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ABSTRACT

Phytocannabinoids have been studied for their medicinal purposes. This
study examines their binding affinity to cyclooxygenase-2 (COX-2) and cannabinoids
receptor type 2 (CB2), which are key therapeutic targets for inflammation.
Semiempirical quantum mechanical (SQM) approaches hold promise for accurately
describing noncovalent interactions in protein—ligand complexes, though calculating
binding free energy for large complexes remains challenging. In this research,
molecular docking simulations using AutoDock4 were initially employed to sampling
ligand poses. False negative errors generated by AutoDock4 for non-steroidal anti-
inflammatory drugs (NSAIDs) were identified using GFN2-xTB, a tight-binding SQM
method. This approach, coupled with the ALPB solvation model, was used to compute
the binding free energy of fully relaxed receptor-cannabinoid complexes in implicit
aqueous solvation. This study also reports the performance of selected SQM methods
in modeling noncovalent interaction of benchmark datasets. In addition to the solvation
effect, thermostatistical contributions were included to obtain a more accurate binding
free energy (AGpind,solv). Results showed that non-psychoactive acid derivatives such as
cannabichromenic acid (CBCA), cannabinolic acid (CBNA), and cannabielsoic acid
(CBEA) exhibited strong affinities for COX-2 and CB2. To enhance their anti-
inflammatory potency, a sulfonamide group was incorporated to interact with Arg499
of COX-2. This modification of the CBCA analog yielded a novel anti-inflammatory
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compound with a computed binding free energy of —48.41 kcal/mol for COX-2, which
is lower than that of celecoxib (—32.02 kcal/mol), a known NSAID. The predicted drug-

like properties of the modified cannabinoid analogs provide valuable insights for

developing novel oral anti-inflammatory leads.

Keywords: tight-binding semiempirical quantum mechanical method, molecular
docking, noncovalent interactions, anti-inflammation, cannabinoids,

binding free energy
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CHAPTER 1
INTRODUCTION

1.1 Statement of the problem

Cyclooxygenases play a role in producing prostaglandins (PGE2) and
prostacyclin (PGI2) for inflammation. There are two isoforms of cyclooxygenase,
cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) [1, 2]. The patterns of
expression of both COX isoforms are different. COX-1 is a housekeeping enzyme
expressed in many tissues whereas COX-2 is a key therapeutic target for inflammation
[3]. Although the crystal structures of the COX-1 and COX-2 are similar and share 60%
identical sequences of amino acid, the active site of both receptors is partially different.
COX-1 and COX-2 contain three different residues of amino acid in the active site.
COX-1 is bordered by 11523 and His513, while COX-2 is surrounded by Val523 and
Arg513 [4]. According to the protein structure of COX-2 (PDB code: 3LN1, as explored
in this study), the valine and arginine residues are, respectively, numbered 509 and 499
[5].

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to
treat pain and inflammation by inhibiting COX enzymes. Based on selectivity,
diclofenac, ibuprofen, flurbiprofen, and naproxen are non-selective NSAIDs, inhibiting
both COX-1 and COX-2. Aspirin is COX-1 selective NSAID whereas celecoxib is
COX-2 selective NSAID [6]. However, traditional NSAIDs have gastrointestinal and
renal adverse effects in humans [7]. Morphine derived from the opium plant has
previously been used as an alternative to synthetic drugs for treating severe pain [8].
Recent evidence indicates that cannabis could be an alternative to opium usage for the
treatment of chronic pain due to its fewer risks and side effects [9]. Thus, developing a
new inhibitor that can bind to a particular COX isoform with less adverse effects has
been a challenge.

Cannabis contains almost a hundred phytocannabinoids, including the
psychoactive delta-9-tetrahydrocannabinol (A°-THC) and the non-psychoactive
cannabidiol (CBD) [10]. Recently, cannabis has been legalized for medicinal purposes.

CBD has been used to treat inflammatory bowel diseases such as Crohn's disease [11].
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The half-maximal inhibitory concentration (ICso) of A>~THC, CBD, cannabidiolic acid
(CBDA), and cannabigerol (CBG) on COX-2 receptor has been reported in a millimolar
unit [12]. Additionally, it has been mentioned that cannabinoids are interrelated with
the endocannabinoid system (ECS), including cannabinoid receptor type 1 (CB1) and
cannabinoid receptor type 2 (CB2) [13]. CB1 is found in the human central nervous
system (CNS) and linked to the psychotropic effects of A>-THC [14], while CB2 plays
a role in the inflammatory response without the psychoactivity [15]. The inhibitory
constants (K;) of cannabinoids with CB2 receptors in a nanomolar unit has been
reported in the previous study [16]. Nevertheless, the use of cannabinoids as a pure
substance for medical treatment is limited due to the complexity of their mechanisms
of action at a cellular level. This process not only requires advanced analysis tools and
laboratory studies, but also consumes the time for drug development. Therefore,
computational studies have emerged as a promising approach for investigating protein—
ligand binding affinities.

Noncovalent interactions, e.g., dispersion, hydrogen bonding, halogen
bonding, salt bridge, and n—n stacking, play a role in the binding affinity of protein—
ligand complexes [17]. A common technique for exploring the binding affinity of
protein—ligand interaction is molecular docking. The success of docking approaches
relies on both search algorithm and scoring function [18, 19]. The binding affinities of
docking poses are estimated and ranked by the scoring function. The scoring functions,
including the force field-based, knowledge-based, and empirical scoring functions, are
available in various docking engines [20]. Discriminating between false-positive and
false-negative docking results, as well as identifying the correct ones, remains a
significant challenge for docking techniques [21].

Semiempirical quantum mechanical (SQM) methods offer the advantage of
reducing computational costs while improving the quantitative description of
noncovalent interactions through empirical corrections for dispersion and hydrogen-
bonding interactions. PM6-DH2 method has shown promise by accurately reproducing
interaction energies for noncovalent geometries obtained from high-level gquantum
mechanical calculations [22] and identifying correct binding modes and bioactive
conformations of bound ligands [23]. Furthermore, the development of the atom
pairwise D3H4 formalism has enhanced the robustness of SQM methods, with errors
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lower than 1 kcal/mol for benchmark datasets [24, 25]. Notably, a tight-binding
semiempirical quantum mechanical method, GFN2-xTB, including the electrostatic and
exchange-correlation Hamiltonian terms without specific corrections has reported a
small error of noncovalent interaction energies for different benchmark sets [26]. The
use of SQM potentials as scoring functions are still challenging due to solvation effects.

Solvation plays a key role in protein—ligand interactions for many
biochemical applications and has a strong impact on the calculation of binding free
energies. Free energy perturbation (FEP) [27] has the highest accuracy in calculating
the accurate binding free energy but is computationally costly and difficult to converge
a large number of the protein—ligand complexes. Alternatively, molecular mechanics
Poisson—Boltzmann surface areas (MM/PBSA) [28] and molecular mechanics
generalized Born surface areas (MM/GBSA) [29] are low computational cost while
providing the approximate binding free energy with whole protein—ligand complexes.
Notably, SQM methods have shown the performance for calculating the binding free
energy in thousands of atoms of protein—ligand complexes with low-time-cost and good
accuracy. With the implementation of COSMO solvation model, both PM6-D3H4X and
DFTB3-D3H4X methods have demonstrated reductions in the occurrence of false-
positive ligand poses in diverse classes of protein—ligand complexes [30]. GFN force-
field (GFN-FF) method [31] and GBSA solvation model has simulated the dynamics of
a met-myoglobin mutant and reproduces the experimental EPR-distance measurements
excellently [31]. GFN-FF method has performed good performance in whole protein—
ligand complexes, considering Pearson correlation coefficient (rp) [32]. Furthermore,
GFN2-xTB method and analytical linearized Poisson—Boltzmann (ALPB) solvation
model outperformed GFN2-xTB (GBSA) and GFN-FF (ALPB), with a small MAD of
hydration free energy for the neutral molecules of the FreeSolv database [33]. In
comparison, the performance of GFN2-xTB is much better than the GFN-FF in
truncated protein—ligand complexes. Additionally, the GFN2-xTB has shown a better
performance than the PM6-D3H4 method in terms of binding free energy [32].

In this work, we explore the binding affinity of cannabinoids at the active
sites of COX-2 and CB2 receptors by using SQM and molecular docking methods.
Validations of SQM method with noncovalent benchmark dimers and complexes are

presented to evaluate parameter sets and performance of SQM methods. The use of
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outperforming GFN2-xTB methods for improving docking results are discussed. The
ALPB solvation model and GFN2-xTB method are used to compute the binding free
energy of receptor/cannabinoids complexes, considering both unrelaxed and fully
relaxed geometry of receptors. Furthermore, cannabinoid analogs are modified to
enhance the highest binding affinity comparable to that of NSAIDs. Druglike properties

are used to predict a lead identification as novel oral anti-inflammatory drugs.

1.2 Research objectives

1.2.1 To explore the binding affinity of cannabinoids at the active sites of
COX-2 and CB2 receptors by using SQM and molecular docking methods.

1.2.2 To explore the use of SQM potentials as scoring functions for
improving docking results.

1.2.3 To identify potential novel analogs of cannabinoids with anti-

inflammatory activities.
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CHAPTER 2
REVIEW OF LITERATURE

2.1 Inflammation

Inflammation is an essential immune response which allows survival during
infection or injury. Redness and swelling with heat and pain can occur at the site of tissue
injury. The inflammatory pathway shown in Figure 2.1 consists of inducers, sensors,
mediators, and target tissues. After infection, inducers initiate the inflammatory response,
followed by sensors such as Toll-like receptors (TLRs). The sensor induces the
production of mediators, including tumor-necrosis factor-a. (TNF-a), interleukin (IL-1
and IL-6), and cyclooxygenases (COX-1 and COX-2). These inflammatory mediators
then act on various target tissues [1, 2].

y Pathway

Inducer Sensors Mediators Target tissues

S ¥

Mast cell Dendritic cell

A (A ~ ¢ U] S S
27 . | f COX-1, COX2 .
J A
e j_,)*}
Tissue damage
Macrophage

Figure 2.1 Inflammatory pathway [2].

2.2 Cyclooxygenase (COX) enzyme

Two isoforms of the cyclooxygenase-1 (COX-1) and cyclooxygenase-2
(COX-2) engage in the biosynthetic mechanism of transforming arachidonic acid into
mediators such as prostaglandins (PGE>), prostacyclin (PGI2), and thromboxane
(TXA?) (Figure 2.2). COX-1 is constitutively expressed as a housekeeping enzyme in

many tissues whereas COX-2 is a major therapeutic target for inflammation [3].
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Figure 2.2 Schematic presentation of COX-1 and COX-2 pathways [3].

2.3 Non-steroidal anti-inflammatory drugs (NSAIDs)

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to
treat pain and inflammation by inhibiting COX enzymes. NSAIDs are typically divided
into groups based on their selectivity and chemical structures. For instance, aspirin is
COX-1 selective NSAID, celecoxib is COX-2 selective NSAID, and ibuprofen is non-
selective NSAID [6] (Table 2.1).

Table 2.1  NSAIDs selectivity [6].

COX-1 selective Non-selective COX-2 selective
) Celecoxib
Diclofenac o
o Etoricoib
Aspirin Naproxen )
Valdecoxib
Ibuprofen

Meloxicam
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Table 2.2 shows the half-maximal inhibitory concentration (ICso) of
NSAIDs with cyclooxygenase enzyme in micromolar unit reported in the previous
study [34-36].

Table 2.2 In vitro 1Cso of NSAIDs tested as inhibitors of prostanoid formation
determined in the COX-1 and COX-2 assays.

NSIADs ICoo (M)
COX-1 COX-2

Etoricoxib 162.00 0.47
Celecoxib 16.00 0.54
Diclofenac 0.08 0.04
Naproxen 9.30 28.00
Ibuprofen 7.60 20.00
Flurbiprofen 0.08 5.50
Aspirin 1.70 7.5

Based on their chemical structure, as shown in Figure 2.3, NSAIDs can be
classified into diverse types such as salicylic acid, heteroaryl acetic acid and enolic acid
derivatives. The hydroxyl and carboxylic acid groups are attached to an aromatic
structure. Additionally, nitrogen and sulfur atoms are mostly found in the structure of
NSAIDs. For example, ibuprofen and naproxen are aryl and heteroaryl acetic acid

derivatives whereas meloxicam and piroxicam are enolic acid derivatives [37, 38].
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Figure 2.3 Classification of NSAIDs based on a chemical structure [37].

