terpenoids −6.14 −10.51 −3.68 

CDB006349 Terpenoids −5.40 −8.82 −3.23 

CDB000032 CBNV −8.43 −11.69 −1.69 

CDB000033 CBN-C2 −8.15 −10.92 −1.01 

CDB000014 CBDVA −7.56 −14.23 −0.01 

CDB000031 CBN-C4 −8.43 −10.25 0.03 

CDB000007 CBC −7.78 −10.90 0.50 

CDB000028  CBNA −9.19 −12.94 1.41 

CDB000012 CBDM −8.87 −9.50 1.50 

CDB000030 CBNM −8.57 −7.51 1.76 

CDB000433 CBND −6.74 −9.21 2.03 

CDB000010  CBDA −7.39 −11.71 3.58 
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Table A1.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 cannabinoids 

with COX-1 and COX-2 using Autodock4 and GFN2-xTB method. (cont.) 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

COX-1 CDB000037 OTHC −9.93 −7.96 3.67 

CDB000015 CBDV −8.09 −7.11 4.66 

CDB006348 Terpenoids −7.86 −2.84 4.84 

CDB000398 CBCA −7.96 −6.36 4.97 

CDB000020 ∆9-THCVA −9.40 −8.82 5.49 

CDB000043 H2CBD −7.24 −6.81 5.61 

CDB006346 Terpenoids −6.14 2.20 6.11 

CDB000040 2-oxo-∆3(4)-THC −0.39 −5.43 7.20 

CDB000001  ∆9-THC −8.81 −3.87 7.44 

CDB000002  CBD −7.41 −5.07 7.45 

CDB006350 Terpenoids −5.74 3.46 8.01 

CDB000019 ∆9-THC-C4 −8.47 −3.46 8.09 

CDB000039 TriOH-THC −7.85 −6.39 8.22 

CDB000029  CBN −8.52 −1.95 8.84 

CDB000021 ∆9-THCV −8.48 −1.72 9.03 

CDB000013 CBD-C4 −7.32 −2.95 9.65 

CDB000022 ∆7-cis-iso-THCV −8.67 −0.66 9.83 

CDB000023 ∆8-THCA −9.75 −8.33 9.88 

CDB000035 8,9-dihydroxy-∆-

6a-THC 
−8.36 −4.70 11.38 

CDB000017 ∆9-THCA-B −7.94 3.68 12.58 

CDB000027 CBE −7.60 0.50 12.76 

CDB006352 Terpenoids −7.07 5.06 12.84 

CDB006351 Hydronaphthalene −8.23 8.27 13.32 

CDB000041 ∆1(2)-THCM −7.52 4.64 13.76 
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Table A1.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 cannabinoids 

with COX-1 and COX-2 using Autodock4 and GFN2-xTB method. (cont.) 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

COX-1 CDB000435 CBT −8.44 0.57 14.43 

 CBTA −7.73 −6.27 14.61 

CDB000016  ∆9-THCA −8.52 −0.39 15.54 

CDB000024 ∆8-THC −9.52 5.45 16.12 

CDB000036 CBCT −8.36 8.50 16.34 

CDB000026 CBL −8.73 7.57 17.90 

CDB000025 CBLA −8.65 8.47 20.45 

CDB000038 cis-∆9-THC −8.15 12.78 21.98 

CDB000423 CBEA −7.96 8.49 22.74 

CDB000034 10-ethoxy-9-

hydroxy-∆-6a-THC 
−8.39 14.44 26.19 

COX-2 CDB000032 CBNV −8.89 −34.73 −23.62 

CDB000033 CBN-C2 −8.61 −32.25 −21.87 

CDB000009 CBCV −8.19 −32.66 −21.30 

CDB000020 ∆9-THCVA −10.16 −46.46 −21.13 

CDB000031 CBN-C4 −9.14 −31.23 −20.79 

CDB000021 ∆9-THCV −9.71 −31.39 −20.40 

CDB000006 CBGV −7.72 −30.16 −17.86 

CDB000433 CBND −9.04 −33.14 −17.60 

CDB000003  CBG −7.82 −28.14 −16.38 

CDB000019 ∆9-THC-C4 −10.02 −27.77 −16.02 

CDB000005 CBGVA −7.01 −29.71 −15.48 

CDB000007 CBC −8.42 −26.69 −14.72 

CDB000015 CBDV −7.83 −25.67 −14.38 
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Table A1.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 cannabinoids 

with COX-1 and COX-2 using Autodock4 and GFN2-xTB method. (cont.) 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