2.4 Cannabinoids and cannabinoid (CB) receptors

Cannabis sativa L. or marijuana is in Cannabaceae family. The active

compound of cannabis is called cannabinoids. Among their diverse structure, natural

cannabinoids can be classified into eight general types [39], presented in Figure 2.4,
A°-THC, CBD, CBDA and CBG could exhibit COX enzymes with the half-maximal
inhibitory concentration (ICso) values ranging from 0.2 to 1.7 mM [12]. CBDA could
also inhibit COX-2 selectively with an 1Cso of approximately 2 uM [40].
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Figure 2.4 Chemical structures of cannabinoids: (a) A°-tetrahydrocannabinol (A°-
THC), (b) cannabinol (CBN), (c) cannabidiol (CBD), (d) cannabigerol
(CBG), (e) cannabitriol (CBT), (f) cannabichromene (CBC), (Q)
cannabicyclol (CBL), and (h) cannabielsoin (CBE).

Cannabinoids are related to the endocannabinoid system, cannabinoid
receptor types 1 (CB1) and cannabinoid receptor types 2 (CB2). Cannabinoid receptors
are identified as G-protein coupled receptors (GPCRS) [41, 42]. GPCRs are a diverse
family of eukaryote-specific membrane receptors which translate external signals into
specific cellular responses. GPCR ligands can classified into four categories depending
on their interactions: agonists, antagonists, partial agonists, and inverse agonists
(Figure 2.5). Agonists bind to the receptor, producing a full response. Antagonists bind
to the receptor without a response. Partial agonists bind and activate to the receptor with
only partial response. Inverse agonists bind to a receptor but produce a response

opposite to an agonist [43].
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Figure 2.5 Schematic representation of signal transduction by ligand interactions

with the cannabinoid receptors [43].

Dongchen, et. al. reported that the psychoactive A°-THC acts as an agonist
of CB1 and CB2 whereas CBD is a non-psychoactive antagonist or inverse agonist [44].
CBL1 is expressed in the central nervous system and associated with the psychotropic
effects of A-THC [14]. In contrast, CB2 is expressed in the immune system and

regulates inflammatory response without psychoactivity [45] (Figure 2.6).
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Figure 2.6 Distribution of CB1 and CB1 and their associated functions [46].

Cannabinoids can reduce inflammation by acting on the CB2 receptor,
leading to downregulation of enzymes involved in the production of prostaglandins,
COX-2, inducible nitric oxide synthase (iNOS), and TNF-a [13] (Figure 2.7).
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Figure 2.7 Schematic presentation of the signaling pathways for anti-inflammatory
effects [13].

The inhibitory constants (Ki) of cannabinoids including AS-THC, A°-
THCA, CBD, CBG, and CBN with cannabinoid receptors in a nanomolar unit have

been reported in the previous study [16] (Table 2.3).

Table 2.3  The K; values (in nM) of cannabinoids with cannabinoid (CB) receptors.

Cannabinoids CB1/ (Ki, nM) CB2/ (Ki, nM) Ref.
A%-THC 5.05 3.13 [47]
35.6 8.5 [48]
21 36.4 [49]
53.3 75.3 [50]
A%-THCA 235 56.1 [48]
CBD 1458.5 372.4 [48]
4350 2860 [49]

4900 4200 [51, 52]
CBG 896.8 153.4 [48]
CBN 12.7 16.4 [48]
120.2 100 [53]
326 96.3 [49]
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2.5 Protein-ligand interactions

A drug (or ligand) is a small molecule which can interact with protein
receptors (e.g., enzymes and hormones) for various biological processes. Protein—
ligand (P-L) interactions play a key role in the binding affinity of a protein—ligand
complex, such as signal transduction, cell regulation, and immune response [54].
Noncovalent interactions, e.g., dispersion, hydrogen bonding, halogen bonding, salt
bridge, and m—= stacking, pi-alkyl, pi-pi, and hydrophobic force can be observed
between bound ligand and amino acid residues of receptor [55]. The Protein Data Bank

(PDB) is the primary source for the data of X-ray crystallographic structure [56].

2.5.1 COX binding pockets

Although the three-dimensional structures of the COX-1 and COX-2
are similar and share 60% identical sequence of amino acid [16], the active sites of both
receptors are partially different. Figure 2.8 shows the key residues of amino acids at
the active sites of COX-1 and COX-2. Tyr385 and Ser530 are at the apex of the channel
whereas Arg120 and Tyr355 are at the bottom of the active sites for both COX isoforms.
The COX-2 binding pockets are bordered by Val523 and Arg513, while COX-1 is
surrounded by 11e523 and His513 at the base of the pockets [57, 58]. According to the
protein structure of COX-2 (PDB code: 3LNL1, as explored in this study), the valine and

arginine residues are, respectively, numbered 509 and 499 [5].

Figure 2.8 Comparison of the key amino acid residues of COX-1 and COX-2 binding
pockets [57, 58].
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Binding interactions with key amino acid residues can be found in
NSAIDs. The hydrogen bonding interactions between the carboxyl group of ibuprofen
and amino acid Tyr355 and Arg120 could be observed within 3 A (Figure 2.9). In
contrast, pi-alkyl interaction occurs with VVal349 [59].

ARG-120

Figure 2.9 Binding interaction of ibuprofen with COX-2 active site. The hydrogen
bonds are displayed as black dashed lines, and hydrophobic interactions
are in yellow dashed lines. All distances are measured in angstroms.

Cannabigerol (CBG) has showed strong binding interactions with key
amino acid residues, Arg120, Tyr355, and Val523 at the active sites of COX-2. The
oxygen atom of the phenyl group interacted with Leu352 via hydrogen bonding in 3.32
A. The carbon-5 (C5) of pentyl side chain showed hydrophobic contact with Leu384,
while the carbon-3 (C3) interacted with Trp387 and Met522 [60] (Figure 2.10).

Figure 2.10 Molecular interactions of CBG with key amino acid residues inside
binding pocket of COX-2 enzyme [60].
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2.5.2 CB binding pockets

Cannabinoid receptors, CB1 and CB2, share 44% amino acid
similarity and 68% homology in the transmembrane regions [61, 62]. CB1 with a
tetrahydrocannabinol (AM11542) has been reported at a high resolution of 2.80 A with
the PDB code of 5XRA. The chemical structure of AM11542 contains a tricyclic ring
system and the hydroxyl group, greatly resemble the structure of AS-THC. The key
binding interactions of AS-THC are similar to that of co-crystallized
tetrahydrocannabinol (Figure 2.11a). Hydrogen bonding interactions are observed
between the hydroxyl group of A®>-THC and Ser383 of CB-1. Pi-pi interactions also
occur with Phel77, Phel89, Phe200, Phe268, and Phe379 residues. Additionally, the
alkyl side chain extended into the long channel and interacts with Leul93, Val196,
Tyr275, Leu276, L359, and Met363 [14]. CB2 bound to the potent aminoalkylindole
derivative (WIN 55,212-2) with a resolution of 3.20 A (PDB ID: 6PTO0) (Figure 2.11b).
The naphthalene moiety of WIN 55,212-2 forms strong pi-pi interactions with Phe91
and Phe94, while hydrophobic interactions occurred with Phe87, His95, Pro184, and
Phe281. In addition, the core structure of WIN 55,212-2 engages the pi-pi interactions
with 11110, Val113, Phel17, Phel83, Trp258, Val261, and Met265 [15].
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Figure 2.11 Comparison of the key amino acid residues (deep teal and magenta sticks)
of (a) CB-1 receptors with AM11542 (yellow sticks) and (b) CB-2
receptors with WIN 55,212-2 (cyan sticks). The water is shown as a red

sphere. The hydrogen bonds are shown as dashed lines [14, 15].
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Ring systems and hydroxyl groups of cannabinoids play a key role
for their binding affinity at the active sites of cannabinoid receptors. Figure 2.12 shows
the binding interactions of (—)-trans-A%-THC and their derivatives with CB1 receptor.
The ring of cannabinoid analogs made pi-pi interaction with Phel70 and Phe268
whereas the hydroxy group formed a hydrogen bond with Ser383 [63]. The other amino
acid residues were observed at the position of the aliphatic side chain listed in Table
2.4.

Figure 2.12 Binding interactions of (a) (-)-trans-A%-THCV, (b) (-)-trans-AS-THCB,
and (c) (—)-trans-A%-THC in complex with CB-1 (PDB ID 5XRA) [63].

Table 2.4  List of the binding interactions of cannabinoids.

(-)-trans-AS-THCV  (-)-trans-A°-THCB (-)-trans-AS-THC

Propyl side chain Butyl side chain Pentyl side chain
Hydrogen bond Ser383
pi—pi interaction Phel70 and Phe268

Phel70, Phe200,
Leu387, Met363,
Leu359, and Cys386

Leul93, Val196,
Tyr275, Leu276,
Trp279, and Met363

Hydrophobic
interactions

Phel170, Phe200,
and Leu387

Hydrogen bonding interactions and pi-pi interactions at the active
sites of CB1 and CB2 receptors with various PDB codes have been reported in the
previous study (Table 2.5 and Table 2.6).

Ref. code: 25676309040050KWL



Table 2.5 Information of ligand binding interactions with CB1.
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CBL1 receptor

PDB ID 6KPG 5XR8 5XRA 6N4B 5TGZ
Ligand AM12033 AMS841 AM11542 FUB AMG6538

Ser383
Hydrogen bond Ser385 lle267 Ser383 S§r383

His178
Tyr275
Phel70 Phel70
Phe94 Phe268 Phe268 Try279 Eﬂgégg
pi-pi interaction Phel83 Phe379 Phe379 Phel70 Phel02
Phe281 Phel89 Phel89 Phe268 Trv3s6

Phel77  Phel77 y

Ref. [64] [14] [14] [65] [66]
Table 2.6  Information of ligand binding interactions with CB2.

CB2 receptor
PDB ID 6PTO 572TY
Ligand WIN 55,212-2 AM10257
Hydrogen bond - Ser165

el Phel17

.. i Phe9%4

pi-pi interaction Phel83

Phell7 Trv258

Try258 Y
Ref. [15] [45]
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2.6 Challenge in protein-ligand binding affinity predictions

2.6.1 Molecular docking algorithm

Molecular docking technique is used to propose the orientations of
ligands (or drugs) within the protein binding sites, visualize the protein—ligand
interactions, and estimate binding free energies. A docking scheme requires X-ray
crystallographic structure of a protein receptor determined by a biophysical technique
such as X-ray crystallography and NMR spectroscopy. Docking engines, such as Glide
XP [67], UCSF Dock [68], GOLD Suite [69], DOCK [70], FlexX [71], Discovery
Studio [72], AutoDock Vina [73], and AutoDock4 [74] have different algorithms for
solving chemical problems. The success of docking approaches relies on both the search
algorithm and the scoring function. The former is responsible for exploring various
ligand conformations within a specific target protein. The latter is responsible for
estimating the binding affinities of the generated poses.

The search algorithm can be divided into three fundamental classes:
deterministic (or systematic search), stochastic (or random search), and simulation
methods [18]. Deterministic method is an algorithm which explores all the degrees of
freedom in a molecule. Thus, ligands are incrementally grown into active sites.
Stochastic methods are useful for flexible molecules [19]. This method performs by
making a population of ligands. The popular random approaches are Monte Carlo (MC)
and genetic algorithms (GA). Simulation methods is an approach in which the
temperature of a system is adjustable. Molecular dynamics (MD) is the most popular
simulation [75].

Scoring functions are derived by the approximate mathematical
methods. Binding free energy is estimated by the strength of noncovalent interactions
in protein —ligand complexes. The best candidate ligand should have the strongest
binding affinity [20]. Scoring functions can be divided into three classes: the force-
field-based, the empirical, and the knowledge-based scoring functions. Force-field-
based scoring functions depend on classical molecular mechanics (MM) methods,
representing the force fields. Empirical scoring functions are based on the
parameterization of several types of interactions contributed to energy terms. The
energy terms can be approximated by a sum of individual interactions, e.g., hydrogen
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bonding, binding entropy, ionic and lipophilic interactions [20]. Knowledge-based
scoring functions are derived from statistical analysis of the known 3D structures of
protein—ligand complexes. The binding free energy of docking is the sum of the
intermolecular forces acting upon the protein—ligand complex [76], as shown in

Equation 2.1.
AGbind = AGvdw+ AGhbond + AGeIec + AGtor+ AGsol (Equation 21)

where the molecular mechanics terms are dispersion/repulsion, hydrogen bonding, and
electrostatics. AGtor is rotation and translation. AGse is hydrophobic effect (solvent-

entropy changes at solute-solvent interfaces).

2.6.2 Dispersion corrected methods for modelling noncovalent

interactions

Noncovalent interactions, e.g., dispersion, hydrogen bonding, pi-
alkyl, pi-pi and hydrophobic force involve in protein—ligand (P-L) binding interactions.
These interactions play a role in contributing to binding affinity. Scoring functions of
docking are limited to correct noncovalent interactions due to approximate term in
energy calculation. High-level quantum mechanical (QM) methods can be used to
describe noncovalent interactions. However, accurate QM calculations are high
computational cost with small-sized system. To address this concern, semiempirical
quantum mechanical (SQM) methods offer the advantage of reducing computational
costs with thousands of atoms while improving the description of noncovalent
interactions. The classical SQM methods, e.g., AM1 [77], PM6 [78], PM7 [79], SCC-
DFTB [80], are based on the neglect of differential diatomic overlap approximations
[81]. To enhance the accuracy of SQM, dispersion corrections (D, D3) have been added
to semiempirical methods [82, 83] Additionally, corrections of hydrogen bonding (H,
H+, H2, H4, H5) [84] and halogen bonding (X) have been improved the potential SQM
methods [85]. SQM parameter sets have been parametrized to reproduce accurate
interaction energies using CCSD(T)/CBS tested against benchmark dimers and
complexes [24, 26, 86-90] (Table 2.7).
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Table 2.7  The root mean square errors (RMSES) in kcal/mol of the SQM methods

tested against the benchmark datasets.

PM6 DFTB3

Data set GFN2-xTB
D3H4 D3H4X D3H4 D3H5

S66 0.67[86] 0.68[87] 0.66[24]  0.58[86] 0.65 [26]

X40 259[87]  2.32[87] - - -

HB375 1.09 [89] - 1.23[89] 1.05[89] 1.22 [89]

HB300SPX  3.95[90]  4.44[90]  2.79[90]  2.71[90] 1.58 [90]

PLA15 21.00 [88] - 21.40[88] 15.20[88]  13.40[88]

PM6-DH2 method [22] has shown promise by accurately reproducing
interaction energies for noncovalent geometries obtained from high-level quantum
mechanical calculations and identifying correct binding modes and bioactive
conformations of bound ligands. Table 2.8 shows the calculated binding free energy of
the top-ranked poses by using AutoDock4 and PM6-DH2. It was found that PM6-DH2
optimization can identify the bound pose of carboxamide ligand that suggested a false
negative error, with the recomputed BE of -24.9 kcal/mol. The orientation of the false
negative pose was close to the X-ray crystallographic ligand. Additionally, The PM6-
DH2 single point energy calculation can identify the bound pose of carboxamide ligand
that suggested a false positive error, with the positive BE value of +10.2 kcal/mol [23].
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Table 2.8  Calculated binding free energies in kcal/mol of the top-ranked poses from
Autodock Vina and PM6-DH2 calculations [23].

Aut(.)dock PM6-DH2
Ligand Protein v } . .
code B (rank) Single point ~ Optimization
vina ESp (rank) EOp . (rank)
Carboxamide 1P44 -7.3 (3) =2.7(1) -24.9 (1)
derivative (d11) 3FNE ~7.7 (1) 10.2 (10) ~3.6 (10)

The performance of SQM method has been explored and tested with
15 protein-ligand active site complexes (PLA15 dataset) [88]. PM6-D3H4, DFTB3-
D3H4, DFTB3-D3H5, and GFN2-xTB outperformed other SQM methods with small

error of interaction energy (Figure 2.13).
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Figure 2.13 Distribution of the relative errors of interaction energies obtained from the
tested methods using the PLA15 data [88].

GFN-XTB includes the electrostatic and exchange-correlation
Hamiltonian terms without dispersion, hydrogen, and halogen bond specific
corrections. It has been reported that the error of GFN-xTB [91] and DFTB3-D3(BJ)
[92] were much smaller in magnitude compared to PM6-D3H4X for PL24 protein-
ligand binding set [91]. Furthermore, GFN2-xTB outperforms GFN-xTB, DFTB3-
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D3(BJ), and PM6-D3H4X with a small error of MAD for the noncovalent interaction
energies of different benchmark sets from the GMTKN55 database [26] (Figure 2.14).
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Figure 2.14 Mean absolute deviations (MADs) in kcal/mol for the noncovalent

energies of different benchmark sets.

2.6.3 Solvation model and predicted binding free energy

Solvation plays a key role in protein—ligand interactions for many
biochemical applications and has a strong impact on the calculation of binding free
energies. Free energy perturbation (FEP) [27] has the highest accuracy in calculating
the accurate binding free energy. FEP refers to an ensemble of rigorous statistical
mechanical methods for calculating the free energy in an alchemical process [93].
Figure 2.15 shows alchemical free-energy calculations according to the
thermodynamic cycle. The binding free energy of a compound consists of four different
states: the protein—ligand complexes of molecules A and B, as well as A and B in a
water box. Figure 2.16 shows the transformation from A to B by varying a number of
alchemical intermediates characterized by intermediate A values [94]. The binding free

energy (AGvind) of A—B are calculated using Equation 2.1.

AGpind,A — AGbinds = AGbound — AGsolvated (Equation 2.1)
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Figure 2.16 Schematic representation of alchemical intermediates [93, 94].

Free energy perturbation has predicted the binding free energy
(AGrep)  of  protein—ligand  complexes, with the mean  absolute
deviations |[AGrep—AGexp| lower  than 2 kcal/mol  [95]. However, FEP is
computationally costly and difficult to converge a large number of the protein—ligand
complexes.

Molecular mechanics Poisson—Boltzmann surface areas (MM/PBSA)
[28] and molecular mechanics generalized Born surface areas (MM/GBSA) [29] are
low computational cost while providing the approximate binding free energy with
whole protein—ligand complexes. These methods employ ensembles derived from
molecular dynamic simulation and force field. The binding free energy (AGvind) of the

protein—ligand complex [96] is calculated using Equation 2.2.

AGpind = Geomplex — (Greceptor + Giligand) (Equation 2.2)

where Geomplex IS the free energy of protein—ligand complex and Greceptor and Giigang are

the free energy of the protein and ligand respectively.
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The binding free energy of protein—ligand can also be calculated in

terms of thermodynamics using Equation 2.3 and 2.4.

AGping = AH — TAS (Equation 2.3)

AGbind,solv = AGbind,vac + AGsolv,complex — (AGsoIv,Iigand - AGsoIv,receptor) (Equation 2.4)

where AGsonv IS solvation free energy, which can be either polar or non-polar
components (AGsolv = AGpolar + AGnonpolar) and AGvec IS the free energy in vacuum which
constitute of electrostatic energy (AEeiectrostatic) and entropy (TAS) (AGvac = AEqum) —
TAS). Figure 2.17a shows protein—ligand binding free energy in solvation (AGbind).
Figure 2.17b shows thermodynamic cycle for estimating the binding free binding
energy of protein—ligand complexes. AGsolv,ligand aNd AGsolv,receptor IS difference in
binding energy in vacuum and solvation of ligand and protein, respectively. AGpind.vac
and AGepindsolv IS binding energy of protein and ligand in vacuum and solvation,
respectively. AGsolv,complex IS difference in binding energy of protein—ligand complex in

solvation.

AGsol\’:eceptor

3

Figure 2.17 (a) protein—ligand binding free energy in solvation. (b) thermodynamic

AG

solv.ligand AGsol\f,coxm)lex

A Gbi.udvacmlm
_

cycle for estimating the binding free energy of protein—ligand complexes.
Ligand is presented in green. Protein is presented in red. Solvent is
presented in blue [96].
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SQM methods have shown the performance for calculating the
binding free energy in thousands of atoms of protein—ligand complexes with low-time-
cost and good accuracy. With the implementation of COSMO solvation model, both
PM6-D3H4X and DFTB3-D3H4X methods have demonstrated reductions in the
occurrence of false-positive ligand poses in diverse classes of protein—ligand complexes

[30] (Figure 2.18).

700
600

500 = DFTB3-D3H4X/COSMO

u PM6-D3H4X/COSMO

635
425
400 350 ® AutoDock Vina
300 ® AutoDock4
211 Glide XP
200 B UCSF Dock
T )
e

Figure 2.18 Number of false positive poses for the six methods across all the 17
protein—ligand complexes [30].

GFN force-field (GFN-FF) [31] is designed to combine high force-
field speed with the accuracy of QM methods with low computational cost. GFN-FF
introduces an approximation to the remaining quantum mechanics by replacing the
extended Hiickel theory with molecular mechanics for the description of covalent

bonds. The total GFN-FF energy is calculated using Equation 2.5.
Ecrn-FF = Ecov + Enci (Equation 2.5)

where Ecov refers to the bonded FF energy and Enci describes the intra- and
intermolecular noncovalent interactions.

In the covalent part, as shown in Equation 2.6, interactions are
described by correcting bond stretch, bond angle, and torsional terms. Repulsive terms
are added for bonded and non-bonded interactions. A new three-body bonding

correction is the sum of pairwise interactions.
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Ecov = Ebond + Ebend + Etors + Ebond,rep + Ebond,abc (Equation 2.6)

In the non-covalent part, as shown in Equation 2.7, electrostatic
interactions are described by the EEQ model. The correction terms of dispersion

hydrogen bonding, and halogen bonding correction are accounted to the energy.

Enci = Eies + Edisp + ExB + Exs + Encirep (Equation 2.7)

GFN-FF method and GBSA solvation model has simulated the
dynamics of a met-myoglobin mutant and reproduces the experimental EPR-distance
measurements excellently [31]. Furthermore, the performance of the GFN-FF method
is quite good in a neutral-ligand system since the Pearson correlation coefficient (rp) is
0.70 and the mean absolute error (MAE) is 5.49 kcal/mol. However, it may fail in a
charge—ligand system (the MAE is 18.98 kcal/mol) [32].

To enhance the accuracy, GFN2-xTB method has been used to
compute the binding free energy of truncated protein—ligand complexes [32]. The
binding free energy (AGoindsolv) of the protein—ligand complex is calculated using
Equation 2.2. For a more detailed, the binding free energy can be described in three
contributions shown in Equation 2.8. The free energy (G) consists of three
contributions: the total gas-phase energy (Evac), the solvation free energy (6Gsoiv), and
the thermostatistical contribution to the free energy (—T)ASsolv,mrRrRHO. GmRrrRHO IS
modified rigid-rotor-harmonic-oscillator approximation at 298.15K, including

translation, rotation, vibration of molecule.

AGpind solv = AEvac(GrnzxTB) + ASGsolv + (—T)Assolv,mRRHO (Equation 2.8)
GFN2-xTB method and analytical linearized Poisson—Boltzmann

(ALPB) solvation model outperformed GFN2-xTB with GBSA solvation model and

GFN-FF with ALPB solvation model, with a small MAD of hydration free energy for
the neutral molecules of the FreeSolv database [33] (Figure 2.19).
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Figure 2.19 Mean deviation in kcal/mol of hydration free energies for the neutral

species of the FreeSolv database [33].

In comparison, the performance of GFN2-xTB is much better than
the GFN-FF in truncated protein—ligand complexes. (MAE is 4.91 kcal/mol in neutral—
ligand system and 10.25 kcal/mol in the charged-ligand systems). The Pearson
correlation coefficient was not increased when using the GFN2-xTB. As shown in
Figure 2.20, the GFN2-xTB had a smaller error than the PM6-D3H4 for accurate

binding free energy in most cases of truncated protein—ligand complexes [32].
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Figure 2.20 Absolute error (i.e., |AGexp-AGcal|) for the binding free energy of the
truncated systems with the PM6-D3H4 and GFNn-xTB methods.
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CHAPTER 3
RESEARCH METHODOLOGY

In this study, the protein receptors and studied NSAIDs and cannabinoids
were prepared for molecular docking simulations. The noncovalent datasets were used
to benchmark the parameters used for semiempirical quantum mechanical (SQM)
method and the solvation model. Docked poses of cannabinoids were then reoptimized
at the prepared active site of protein receptor using the outperforming SQM method.
The binding free energy of fully relaxed protein-ligand complexes was computed in
implicit aqueous solvation at the same level of theory. The highest-scored complex with
a more negative binding energy is predicted to be more stable. The binding affinity and
selectivity index of calculated inhibitory constant of the highest-scored complex were
examined and compared with NSAIDs. Finally, 3D graphic representations of the

protein-ligand complexes were generated for analysis of the binding interactions.