COX-2 CDB000035 8,9-dihydroxy-∆-

6a-THC 
−8.95 −31.16 −14.03 

CDB000030 CBNM −9.04 −24.14 −13.95 

CDB000024 ∆8-THC −9.44 −23.00 −13.92 

CDB000398 CBCA −7.39 −28.94 −13.55 

CDB000039 TriOH-THC −8.14 −29.07 −13.46 

CDB000014 CBDVA −8.33 −28.86 −12.91 

CDB000001  ∆9-THC −9.74 −25.62 −12.63 

CDB000022 ∆7-cis-iso-THCV −9.04 −23.85 −12.37 

CDB000011 CBGAM −6.13 −23.38 −11.99 

CDB006347 Terpenoids −5.95 −6.27 −10.61 

CDB006349 Terpenoids −5.81 −17.03 −10.39 

CDB000008 CBCVA −8.35 −27.05 −10.33 

CDB000042 CBCM −8.86 −20.46 −10.06 

CDB000017 ∆9-THCA-B −8.84 −28.55 −9.99 

CDB006346 Terpenoids −6.39 −11.88 −8.91 

CDB000043 H2CBD −8.98 −22.60 −8.85 

CDB000028  CBNA −9.14 −30.93 −8.56 

CDB000029  CBN −9.16 −19.41 −8.03 

CDB000016  ∆9-THCA −10.27 −33.15 −7.30 

CDB000004 CBGM −6.57 −21.36 −6.56 

CDB000023 ∆8-THCA −9.12 −32.73 −6.33 

CDB000018  CBGA −9.11 −18.98 −6.01 

CDB000013 CBD-C4 −8.61 −17.61 −5.90 

CDB000423 CBEA −8.77 −20.53 −5.45 
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Table A1.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 cannabinoids 

with COX-1 and COX-2 using Autodock4 and GFN2-xTB method. (cont.) 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

COX-2 CDB000038 cis-∆9-THC −9.38 −17.02 −5.42 

CDB000040 2-oxo-∆3(4)-THC −10.26 −21.73 −5.19 

CDB006348 Terpenoids −7.96 −11.54 −4.83 

CDB006351 Hydronaphthalene −8.34 −10.02 −4.30 

CDB000034 10-ethoxy-9-

hydroxy-∆-6a-

THC 

−8.53 −18.49 −4.06 

CDB000041 ∆1(2)-THCM −9.44 −13.84 −3.92 

 CBTA −8.09 −32.08 −3.51 

CDB000036 CBCT −9.71 −10.71 −3.46 

CDB000012 CBDM −8.50 −13.62 −3.17 

CDB000002  CBD −8.61 −15.41 −3.15 

CDB000027 CBE −8.25 −14.98 −2.37 

CDB000037 OTHC −9.27 −17.19 −1.81 

CDB006350 Terpenoids −6.07 −7.32 −1.23 

CDB000435 CBT −9.99 −16.53 −0.58 

CDB000025 CBLA −9.92 −16.43 2.14 

CDB000010  CBDA −7.22 −14.62 2.21 

CDB006352 Terpenoids −7.61 −3.51 2.45 

CDB000026 CBL −9.90 −8.48 2.98 
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Table A2.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 

cannabinoids with CB1 and CB2 using Autodock4 and GFN2-xTB method. 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