3.1 Preparation of receptors

Structures of COX-1 and COX-2 with co-crystallized ligand in Table 3.1
were used for validation of docking and GFN2-xTB. The multiple structures of COX-
1 and COX-2 were used due to having difference co-crystallized ligand. The X-ray
crystallographic structures of COX-1 (PDB code: 3KK6 [97], 3N8Y [98], 1IEQG [99],
1EQH [99]), COX-2 (PDB code: 3LN1 [100], 1PXX [101], 4PH9 [102], 3PGH [103]),
CB1 (PDB code: 5XRA [14]), and CB2 (PDB code: 6PTO [15]) receptors with a
resolution < 3.50 A were downloaded from the RCSB protein data bank (PDB) [56].
Only chain A of the receptor was selected. Water molecules and other heteroatoms were
removed from the protein-ligand complexes. Hydrogen atoms were then added to the
complexes. The protonation states of amino acids were adjusted at pH of 7.4 using the
PROPKA plugin under the APBS-PDB2PQR software suite [104]. We noted that COX-
1 with the PDB code of 1IEQH and COX-2 with the PDB code of 3LN1 were used for

molecular docking and GFN2-xTB optimization.
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Table 3.1  X-ray crystallographic structures of protein receptors.

_ PDB  Res o

Protein Co-crystallized ligand Source
code (A
3KK6  2.75 Celecoxib Ovis aries
3N8Y  2.60 Diclofenac Ovis aries

COX-1 o
1IEQG 261 Ibuprofen Ovis aries
1IEQH 2.70 Flurbiprofen Mus musculus
3LN1 240 Celecoxib Mus musculus

COX-2 1PXX 290 Diclofenac Mus musculus
4PH9 181 Ibuprofen Mus musculus
3PGH 250 Flurbiprofen Mus musculus

CB1 5XRA 2.80 Tetrahydrocannabinol (AM11542)  Homo sapiens

Aminoalkylindole derivative _
CB2 6PTO  3.20 Homo sapiens
(WIN 55212-2)

The key residues of amino acids at the binding region for each receptor
(COX-1, COX-2 [5, 57, 58], CB1 [14], and CB2 [15]) were selected based on the
binding interaction of protein-ligand complex, as listed in Table 3.2. The binding
pockets of these protein receptors were subjected to determining binding affinity using

SQM theory, either in their native form or in a fully relaxed pose.

Table 3.2  The list of amino acid residues in the pocket of protein receptors.

Protein  PDB code Amino acid residues in the pocket

His90, Leu93, Thro4, Met113, Argl14, Val116, Argl120,

GIn192, Phel98, Phe205, Val344, lle345, Tyr348,
3N8Y  Val349, GIn351, Leu352, Ser353, Gly354, Tyr355,

COX-1 _— leu357, Leud59, Phe381, Leu384, Tyr385, Trp387,
1EQG  1e434, His513, Asn515, Ser516, 1le517, Phe518,

Gly519, Met522, 11e523, Glu524, Met525, Gly526,

Ala527, Ser530, Leu531, Leu534

3KK6

1EQH
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Table 3.2  The list of amino acid residues in the pocket of protein receptors. (cont.)

Protein  PDB code Amino acid residues in the pocket
His75, Leu78, Thr79, Met99, Val102, Leul03, Arg106,
GIn178, Phel91, Thr192, Phel95, Val330, 11331,
Tyr334, Val335, Leu338, Ser339, Gly340, Tyr341,
3LN1 Leu345, Phe367, Leu370, Tyr371, Trp373, Val420,
Arg499, Ala502, 11e503, Phe504, Met508, Val509,
Glu510, Leu511, Gly512, Ala513, Ser516, Leu517,
Leu520
His90, Leu93, Thro4, Met113, Val116, Leull7, Argl120,
GIn192, Phe205, Thr206, Phe209, Val344, lle345,
Tyr348, Val349, Leu352, Ser353, Gly354, Tyr355,
1PXX Leu359, Phe381, Leu384, Tyr385, Trp387, Val434,
Arg513, Ala516, 11e517, Phe518, Met522, Val523,
Glu524, Leu525, Gly526, Ala527, Ser530, Leu531,
Leu534
His90, Leu93, Thro4, Metl114, Vall1l7, Leull8, Argl21,
GIn193, Phe206, Thr207, Phe210, Val345, 1le346,
Tyr349, Val350, Leu353, Ser354, Gly355, Tyr356,
4PH9 Leu360, Phe382, Leu385, Tyr386, Trp388, Val435,
Arg514, Ala517, 11e518, Phe519, Met523, Val524,
Glu525, Leu526, Gly527, Ala528, Ser531, Leu532,
Leu535
His90, Leu93, Thro4, Met113, Val116, Leull7, Argl120,
GIn192, Phe205, Thr206, Phe209, Val344, 11e345,
Tyr348, Val349, Leu352, Ser353, Gly354, Tyr355,
3PGH Leu359, Phe381, Leu384, Tyr385, Trp387, Val434,
Arg513, Ala516, 11e517, Phe518, Met522, Val523,
Glu524, Leu525, Gly526, Ala527, Ser530, Leu531,
Leu534

COX-2
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Table 3.2  The list of amino acid residues in the pocket of protein receptors. (cont.)

Protein  PDB code Amino acid residues in the pocket

Phel08, 11e169, Phel70, Serl73, Phel74, Phel77,
His178, Phel89, Lys192, Leul93, Val196, Thr197,

CB1 5XRA Phe200, 1le267, Phe268, Pro269, 1le271, Tyr275,
Leu276, Trp279, 11e280, Trp356, Leu359, Met363,
Phe379, Ala380, Ser383, Cys386
Tyr25, Val86, Phe87, Ser90, Phe91, Phe94, His95,
Phel06, Lys109, Ile110, Gly111, Val113, Thrl14,

CB2 6PTO Phell7, Serl65, Pro168, Leul82, Phel83, Prol84,
11186, Tyr190, Leul91, Trp194, Leul95, Trp258,
Val261, Met265, Phe281, Ala282, Ser285, Cys288

To complete the binding pockets, all dangling bonds of the cleaved amino
acid residues were then capped with the hydrogen atoms. The number of amino acid
residues in the binding site was, respectively, 41, 38, 28, and 31 for COX-1, COX-2,
CB1, and CB2 receptors. The size of protein pocket ranges from 494 to 657 atoms with
their total charge of +1 and +2 (Table 3.3).

Table 3.3  The number of amino acid residue, atoms, and total charge at the pocket

of protein receptors.

The binding site

Protein
Residues Atoms Charge
COX-1 41 657 +1
COX-2 38 607 +1
CB1 28 504 +1

CB2 31 494 +2
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3.2 Preparation of ligands

The Simplified Molecular-Input Line-Entry System (SMILES) of 7
NSAIDs (etoricoxib, celecoxib, diclofenac, naproxen, ibuprofen, flurbiprofen, and
aspirin) were retrieved from ChEMBL database [105] and converted to the 3D
structures using OpenBabel [106]. The 2D structure of NSAIDs are shown in Figure

3.1.
~ //O cl
e //O o//
O// \©\ l \ : NH
N\ AN X N/ c oH
N ‘ - I

(d) (e) U] ()

Figure 3.1 Chemical structures of NSAIDs: (a) celecoxib, (b) etoricoxib, (c)

diclofenac, (d) flurbiprofen, (e) ibuprofen, (f) naproxen, and (g) aspirin.

The 3D structures of 54 phytocannabinoids were retrieved from cannabis
database [107]. We note that CBTA was built by using 1Qmol [108] because its
structure cannot be found in the database. All structures were manually checked and
minimized using MMFF94s force field in IQmol. The compliance of all studied ligands
with Lipinski’s rules of five [109] was checked by using the additional information in
the cannabis database and Swiss ADME [110] online tool. According to diverse
structure of cannabinoids, our selected cannabinoids can be classified into 16 main
classes, including their acid analogs (Figure 3.2): A%-tetrahydrocannabinol (A°-THC-
type), cannabinol (CBN-type), cannabidiol (CBD-type), cannabigerol (CBG-type),
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cannabitriol (CBT-type), cannabichromene (CBC-type), cannabicyclol (CBL-type), and
cannabielsoin (CBE-type).

() (f) (8) (h)

(m) (n) (o) (p)

Figure 3.2 Chemical structures of cannabinoids: (a) A°-tetrahydrocannabinol (A°-
THC), (b) cannabinol (CBN), (c) cannabidiol (CBD), (d) cannabigerol
(CBG), (e) cannabitriol (CBT), (f) cannabichromene (CBC), (Q)
cannabicyclol  (CBL), (h) cannabielsoin (CBE), (i) A®-
tetrahydrocannabinolic acid (A%>-THCA), (j) cannabinolic acid (CBNA),
(k) cannabidiolic acid (CBDA), (I) cannabigerolic acid (CBGA), (m)
cannabitriolic acid (CBTA), (n) cannabichromenic acid (CBCA), (o)
cannabicyclolic acid (CBLA), and (p) cannabielsoic acid (CBEA).
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3.3 Molecular docking protocols

The docking process was applied to NSAIDs and cannabinoids at the active
sites of each receptor by using the Lamarckian genetic algorithm (LGA) in the
AutoDock4 version 4.2.6 [111]. To validate docking parameters, co-crystallized
ligands were docked into the active sites of their receptors. The grid box used for all
four receptors was 50 x 50 x 50 A in size with 0.375 A grid spacing, covered the binding
region of all protein-ligand systems: COX-1/flurbiprofen, COX-2/celecoxib,
CB1/tetrahydrocannabinol (AM11542), and CB2/aminoalkylindole derivative (WIN55
212-2), as shown in Figure 3.3.

(a) 3 : (b)

() ‘ %)

Figure 3.3 The size of a grid box at the binding regions of (a) COX-1, (b) COX-2,
(c) CB1, and (d) CB2.

The docking scheme was run with 150 individuals in the population,
250,000 for maximum energy evaluations and 27,000 for maximum generation. The
top-ten docked poses were ranked based on their binding energy, computed using
AutoDock4 scoring function. AutoDock4 can reproduce bound ligand poses for all four
receptors with an RMSD value ranging from approximately 1.0 - 2.0 A (Table 3.4).
Note that the best-aligned pose corresponds to the lowest binding energy pose for COX-
1, COX-2, and CB1, but it is the third-ranked pose for CB2.
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Table 3.4 RMSD of the best-docked poses of co-crystallized ligands with protein

receptors.
Protein-ligand system RMSD / (A)
COX-1/flurbiprofen 1.05
COX-2/celecoxib 0.84
CB1/AM11542 0.89
CB2/WIN55 212-2 1.55

All studied ligands were then docked into the validated grid box at the
binding sites of protein receptors. Protein-ligand interactions were visualized using
Discovery Studio (DS) visualizer [72].

3.4 Benchmark datasets

We performed benchmarking of the SQM methods and the ALPB solvation

model using noncovalent dimers and complexes listed in Table 3.5.

Table 3.5 Description of noncovalent benchmark datasets.

Dataset Entries Description

S66 66 Organic noncovalent dimers

X40 40 Organic noncovalent dimers with halogen atoms
HB375 262 Hydrogen bonding in organic dimers

Hydrogen bonding extended to S, P, and halogens in
HB300SPX 300 o
organic dimers
PLA15 15 Protein-ligand active site complexes
Neutral and ionic solutes including the elements H, C, N,
O,F, Si,P, S, Cl, Br,and I.

SAMPL2 21 Organic molecule and drug

MNSOL 533
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The S66 dataset consists of 66 organic noncovalent dimers. This dataset
represents a wide distribution of electrostatic and dispersion interaction; however, it
does not contain the halogen atoms in system [112]. Thus, we used X40 dataset to
describe noncovalent interactions of molecular dimers containing halogen atoms. This
dataset includes electrostatic, dispersion, hydrogen bonding and halogen bonding
interactions [87]. For a more detailed analysis of hydrogen bonding, we used HB375
dataset, which comprises six different types of hydrogen bonds: OH-O, NH—O, OH—N,
NH-N, CH—O and CH—N [89]. Moreover, HB300SPX dataset was used to investigate
the hydrogen and halogen bonding interactions. This dataset covers hydrogen bonds to
sulfur, phosphorus, and halogens (F, CI, Br, and 1), and classified into eight groups
labeled XH-N, XH-O, XH-P, XH-S, XH-F, XH—CI, XH— Br, and XH-I [90]. For
the dataset to be more relevant for the large system, we selected the PLA15 dataset,
built from 15 protein-ligand active-site complexes with systems of sizes ranging from
259 to 584 atoms. Their ligands in these complexes have a net charge of either 1, 0, or
+1, and range in size from 37 to 95 atoms [88]. With ALPB solvation model, MNSOL
and SAMPL2 datasets were used to validate our computed solvation free energies. The
MNSOL dataset contains 533 experimental solvation free energies for 390 neutral and
143 ionic solutes. The reference solvation free energies of this dataset refer to the
process of transferring the molecule from the gas phase to the liquid phase [113]. The
SAMPL2 dataset consists of 23 organic molecules and drugs [114]. It is worth noting
that we focused only on 20 molecules, which include the NSAIDs: ibuprofen,

flurbiprofen, ketoprofen, and naproxen.

3.5 SQM methods

The performance of SQM methods with dispersion (D), hydrogen bonding
(H), and halogen bonding (X) corrections—specifically PM6-D3H4, PM6-D3H4X,
DFTB3-D3H4, DFTB3-D3H5, and GFN2-xTB—was examined using noncovalent
complexes from benchmark datasets. For the PM6 method, the MOZYME keyword
was applied to speed up the SCF calculations in large protein-ligand complexes. For
Grimme’s D3 dispersion correction, the scaling coefficient se of 0.88 was used for PM6
[25] whereas the scaling coefficient sg of 1.0 with Becke—Johnson damping (BJ) was
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used for DFTB3 [24]. Detailed parameter sets for dispersion, hydrogen-bonding

corrections, H4 [24] and H5 [86], and halogen bonding corrections [115] are provided

in Table 3.6, Table 3.7, and Table 3.8, respectively. The PM6 calculations were carried
out using MOPAC2016 [116]. DFTB3 calculations were performed using DFTB+
program version 21.2 [117].

Table 3.6  The parameters for dispersion correction used in the PM6 and DFTB3.

Parameter PM6 DFTB3
a1 - 0.746
az - 4.191
S6 0.88 1.0
S8 - 3.209
Sr 1.18 -
a 22 -

Table 3.7  The parameters for hydrogen-bonding correction used in the PM6 and DFTBS3.

Correction term  Parameter PM6 DFTB3
H4 Coo 2.32 1.28
CON 3.10 3.84
CNO 1.07 0.88
CNN 2.01 2.83
Cwat 0.42 1.00
Cs, COO- 1.41 1.75
Cs, NH4 3.61 4.01
Cs, gua 1.26 2.68
Cs, imz 2.29 3.44
H5 Sr - 0.714
Sw - 0.25
KoH - 0.06
Knk - 0.18
Ksh - 0.21
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Table 3.8  The parameters for halogen-bonding correction used in the PM6 method.

Halogen bond a (kcal/mol) b (A1)
CI-O 1.871 x 10° 7.44
Br-O 2.160 x 10* 3.30

I-O 2.436 x 10° 471
CI-N 1.049 x 10%2 9.95
Br-N 5.560 x 10* 3.04

I-N 5.237 x 108 6.77

The parameter sets of GFN2-xTB method [26] are shown in Table 3.9.
Implicit aqueous solvation was implemented using the ALPB solvation model and a
water solvent with the P16 interaction kernel [33]. The GFN2-xTB method and ALPB

solvation model were executed using the xtb program, version 6.6.0 [118].

Table 3.9  The parameter sets used in GFN2-xTB method.

Correction term  Parameter Value
Kss 1.85
Kpp, Kad 2.23
Ksp 2.04
Ksd, Kpd 2.00
Krep 1.5
Ks 1.0
Kp 0.5
K 0.25
Ken 0.02
Multipole Dval 1.2
Rmax 5.0
as 3.0

as 4.0
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Table 3.9  The parameter sets used in GFN2-xTB method. (cont.)

Correction term  Parameter Value
Dispersion a1 0.52
az 5.0
Se 1.0
Sg 2.7
S9 5.0

3.6 Computation of binding energy and binding free energy

To validate the SQM methods, the interaction energy (IE) of noncovalent
dimers from S66, X40, HB375, and HB300 datasets was calculated using Equation
3.1. Similarly, the binding energy (BE) of protein-ligand complexes from PLA15

dataset was calculated using Equation 3.2.

IE = Edimer — (Emonomer_a + Emonomer_b) (Equation 3.1)

BE = Ecomplex - (Ereceptor + Eligand) (Equation 3.2)

The hydration free energy (6Gnya) for the SAMPL2 and MNSOL datasets
was computed, as shown in Equation 3.3, by evaluating the difference between the
total Gibbs free energy (G) in the two states: vacuum and solvation. This computation

requires both full geometry optimizations and Hessian calculations.

OGhyd = Gsolv — Gvac (Equation 3.3)
The statistical values of computed IEs and BEs of benchmark datasets

including root mean square errors (RMSE), mean signed error (MSE), mean absolute

deviation (MAD), maximum deviation (Dmax), and minimum deviation (Dmin) were

then evaluated and analyzed.
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To determine the binding affinity of receptor-cannabinoid complexes, the
corrected binding free energy (AGuing) Of receptor and ligand was calculated by using
GFN2-xTB method, as shown in Equation 3.4., where Gcomplex IS the free energy of the
protein—ligand complex, Greceptor IS the free energy of the protein receptor and Giigand iS

the free energy of the ligand.

AGpind = Gcomplex - (Greceptor + Gligand) (Equation 3.4)

The free energy (G) consists of three contributions: the total gas-phase
energy (Evac), the solvation free energy (8Gsoiv), and the thermostatistical contribution
to the free energy (TASmrrHO). TO Obtain the three contributions, each of ten docked
poses ranked by using AutoDock4 scoring function was reoptimized at the native
pockets of the receptors in vacuum by using GFN2-xTB method. This step provided
the total gas-phase energy (AEvac). Next, the ten optimized poses in vacuum were then
reoptimized in implicit aqueous solvation with ALPB solvation model. The solvation
free energy (AdGsoiv) Was included in the calculation. Therefore, the free energy is
defined by the uncorrected binding free energy (AG'vind;solv). Third, the lowest-energy
complexes suggested by computed AG'bing,soiv Were fully optimized at the same level of
theory at 298.15 K. This step provided the energy in terms of the corrected binding free
energy (AGpindsolv), included the thermostatistical contribution (—T)ASsoiv,mrrHo. All

terms of computed energy were clarified in Equation 3.5.

AGbind,soIv = AEvac(GFNZ—xTB) + AdGsolv + (—T)Assolv,mRRHO
= AG'vindsolv~ + (=T)ASsolv,mRRHO (Equation 3.5)

3.7 Calculation of inhibitory constant (Ki) and selectivity index (SI)

The corrected binding free energy (AGoind;solv) and the uncorrected binding
free energy (AG'bind,solv) in @ unit of cal/mol can be converted to the inhibitory constant

(Ki), as shown in Equation 3.6.
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Ki = exp (AGbindsolv / RT) (Equation 3.6)

The gas constant, R, is 1.98 cal/K mol and T is the absolute temperature of
298.15 K. The inhibitory constant (Ki) was then used to estimate the selectivity index
(SI) for COX-2/COX-1 ratio in Equation 3.7 and CB2/CB.1 ratio in Equation 3.8. The
experimental selectivity index from literature was calculated from 50% inhibitory

concentration (ICsp), as in Equation 3.9.

Calculated Slcox-2icox-1 = Log (Ki of COX-2 / K; of COX-1) (Equation 3.7)
Calculated Slcgace1 = Log (Ki of CB2 / K of CB1) (Equation 3.8)
Experimental Slcox-2icox-1 = Log (ICso of COX-2 / 1Cs0 of COX-1)  (Equation 3.9)
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CHAPTER 4
RESULTS AND DISCUSSION

4.1 NSAIDs

This section explores the binding energies of the top-ten docked poses of
NSIADs with COX-1 and COX-2. The ALPB solvation model and GFN2-xTB method
were then used to compute the binding free energy of COX/NSAID complexes,
considering unrelaxed geometry of receptors. Additionally, the selectivity index of
COX-2 to COX-1 ratio was estimated to predict the anti-inflammatory potency of
NSAIDs.

4.1.1 The binding affinity of protein-ligand complexes

The binding affinity of ligand in the pockets of studied protein
receptors can be estimated using binding energies. First, we docked seven NSAIDs into
the binding sites of COX-1 and COX-2 receptors by using AutoDock4. Table 4.1 shows
the top-ten docked poses of each NSAIDs ranked according to their binding energy. It
was found that AutoDock4 can effectively predict the bound pose of NSAIDs with
COX-1 and COX-2 receptors, displaying strong binding affinity comparable to that of
the co-crystallized poses. As the COX-2 selective NSAIDs, etoricoxib and celecoxib
showed the highest affinity with COX-2 with the binding energies (BEs) of —10.93 and
—10.83 kcal/mol, respectively. In contrast, non-selective NSAIDs such as diclofenac,
ibuprofen, naproxen, and flurbiprofen exhibited the binding affinity with both COX-1
and COX-2. Their BEs of the non-selective NSAIDs were ranging from —7.65 to —8.93
kcal/mol for COX-1 and —6.47 to —7.56 kcal/mol for COX-2. It is noteworthy that the

difference in BE of NSAIDs from AutoDock4 was within a few kcal/mol.
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Table 4.1 Binding energy (BE) in kcal/mol of top-ten docked poses of NSAIDs from

AutoDock4.
COX-1 COX-2
NSAIDs Rank BEautodock4 / Rank BEautodocka /
(kcal/mol) (kcal/mol)

1 -6.83 1 -10.93
2 —-6.27 2 -10.90
3 -5.38 3 -10.85
4 -5.38 4 -10.83
Erof oy 5 -5.28 ) -10.83
6 -5.21 6 -10.80
7 -5.05 7 -10.69
8 -4.95 8 -10.69
9 -3.62 9 -10.45
10 =2.77 10 -10.05

1 -6.89 1 -10.83

2 -5.54 2 -10.81

3 -5.39 3 -10.71
4 -3.97 4 -10.65

Celecoxib ° Ut ° 1062
6 -4.69 6 -10.61
7 —-4.41 7 -10.60

8 -5.01 8 -10.59
9 -4.96 9 -10.54

10 -4.61 10 -10.51

1 —7.65 1 —7.43

Diclofenac 2 -7.32 2 —7.32

3 —7.26 3 -7.31
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Table 4.1 Binding energy (BE) in kcal/mol of top-ten docked poses of NSAIDs from
AutoDock4. (cont.)

COX-1 COX-2
NSAIDs Rank BEautodocka / Rank BEautodocka /
(kcal/mol) (kcal/mol)
4 —-7.23 4 -7.31
) —-7.08 ) -7.19
6 —-6.98 6 —7.08
Diclofenac 7 —7.44 7 -7.32
8 —-6.92 8 -7.19
9 —-7.40 9 —-7.18
10 -7.13 10 -7.08
1 —7.73 1 —6.47
2 —7.68 2 -6.29
3 —7.65 3 -6.08
4 —7.63 4 —-6.01
Ibuprofen 5 —7.52 5 -5.87
6 —7.45 6 -5.68
7 —7.32 7 -5.91
8 —7.13 8 -5.70
9 —6.78 9 -5.51
10 —6.53 10 -5.53
1 —8.58 1 —7.17
2 —8.58 2 —6.70
3 —8.56 3 —6.67
Naproxen
4 -8.55 4 —6.75
5 -8.54 5 —6.41
6 -8.51 6 —6.71
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Table 4.1 Binding energy (BE) in kcal/mol of top-ten docked poses of NSAIDs from
AutoDock4. (cont.)