CB1 CDB000005 CBGVA −8.94 −49.37 −33.42 

CDB000028  CBNA −11.20 −47.47 −32.89 

CDB000016  ∆9-THCA −11.54 −45.58 −31.11 

CDB000023 ∆8-THCA −11.48 −42.18 −30.69 

CDB000031 CBN-C4 −9.74 −41.61 −30.63 

CDB000001  ∆9-THC −10.56 −40.45 −30.23 

CDB000018  CBGA −9.07 −46.20 −29.69 

CDB000010  CBDA −10.83 −46.19 −29.33 

CDB000019 ∆9-THC-C4 −10.21 −39.01 −28.94 

CDB000032 CBNV −9.41 −39.35 −28.93 

CDB000035 8,9-dihydroxy-∆-

6a-THC 
−10.38 −46.49 −28.93 

CDB000037 OTHC −10.97 −38.56 −28.78 

CDB000013 CBD-C4 −9.68 −39.99 −28.72 

CDB000024 ∆8-THC −10.69 −39.22 −28.62 

CDB000433 CBND −8.95 −39.21 −28.42 

 CBTA −10.28 −46.96 −28.36 

CDB000003  CBG −8.99 −40.17 −28.22 

CDB000033 CBN-C2 −9.01 −37.97 −27.67 

CDB000021 ∆9-THCV −9.83 −37.32 −27.54 

CDB000039 TriOH-THC −10.41 −45.01 −27.53 

CDB000014 CBDVA −8.99 −42.80 −27.37 

CDB000002  CBD −9.52 −38.74 −27.26 
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Table A2.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 cannabinoids 

with CB1 and CB2 using Autodock4 and GFN2-xTB method. (cont.) 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

CB1 CDB000043 H2CBD −9.97 −38.73 −26.99 

CDB000011 CBGAM −8.77 −39.47 −26.90 

CDB000020 ∆9-THCVA −11.00 −40.19 −26.89 

CDB000009 CBCV −9.86 −36.29 −26.74 

CDB000004 CBGM −9.50 −38.85 −26.65 

CDB000012 CBDM −10.58 −37.29 −26.59 

CDB000398 CBCA −9.74 −38.66 −26.45 

CDB000040 2-oxo-∆3(4)-THC −11.87 −35.17 −26.42 

CDB000038 cis-∆9-THC −10.01 −38.11 −26.00 

CDB000006 CBGV −8.91 −37.81 −25.51 

CDB000036 CBCT −11.09 −31.96 −25.40 

CDB000423 CBEA −9.74 −36.21 −25.23 

CDB000030 CBNM −9.62 −31.84 −24.75 

CDB000042 CBCM −9.90 −32.62 −24.24 

CDB000007 CBC −10.07 −34.22 −23.47 

CDB000041 ∆1(2)-THCM −10.20 −30.17 −23.39 

CDB000008 CBCVA −9.07 −38.16 −21.97 

CDB000015 CBDV −8.92 −32.63 −20.31 

CDB000017 ∆9-THCA-B −10.15 −31.30 −19.99 

CDB000435 CBT −9.81 −30.68 −19.76 

CDB000027 CBE −10.19 −30.95 −19.38 

CDB000025 CBLA −10.91 −32.41 −19.12 

CDB000026 CBL −10.17 −25.38 −17.91 
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Table A2.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 cannabinoids 

with CB1 and CB2 using Autodock4 and GFN2-xTB method. (cont.) 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

CB1 CDB000034 10-ethoxy-9-

hydroxy-∆-6a-

THC 

−11.46 −26.60 −17.75 

CDB006348 Terpenoids −8.20 −25.60 −17.29 

CDB000029  CBN −10.12 −28.99 −17.16 

CDB006351 Hydronaphthalene −8.52 −21.27 −16.55 

CDB000022 ∆7-cis-iso-THCV −10.60 −25.00 −16.21 

CDB006347 Terpenoids −6.04 −19.92 −14.56 

CDB006349 Terpenoids −6.23 −16.74 −12.71 

CDB006350 Terpenoids −6.75 −18.70 −11.59 

CDB006346 Terpenoids −6.29 −14.87 −11.03 

CDB006352 Terpenoids −8.26 −15.44 −8.83 

CB2 CDB000018  CBGA −7.82 −43.00 −30.73 

CDB000005 CBGVA −7.69 −41.31 −30.61 

CDB000035 8,9-dihydroxy-∆-

6a-THC 
−9.59 −41.24 −30.59 

CDB000011 CBGAM −8.60 −40.36 −30.10 

CDB000398 CBCA −9.32 −44.43 −29.13 

CDB000004 CBGM −8.34 −36.23 −29.08 

CDB000042 CBCM −9.18 −33.39 −28.69 

CDB000012 CBDM −8.82 −35.69 −28.16 

CDB000008 CBCVA −8.57 −46.11 −28.03 

CDB000027 CBE −8.90 −38.49 −27.61 

 CBTA −10.21 −40.66 −27.27 
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Table A2.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 cannabinoids 

with CB1 and CB2 using Autodock4 and GFN2-xTB method. (cont.) 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