COX-1 COX-2
NSAIDs BEautodocka / BEautodocka /
Rank Rank
(kcal/mol) (kcal/mol)
7 -8.51 7 —6.69
8 —-8.45 8 —6.52
Naproxen

-8.32 9 -5.96

10 -8.28 10 -5.87

1 -5.80 1 -5.95

2 —5.72 2 -5.85

3 —5.67 3 -5.73

4 -5.40 4 -5.71

. ) -5.53 5 -5.61

Aspirin

6 —5.48 6 -5.57

7 -5.33 7 -5.55

8 -5.06 8 -5.51

9 -5.02 9 -5.35

10 —4.95 10 -5.30

1 —-8.93 1 —7.56

2 —-8.87 2 —-7.50

3 -8.83 3 -7.34

4 -8.78 4 -7.32

5 -8.75 5 -7.50

Flurbiprofen

6 -8.72 6 -7.50

7 —-8.57 7 —7.40

8 -8.49 8 -7.19

9 -8.35 9 -7.18

10 -8.29 10 —6.87
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The GFN2-xTB method coupled with the ALPB solvation model
effectively discriminates between the top-ranked poses obtained from the Autodock4
scoring function with a wide range of binding free energies. Table 4.2 shows the
lowest-energy optimized pose of each NSAIDs, considering the uncorrected binding
free energy in implicit aqueous solvation (AG'pind;solv). FOr the non-selective NSAIDs,
their AG'binding ranged from —24.13 to —26.73 kcal/mol for COX-1 and —21.70 to —25.26
kcal/mol for COX-2. In contrast, etoricoxib and celecoxib exhibited stronger binding
to the active sites of COX-2, with the uncorrected binding free energy (AG'binding) Of
—39.75 and —43.86 kcal/mol, respectively. In addition, the binding affinities of
etoricoxib and celecoxib with COX-1 were +3.01 and +2.56 kcal/mol, respectively,
indicating weaker binding compared to COX-2. It is evident that COX-2 selective
NSAIDs exhibit lower affinity for COX-1.

Table 4.2  Uncorrected binding free energy (AG'pindsolv) in kcal/mol of the lowest-

energy optimized pose by using GFN2-xTB method with ALPB solvation

model.

NSAIDs COX-1 COX-2
Celecoxib +2.56 —43.86
Etoricoxib +3.01 -39.75

Flurbiprofen —25.29 —25.26
Diclofenac —24.13 -23.81

Aspirin -17.26 -19.02
Ibuprofen —24.73 -21.70
Naproxen —26.73 -24.21

4.1.2 The performance of AutoDock4 and GFN2-xTB for predicting
the correct conformations
The geometry optimization of docked poses using the GFN2-xTB
method provides lowest-energy poses comparable to their co-crystallized

conformations. Each of top-ten docked poses obtained from AutoDock4 was solely
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reoptimized within the binding pocket of the prepared receptors. The deviation of these
optimized poses was then compared to their corresponding X-ray crystallographic
poses. Table 4.3 shows the root mean square deviations of the optimized poses for all
four receptors, with a range of 1.0 - 2.0 A. Note that the analyzed poses were the lowest-
energy optimized poses for flurbiprofen, celecoxib, and tetrahydrocannabinol, with the

exception of the fifth-ranked pose for aminoalkylindole derivative.

Table 4.3  Root mean square deviations (RMSD) of lowest-energy optimized poses

of co-crystallized ligands of protein receptors.

Protein-ligand system Average RMSD / (A)
COX-1/flurbiprofen 1.01
COX-2/celecoxib 1.04
CB1/tetrahydrocannabinol 1.95
CB2/aminoalkylindole derivative 1.76

The binding interactions of the optimized NSAID poses at the active
sites of COX-1 and COX-2 were examined and compared with those of the best-docked
poses. Figure 4.1 shows the binding interactions between the best-docked poses and
the lowest-energy-optimized poses of aspirin and diclofenac at the active site of COX-
1. GFN2-xTB method gave the lowest-energy optimized pose of aspirin, while
AutoDock4 suggested a false negative. The orientations of both lowest-energy
optimized poses were closely aligned with their X-ray crystallographic poses. This can
be seen from the carboxyl group of the lowest-energy optimized pose of aspirin (pink
in Figure 4.1a) aligned at the same position as its X-ray crystallographic pose.
Hydrogen bonding interactions of the lowest-energy optimized pose of aspirin included
bonds between the carboxylic acid group and Tyr355 (1.65 A), the ester group and
Ser353 (2.79 A), and the ester group and Ala527 (2.97 A) with COX-1 (Figure 4.1a).
Similarly, the carboxyl groups of the lowest-energy optimized pose and the X-ray
crystallographic pose of diclofenac also aligned at the same position, displaying
hydrogen bonding interactions with Arg120 within 2 A (Figure 4.1b). It is noteworthy

that the best-docked poses of aspirin and diclofenac were flipped compared to their X-
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ray crystallographic poses. Arg120 and Tyr355 were identified as key amino acids at
the binding entrance of COX-1, agreed with previous study [58]. Figure 4.2 shows the
binding interactions of the best-docked poses and the lowest-energy-optimized poses
of flurbiprofen at the active sites of COX-2. The carboxyl group of the lowest-energy
optimized pose of flurbiprofen aligned with the same position as the sulfonamide group
of celecoxib, an NSIAD. Hydrogen bonding interactions between the carboxyl group
of flurbiprofen and the amino group of Arg499 and Phe504 were observed within 3 A,

This agreed well with the crucial amino acids of COX-2 [5].

(a) (b)
N

Tyr385 ‘

.\ Argl20 :
1.94 ooz
=4 222,

== X-rays pose Best-docked pose == Optimized pose

Figure 4.1 Hydrogen bonding interactions between the best-docked pose (stick
representation in yellow) and the lowest-energy optimized pose (stick
representation in pink) of (a) aspirin and (b) diclofenac at the active sites
of COX-1.
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. Phe504

== X-rays pose Best-docked pose == Optimized pose

Figure 4.2 Hydrogen bonding interactions between the best-docked pose (stick
representation in yellow) and the lowest-energy optimized pose (stick
representation in pink) of flurbiprofen at the active sites of COX-2.

4.1.3 Validation of calculated selectivity index

The binding stability of an active compound with its target receptor
can be evaluated by examining the binding free energy. The more negative binding free
energy indicates that the ligand can bind strongly to its receptor. Considering the non-
competitive mechanism of protein-ligand inhibition, the inhibitory constant (K;) value
is directly proportional to the 50% inhibitory concentration (ICso). Thus, the higher
affinity of inhibitors corresponds to lower value of K and ICsq.

The selectivity index (SI) is typically derived from the ratio of IC50
value for COX-2 to that for COX-1, reflecting the anti-inflammatory potency of
NSAIDs. In our study, the uncorrected binding free energy (AG'vind,solv) Calculated using
GFN2-xTB method with the ALPB solvation model was converted to the inhibitory
constant (K;). This K; value was then used to calculate the selectivity index. Table 4.4
shows the calculated and experimental selectivity indexes [34, 35] of NSAIDs for
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COX-2 to COX-1 ratio, determined using Spearman rank correlation [119]. We found
that our calculated and the experimental selectivity indexes of four NSAIDs in Table
4.4 were closely matched (r = 1, P-value = 0.083). Thus, when a ligand specifically
binds to the anti-inflammatory COX-2 and CB2 receptors, the Sl value is low.
Conversely, when a ligand binds to COX-1 and psychoactive CB1 receptors, the Sl
value is high. Consequently, the calculated selectivity index in this study was used to

predict the anti-inflammatory potency of cannabinoids.

Table 4.4  Experimental selectivity index (Exp. SI) and calculated selectivity index
(Calc. SI) of NSIADs.

Experimental value ? GFN2-xTB (ALPB)
1Cso0 1Cs0
NSAIDs (M) M) Exp. S| Calc. K Calc. K; Cale. S|
Xp. alc.
H L : COX-1 COX-2
COX-1 COX-2
Celecoxib 16.00 0.54 -1.47 2.20x10° 2.38x10%  -16.97
Diclofenac 0.08 0.04 -0.30 257 x10%  2.54 x10 3.00
Ibuprofen 7.60 20.00 042 1.41x107% 2.42x107% 5.23

Flurbiprofen 0.08 5.50 1.84 5.87x10Y  5.40x10° 10.96

! Experimental value was obtained from [34, 35]

4.1.4 Validation of binding free energy

The GFN2-xTB method with ALPB solvation model can compute
binding free energy values that agree with experimental data. The experimental binding
free energy is estimated as AG = — RTInKg = RTInKa = RTInKj, where Kq is the
equilibrium dissociation constant, Ka is the equilibrium association constant, and K is
the inhibitory constant. The Pearson correlation coefficient (rp) [120] was used to
evaluate the correlation between the calculated binding free energy and the
experimental binding free energy of seven NSAIDs. As shown in Figure 4.3a, the
Pearson correlation coefficient (rp) was approximately 0.40, indicating moderate
performance of the computational method used. Additionally, the performance of the

method improved significantly (r, = 0.60), indicating strong performance, when using
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the corrected binding free energy in implicit aqueous solvation (AGpind solv) With fully-

relaxed pocket protein-ligand geometries (Figure 4.3b).
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Figure 4.3. Pearson correlation between experimental binding free energy values and
(@) uncorrected binding free energy (AG'bind,solv) @nd (b) corrected binding
free energy in implicit aqueous solvation (AGpind,solv) by using the GFN2-
XTB method with ALPB solvation model of NSAIDs.

4.2 Cannabinoids

This section examines the binding affinity of cannabinoids with COX-1,
COX-2,CB1, and CB2. The ALPB solvation model and GFN2-xTB method were used
to compute the binding free energy of receptors/cannabinoids complexes, considering
both unrelaxed and fully relaxed geometries of the receptors. Additionally, the
selectivity indexes of COX-2 to COX-1 and CB2 to CBL1 ratios were estimated to
predict the anti-inflammatory potency of cannabinoids. The predicted drug-like
properties of modified cannabinoid analogs were compared to those of celecoxib.

4.2.1 The binding affinity of receptors/cannabinoids complexes
The GFN2-xTB method with the ALPB solvation model can
differentiate the best-bound pose of a ligand. The binding enthalpy obtained from
molecular docking and GFN2-xTB methods in a vacuum for 55 cannabinoids at the
active sites of COX and CB receptors is reported in Appendix A. The binding free

energy for all cannabinoids in native conformations of the studied receptors was
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analyzed and is presented in Table 4.5. The number of bound-cannabinoids was
clustered based on either the binding enthalpy obtained from the docking scheme or the
uncorrected binding free energy in implicit aqueous solvation (AG'indsolv) Obtained
from the GFN2-xTB method. The GFN2-xTB method with the ALPB solvation model
effectively differentiates the binding free energy of each optimized ligand pose,
resulting in a wide range of MAX-MIN values, a higher RMSE, and a higher mean
absolute deviation for all studied receptors. Considering the number of bound
cannabinoids classified into three clusters, it was found that the GFN2-xTB method
with the ALPB solvation model identified 7 cannabinoids with strong binding affinity
to COX-1, ranging from —11 kcal/mol to —20 kcal/mol, out of 48 compounds. In
addition, CB1 and CB2 receptors consistently showed the highest number of bound
cannabinoids in the best cluster (number 1), with binding free energies more negative
than —21 kcal/mol for both methods, as these receptors are well-known cannabinoid

receptors.
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Table4.5  Statistical data of binding energies and uncorrected binding free energies in kcal/mol of 55 cannabinoids calculated by AutoDock4 and GFN2-xTB

method with ALPB solvation model.

Autodock4 GFN2-xTB (ALPB)
Receptor Statistical data cluster 1 cluster 2 cluster 3 cluster 1 cluster 2 cluster 3
<-10 —8to-9 —Sto—7 >-21 -11t0-20 <-10

n 4 35 16 0 7 48
Mean -9.90 -8.32 —6.73 NA -12.02 7.89
COX-1 RMSE 0.32 0.44 0.58 NA 131 7.59
MAD 0.26 0.36 0.46 NA 111 6.05
MIN -0.49 -1.08 -0.68 NA —-2.55 -16.56
MAX 0.38 0.80 1.33 NA 143 18.30
n 10 36 9 5 18 32
Mean -9.97 -8.65 —6.50 -21.74 -14.57 -4.68
COX-2 RMSE 0.20 0.51 0.55 1.00 2.33 3.77
MAD 0.17 0.44 0.48 0.80 1.83 3.03
MIN -0.30 -0.79 -0.89 -1.88 -5.83 -5.71
MAX 0.26 1.04 0.69 0.95 3.96 7.67
n 37 14 4 39 15 1
Mean -10.38 -8.86 —6.33 -27.61 -16.76 -8.83
CB1 RMSE 0.62 0.31 0.26 242 2.93 0.00
MAD 0.52 0.24 0.21 1.87 2.38 0.00
MIN -1.49 -0.55 -0.42 -5.81 -3.56 0.00
MAX 0.88 0.66 0.29 5.64 5.73 0.00
n 12 38 5 48 8 1
Mean -9.81 -8.52 —6.20 -25.15 -17.00 -10.44
CB? RMSE 0.36 0.55 0.68 2.81 2.02 0.00
MAD 0.30 0.48 0.47 2.39 1.90 0.00
MIN -0.71 -0.88 -1.15 -5.57 -2.68 0.00
MAX 0.36 1.07 0.97 471 2.89 0.00
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Next, we examined the AG'pindsoiv OF cOmmon parent cannabinoids
and their acid derivatives. It was found that the studied cannabinoids exhibit strong
binding affinity with cannabinoid receptors, CB1 and CB2 (Table 4.6). The AG'bind,solv
of the acid derivatives was more negative than that of the parent cannabinoids,
indicating higher affinity. The AG'bind,solv OF the optimized poses of CBNA, A>-THCA,
A°-THC, CBGA, CBDA, CBTA, CBG, and CBD with psychoactive CB1 were,
respectively, —32.89, —31.11, —30.23, —29.69, —29.33, —28.36, —28.22, and —27.26
kcal/mol. Regarding the anti-inflammatory CB2 receptor, it was found that CBCA,
CBEA, CBC, CBT, CBE, CBLA, CBL, and CBN showed strong affinity, with

uncorrected binding free energy ranging from —22.34 to —29.13 kcal/mol.

Table 4.6 The uncorrected binding free energy (AG'bindsolv) in kcal/mol of the
lowest-energy optimized pose of parent cannabinoids and acid derivatives
with CB1 and CB2 using the GFN2-xTB method with the ALPB solvation

model.
. W AG'bind,solv / (kcal/mol)

CB1 CB2
CBNA -32.89 —25.64
AS-THCA -31.11 —22.42
AS-THC -30.23 —-25.43
CBGA —-29.69 -30.73
CBDA —-29.33 —22.36
CBTA —28.36 -27.27
CBG —-28.22 —26.59
CBD —27.26 —23.47
CBCA —26.45 -29.13
CBEA —-25.23 —-25.89
CBC —-23.47 -27.11

CBT -19.76 —26.03
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Table 4.6  The uncorrected binding free energy (AG'vindsolv) in kcal/mol of the
lowest-energy optimized pose of parent cannabinoids and acid derivatives
with CB1 and CB2 using the GFN2-xTB method with the ALPB solvation
model. (cont.)

AG'bindsolv / (kcal/mol)

Cannabinoid
CB1 CB2
CBE -19.38 —-27.61
CBLA -19.12 —-26.23
CBL -17.91 -23.09
CBN -17.16 -22.34

Furthermore, we explored the length of alkyl sidechains of parent
cannabinoids and their acid derivatives upon their binding affinity. It was found that
A°-THC, A>-THCA, CBD, CBDA, and CBGA containing three or four methylene
groups still showed the highest affinity with CB1 (Table 4.7). The AG'bind,solv Of CBGA-
C3, A%-THC-C4, CBD-C4, A>-THC-C3, CBDA-C3, A>-THCA-C3, and CBG-C3 was,
respectively, —33.42, —28.94, —28.72, —27.54, —27.37, —26.89, and —25.51 kcal/mol.
However, CBN showed the high affinity with CB2 with the uncorrected binding free
energy of —30.63, —28.93, and —27.67 kcal/mol, respectively, with C4, C3, and C2 alkyl
sidechains (Table 4.7). Compared with CB2/CBCA (AG'bind,solv = —29.13 kcal/mol),
CBCA with three methylene groups showed the highest affinity with CB2 with the

uncorrected binding free energy of —28.03 kcal/mol.
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Table 4.7 The uncorrected binding free energy (AG'vindsolv) in kcal/mol of the
lowest-energy optimized poses of parent cannabinoids and their acid
derivatives with varying alkyl sidechain lengths using the GFN2-xTB
method with ALPB solvation model.

Cannabinoid AG'bindsolv / (kcal/mol)
CB1 CB2
CBGA-C3 -33.42 -30.61
CBN-C4 -30.63 -23.83
A%-THC-C4 -28.94 -23.12
CBN-C3 —28.93 —-20.98
CBD-C4 —28.72 —24.06
CBN-C2 -27.67 -17.82
A%-THC-C3 —27.54 -22.11
CBDA-C3 -27.37 -25.64
A%-THCA-C3 —26.89 —23.49
CBC-C3 —26.74 —26.29
CBG-C3 -2551 —24.62
CBCA-C3 -21.97 —28.03
CBD-C3 -20.31 —24.06

Apart from common parent cannabinoids, other cannabinoid

derivatives were also examined. It was found that A>-THCA, the acid derivative of A°-
THC, showed the highest affinity with CB1 (AG'ping,soiv = —30.69, Table 4.8). For other
A%-THC derivatives, the AG'bind solv Values for A&-THCA, OTHC, A8-THC, TriOH-THC,
2-0X0-A3(4)-THC, cis-A°-THC, A1(2)-THCM were —28.78, —28.62, —27.53, —26.42,
—26.00, —23.39 kcal/mol, respectively (Table 4.8). However, 8,9-dihydroxy-A-6a-
THC, A>-THCA-B, 10-ethoxy-9-hydroxy-A-6a-THC, and A’-cis-iso-THCV exhibited
binding affinity with CB2 comparable to that of CB1. Other than A%-THC derivatives,

Ref. code: 25676309040050KWL



56

CBND showed the highest affinity with CB1 with the uncorrected binding free energy
of —28.42 kcal/mol.

Table 4.8 The uncorrected binding free energy (AG'vindsolv) in kcal/mol of the
lowest-energy optimized pose of other cannabinoid derivatives using the
GFN2-xTB method with ALPB solvation model.

AG'bind solv / (kcal/mol)

Cannabinoid
CB1 CB2
A®-THCA -30.69 -23.89
8,9-dihydroxy-A-6a-THC —-28.93 -30.59
OTHC —28.78 -27.04
A8-THC —28.62 —22.89
CBND —28.42 -20.77
TriOH-THC —27.53 -19.52
H.CBD —26.99 —24.67
CBGAM —26.90 -30.10
CBGM —26.65 —-29.08
CBDM —-26.59 —-28.16
2-0X0-A3(4)-THC —26.42 ~22.12
cis-A%-THC —-26.00 -24.30
CBCT —25.40 -23.37
CBNM —24.75 —24.27
CBCM —24.24 —-28.69
A1(2)-THCM ~23.39 —21.83
A°-THCA-B -19.99 —23.57
10-ethoxy-9-hydroxy-A-6a-THC -17.75 —26.36
Terpenoids ? -17.29 -19.68
Hydronaphthalene -16.55 -14.11

A’-Cis-iso-THCV -16.21 —20.82
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Table 4.8 The uncorrected binding free energy (AG'vindsolv) in kcal/mol of the
lowest-energy optimized pose of other cannabinoid derivatives using the
GFN2-xTB method with ALPB solvation model. (cont.)

AG'bind,solv / (kcal/mol)

Cannabinoid
CB1 CcB2
Terpenoids ° ~14.56 ~15.89
Terpenoids ° -12.71 -15.43
Terpenoids ¢ ~11.59 ~14.99
Terpenoids © -11.03 -10.44
Terpenoids f -8.83 ~20.45

2 CDB006348. P CDB006347. ¢ CDB006349. ¢ CDB006350. ¢ CDB006346.
f CDB006352.

Candidate cannabinoids with anti-inflammatory properties should
have high binding affinity with COX-2 and/or CB2 receptors without psychoactive
effects. It is noteworthy that CBC, CBL, and CBE and their acid derivatives showed a
high affinity with CB2. Consequently, we examined the AG'ping,solv OF cannabinoids with
COX-1 and COX-2 (Table 4.9). CBC, CBCA, and CBEA were the tightly bound
cannabinoids with CB2 and COX-2. The AG'pind,solv Values of CBC, CBCA, and CBEA
with COX-2 were respectively —14.72, —13.55, and —5.45 kcal/mol.

Table 4.9 The uncorrected binding free energy (AG'vindsolv) in kcal/mol of the
lowest-energy optimized pose of parent cannabinoids and acid derivatives
with COX-1 and COX-2 using the GFN2-xTB method with ALPB

solvation model.

AG'bind,solv / (kcal/mol)
COX-1 COX-2
CBG -8.67 -16.38
CBC 0.50 -14.72

Cannabinoid
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Table 4.9 The uncorrected binding free energy (AG'vindsolv) in kcal/mol of the
lowest-energy optimized pose of parent cannabinoids and acid derivatives
with COX-1 and COX-2 using the GFN2-xTB method with ALPB
solvation model. (cont.)

AG'bindsolv / (kcal/mol)

Cannabinoid
COX-1 COX-2
CBCA 4.97 -13.55
A%-THC 7.44 -12.63
CBNA 1.41 -8.56
CBN 8.84 -8.03
A>-THCA 15.54 -7.30
CBGA -11.41 -6.01
CBEA 22.74 -5.45
CBTA 14.61 -3.51
CBD 7.45 -3.15
CBE 12.76 -2.37
CBT 14.43 -0.58
CBLA 20.45 2.14
CBDA 3.58 2.21
CBL 17.90 2.98

Furthermore, we explored the length of alkyl sidechains of parent
cannabinoids and their acid derivatives upon their binding affinity. It was found that
CBN showed the high affinity with CB2 with the uncorrected binding free energy of
-21.87, —-23.62, and —20.79 kcal/mol, respectively, with C4, C3, and C2 alkyl
sidechains (Table 4.10).
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Table 4.10 The uncorrected binding free energy (AG'vindsolv) in kcal/mol of the

lowest-energy optimized pose of parent cannabinoids and acid derivatives

with varying alkyl sidechain lengths using the GFN2-xTB method with

ALPB solvation model.

AG'bindsolv / (kcal/mol)

Cannabinoid
COX-1 COX-2
CBN-C3 -1.69 -23.62
CBN-C2 -1.01 -21.87
CBC-C3 -11.08 -21.30
A%-THCA-C3 5.49 -21.13
CBN-C4 0.03 -20.79
AS-THC-C3 9.03 -20.40
CBG-C3 -13.33 -17.86
A%-THC-C4 8.09 -16.02
CBGA-C3 -11.77 -15.48
CBD-C3 4.66 -14.38
CBDA-C3 -0.01 -12.91
CBCA-C3 -14.57 -10.33
CBD-C4 4.66 -5.90

Apart from common parent cannabinoids, other cannabinoid

derivatives were also examined. It was found that CBND and CBNM showed the

highest affinity with COX-2 with the uncorrected binding free energy of —17.60 and

—13.95 kcal/mol, respectively (Table 4.11).
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Table 4.11 The uncorrected binding free energy (AG'vindsolv) in kcal/mol of the

lowest-energy optimized pose of other cannabinoid derivatives using the

GFN2-xTB method with ALPB solvation model.