CB2 CDB000007 CBC −9.02 −33.98 −27.11 

CDB000037 OTHC −9.82 −35.85 −27.04 

CDB000003  CBG −7.77 −34.60 −26.59 

CDB000034 10-ethoxy-9-

hydroxy-∆-6a-

THC 

−10.41 −33.78 −26.36 

CDB000009 CBCV −8.28 −32.46 −26.29 

CDB000025 CBLA −9.62 −35.98 −26.23 

CDB000435 CBT −9.51 −36.39 −26.03 

CDB000423 CBEA −9.32 −38.14 −25.89 

CDB000014 CBDVA −7.95 −42.12 −25.64 

CDB000028  CBNA −9.40 −36.45 −25.64 

CDB000001  ∆9-THC −9.00 −32.21 −25.43 

CDB000043 H2CBD −8.18 −33.58 −24.67 

CDB000006 CBGV −7.35 −33.45 −24.62 

CDB000038 cis-∆9-THC −9.14 −32.95 −24.30 

CDB000030 CBNM −8.67 −29.22 −24.27 

CDB000015 CBDV −7.69 −35.83 −24.06 

CDB000023 ∆8-THCA −9.50 −35.87 −23.89 

CDB000031 CBN-C4 −8.47 −30.27 −23.83 

CDB000017 ∆9-THCA-B −8.86 −36.36 −23.57 

CDB000020 ∆9-THCVA −9.50 −31.52 −23.49 

CDB000002  CBD −8.44 −34.18 −23.47 

CDB000036 CBCT −9.68 −29.05 −23.37 

CDB000019 ∆9-THC-C4 −8.62 −30.28 −23.12 
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Table A2.  Binding energy (∆Evac) and uncorrected binding free energy in implicit 

aqueous solvation (∆G'bind,solv) in kcal/mol of the best poses of 55 cannabinoids 

with CB1 and CB2 using Autodock4 and GFN2-xTB method. (cont.) 

 

Protein 
Cannabinoid ∆Evac ∆Evac ∆Gbind,solv 

ID Name AutoDock4 GFN2-xTB 

CB2 CDB000026 CBL −8.89 −28.88 −23.09 

CDB000024 ∆8-THC −9.45 −30.12 −22.89 

CDB000016  ∆9-THCA −9.29 −34.28 −22.42 

CDB000010  CBDA −9.14 −34.44 −22.36 

CDB000029  CBN −8.89 −28.61 −22.34 

CDB000040 2-oxo-∆3(4)-THC −10.52 −31.04 −22.12 

CDB000021 ∆9-THCV −8.54 −28.67 −22.11 

CDB000041 ∆1(2)-THCM −8.99 −27.71 −21.83 

CDB000032 CBNV −8.21 −26.40 −20.98 

CDB000022 ∆7-cis-iso-THCV −8.76 −25.94 −20.82 

CDB000433 CBND −8.21 −27.27 −20.77 

CDB006352 Terpenoids −7.45 −24.57 −20.45 

CDB006348 Terpenoids −7.68 −23.90 −19.68 

CDB000039 TriOH-THC −9.87 −33.19 −19.52 

CDB000013 CBD-C4 −7.86 −29.82 −18.59 

CDB000033 CBN-C2 −8.05 −22.45 −17.82 

CDB006347 Terpenoids −5.23 −21.23 −15.89 

CDB006349 Terpenoids −6.24 −21.13 −15.43 

CDB006350 Terpenoids −6.09 −19.13 −14.99 

CDB006351 Hydronaphthalene −7.70 −16.93 −14.11 

CDB006346 Terpenoids −6.10 −12.50 −10.44 
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