AG'bindsolv / (kcal/mol)

Cannabinoid
COX-1 COX-2
CBND 2.03 -17.60
8,9-dihydroxy-A-6a-THC 11.38 -14.03
CBNM 1.76 -13.95
A.-THC 16.12 -13.92
TriOH-THC 8.22 -13.46
A’-Cis-iso-THCV 9.83 -12.37
CBGAM -5.87 -11.99
Terpenoids ? -3.68 -10.61
Terpenoids ® -3.23 -10.39
CBCM -10.59 -10.06
A°-THCA-B 12.58 -9.99
Terpenoids © 6.11 -8.91
H.CBD 5.61 -8.85
CBGM -11.36 —-6.56
A.-THCA 9.88 -6.33
cis-AS-THC 21.98 —5.42
2-0X0-A3(4)-THC 1.50 —5.19
Terpenoids ¢ 4.84 -4.83
Hydronaphthalene 7.20 -4.30
10-ethoxy-9-hydroxy-A-6a-THC 26.19 -4.06
A1(2)-THCM 13.76 ~3.92
CBCT 16.34 -3.46
CBDM 1.50 -3.17
OTHC 3.67 -1.81
Terpenoids © 8.01 -1.23
Terpenoids 12.84 2.45

3 CDB006347. > CDB006349. ¢ CDB006346. ¢ CDB006348. ¢ CDB006350. F CDB006352.
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4.2.2 The selectivity index
As mentioned in section 4.1.3, the calculated selectivity index (SI)
was used to examine the anti-inflammatory potency of cannabinoids. The low Sl of
COX-2/COX-1 and CB2/CBL1 ratios indicates high anti-inflammatory potency. On the
other hand, the high SI of CB2/CB1 ratio suggests the psychoactive effects. It was clear
that the Slcez/ce1 values of A-THC, CBN, CBD, CBG, and their acid derivatives were
high (Figure 4.4) due to their high affinity with CB1. This agreed well with their low
Ki values in pM unit of CB1 (A%-THC = 0.02 uM [49], CBN = 0.33 puM [49], CBD =
4.90 uM [51, 52], CBG = 1.05 uM [48]). However, the Slce2/ce1 values for CBN and
CBT were lower than those of their acid derivatives. Interestingly, the Slcga/ce1 and
Slcox-2icox-1 were low in CBC, CBL, CBE, and their acid derivatives. The selectivity
index of acid derivatives of these cannabinoids was lower than that of their parent
compounds. From Figure 4.4, the Slce2ice1 values of CBCA, CBLA, and CBEA were,
respectively, —1.96, —5.22, and —0.49. The Slcox-2icox-1 values of CBCA, CBLA, and
CBEA were, respectively, —13.59, —13.33, and —20.68. Therefore, we suggested that
CBCA, CBLA, and CBEA were potential candidate compounds with anti-
inflammatory properties targeting COX-2. However, as discussed in Table 4.10 and
Table 4.11, CBNA exhibited the highest affinity with COX-2; therefore, CBNA was

also selected as a candidate compound.
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Figure 4.4 Selectivity index (SI) of COX-2/COX-1 ratio and CB2/CB1 ratio of (a)
parent cannabinoids and (b) acid derivatives by using GFN2-xTB method

with ALPB solvation model.

4.2.3 Geometry relaxation and binding interactions

The influence of thermal energy, entropy, and geometry relaxation

plays an important role in the calculated binding free energy. The corrected binding

free energy (AGuind;solv) consists of three contributions: the total gas-phase energy in a

vacuum (AEvac), the solvation free energy (AdGsow), and the thermostatistical

contribution to the free energy (TASmrrHO). TO account for these contributions, the

COX-2/candidate cannabinoids complexes were fully optimized by using GFN2-xTB
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method with ALPB solvation model. Table 4.12 shows the AGpindsolv Values of CBNA,
CBCA, CBLA, and CBEA, which are comparable to those of NSAIDs.

Table 4.12 The corrected binding free energy (AGoindsov) in kcal/mol of candidate
cannabinoids and NSIADs at the active sites of COX-2 using GFN2-xTB

method with ALPB solvation model.

Compound AGpind,solv / (kcal/mol)
celecoxib -32.02
etoricoxib -25.27

CBCA —22.80
CBNA -20.20
CBEA -20.05

flurbiprofen -18.26

diclofenac -16.63
CBLA -15.52
aspirin -10.53

ibuprofen -9.36

naproxen -8.32

Compared to non-selective NSAIDs in Table 4.12, CBCA, CBNA,
and CBEA showed higher affinities with COX-2. For the COX-2/CBCA complex

(AGpind,solv = —22.80 kcal/mol), hydrogen bonding interactions occurred between

Tyr341 and the hydroxyl group of CBCA at a distance of 1.83 A, as well as between
Ser339 and Val509 with the carboxyl group of CBCA at distances of 1.83 A and 2.44
A, respectively (Figure 4.5a). Similarly, the higher binding affinity of CBNA
(AGpbind,solv = —20.20 kcal/mol) compared to CBEA (AGpind,solv = —20.05 kcal/mol) is
attributed to hydrogen bonding interactions with Ser339 in 1.75 A (Figure 4.5b) and

Val509 in 1.76 A (Figure 4.5¢). Additionally, hydrogen bonding interactions between

the carboxyl group of CBNA and Arg499 could be observed within 2.30 A. In contrast,
the COX-2/CBLA complex exhibits a lower affinity (AGpindsolv = —15.52 kcal/mol)
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compared to diclofenac, a non-selective NSAID, (AGpind,solv = —16.63 kcal/mol), due to
the presence of only two amino acids, Leu338 and Arg499 (Figure 4.5d). Our results

agreed well with the findings previously reported [5].

(©) ———— (@) L

Figure 4.5 Binding interactions of (a) CBCA, (b) CBNA, (C) CBEA, and (d) CBLA
with key amino acid at fully relaxed COX-2 complex. The hydrogen
bonds are presented in green dashed lines. The unit of distance in

proximity is angstrom.
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It is noteworthy that the alkyl side chains of CBNA and CBEA were
aligned in a similar position to the sulfonamide group of celecoxib, with interactions
with Arg499 (Figure 4.6a and 4.6b). In addition, the alkyl side chain of CBCA (Figure
4.6¢) could be modified and reoptimized for stronger binding affinity. Therefore, we
anticipate that modification of the cannabinoid structure at the carbon side chains with

the sulfonamide group could provide the higher affinity with COX-2.

(a) (b) (c)

Figure 4.6 The optimized poses of (a) CBNA, (b) CBEA, and (C) CBCA aligned on
celecoxib (gray stick) at fully relaxed COX-2 complex.

4.2.4 Modified cannabinoids analogs
As discussed in Section 4.2.3, structure modifications were made to
the COX-2/cannabinoid complexes at the carbon side chains by introducing the

sulfonamide group. Figure 4.7 shows the 2D structures of these modified cannabinoid

analogs.
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(d)

Figure 4.7 Chemical structures of modified cannabinoid analogs: (a) CBNA-C1, (b)
CBNA-C2, (c) CBNA-C3 (d) CBEA-C1, (e) CBEA-C2, (f) CBEA-C3,
(9) CBCA-C3, (h) CBCA-C4, and (i) CBCA-C5.

The complex of modified cannabinoid analogs was redocked and
fully reoptimized using GFN2-XTB method with ALPB solvation model. It was found
that the modified cannabinoid analogs of CBNA, CBEA, CBCA were the tightly bound
cannabinoids with COX-2 (Table 4.13). The modified CBCA at the C3 side chain
showed the highest affinity (AGbindsov = —48.41 kcal/mol) compared to celecoxib
(AGpind,soiv = —32.02 kcal/mol). The AGpind,soiv Of modified CBEA at the C2 side chain
and modified CBNA at the C3 side chain was respectively —45.82 and —45.62 kcal/mol.

Table 4.13 The corrected binding free energy (AGpind,solv) in kcal/mol of the modified
cannabinoid analogs at the active sites of COX-2 by using GFN2-xTB

method with ALPB solvation model.

Compound AGpbind,solv / (kcal/mol)
CBCA-C3-SO2NH? —48.41
CBEA-C2-SO2NH> —45.82
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Table 4.13 The corrected binding free energy (AGpind,solv) in kcal/mol of the modified

cannabinoid analogs at the active sites of COX-2 by using GFN2-xTB

method with ALPB solvation model. (cont.)

Compound
CBNA-C3-SO2NH:>
CBEA-C3-SO2NH:
CBCA-C5-SO2NH:
CBEA-C1-SO2NH:
CBCA-C4-SO2NH:

celecoxib
CBNA-C2-SO2NH:>
CBNA-C1-SO2NH:>

AGbind,solv / (kcal/mol)
—45.62
—44.30
—-40.39
-39.97
-34.23
-32.02
—-25.42
—-24.00

For the fully relaxed COX-2 complexes, hydrogen bonding
interactions were found at the sulfonyl group (-SO2) of CBCA-C3-SO2NH2, CBNA-
C3-S02NH;, and CBEA-C2-SO2NH; with Arg499, 11e503, and Phe504 within 3 A. The
sulfonamide group (-SONH2) of those compounds occurred with His75 and GIn178
within 2 A (Figure 4.8). Additionally, the carboxyl group of the CBCA-C3-SO2NH,
interacted with Met508 in 2.62 A (Figure 4.8a) whereas that of CBNA-C3-SO,NH;
interacted with Ser339 in 2.09 A (Figure 4.8b). Hydrogen bonding interactions with
Val102 (in 1.85 A) and Ala513 (in 2.56 A) were observed at the hydroxyl group of

CBEA-C2-SO2NH; (Figure 4.8c).
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Figure 4.8 Binding interactions of modified (a) CBCA-C3-SO2NH_, (b) CBNA-C3-
SO2NHz, and (C) CBEA-C2-SO>NH2 with key amino acid at fully relaxed
COX-2 complex. The hydrogen bonds are presented in green dashed lines.

The unit of distance in proximity is angstrom.
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4.2.5 Drug-like properties

In drug development, it is important to ensure that drug candidates
possess certain characteristics such as physicochemical properties, lipophilicity, water
solubility, pharmacokinetics, and drug-likeness. In this study, drug-like properties of
the modified cannabinoids were predicted by using Swiss ADME [110] online tool as
presented in Table 4.14. It was found that CBCA, CBNA, CBEA, and their modified
structures meet the Lipinski’s rules of five, which state that the molecular weight should
be less than 500 g/mol, with fewer than 5 hydrogen bond donors and fewer than 10
acceptors, and a partition coefficient (LogP) less than 5. This indicates that these
compounds and their modified analogs have appropriate molecular weight, hydrogen
bond counts, and partition coefficients.

Interestingly, the predicted LogP values of the modified cannabinoids
were lower than those of their parent analogs and closed to that of celecoxib. According
to log S, the CBEA-C2-SO,NH: was found to be soluble. Conversely, CBCA, CBCA-
C3-SO2NH2, CBNA, CBNA-C3-SO2NH;, and CBEA were moderately soluble. All
compounds were suitable for oral drug availability, as indicated by their bioavailability
scores falling within the range of 0—1.

In addition, we investigate their potential to inhibit cytochromes
P450, a key factor in pharmacokinetics-related drug-drug interactions. It was found that
none were found to inhibit CYP2D6 (Table 4.14). The modified cannabinoids had
almost no effect to inhibit P450 inhibitors. These findings suggest that the modified
compounds possess favorable physicochemical characteristics for oral bioavailability.
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Table 4.14 Predicted drug-like properties of the modified cannabinoids and celecoxib.
Muw? BAY HEDS C&rjlseFr)lsus (\I;\?:tsr Bicavailability Cytochrome P450 inhibitor
(g/mol) =00 Fow » Score CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4
(lipophilicity)  solubility)

Celecoxib  381.37 7 1 3.40 -4.57 0.55 Yes No Yes No No
CBCA 358.47 4 2 4.98 -5.73 0.85 No No Yes No Yes
CBNA 354.44 4 2 4.48 -5.95 0.85 Yes Yes Yes No No
CBEA 374.47 5 3 4.04 -5.40 0.56 No No Yes No Yes

CBCA-C3-

SO,NH, 409.50 7 3 2.71 -4.43 0.56 No No No No Yes

CBNA-C3-

SO,NH, 405.46 7 3 2.64 -4.29 0.56 No No No No Yes

CBEA-C2-

SO,NH, 411.47 8 4 1.61 -3.51 0.11 No No No No No

aMw = Molecular weigh

b HBA = Hydrogen bond acceptors

¢ HBD = Hydrogen bond donors
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4.3 Validation of SQM methods

The performance of the SQM methods in describing noncovalent
interactions of protein-ligand systems was validated against five datasets of benchmark
dimers and complexes as detailed in Section 3.4. To accurately describe these
interactions, additional corrections were applied to the PM6 method including
Grimme’s dispersion (D) correction, a hydrogen bonding (H) correction, and a
correction for extra repulsion in halogen atoms (X). For the DFTB3 method, Becke—
Johnson damping function was employed to correct dispersion, along with a more
advanced correction for hydrogen bonds. Lastly, the GFN2-xTB, an empirical tight
binding approach, stands out as it does not require any ad-hoc corrections.

According to the nature of the benchmark dimers, the X correction had no
effect on the S66 and HB375 datasets (Table 4.15) because these datasets include only
H, C, O, and N atoms. Using the X40 dataset, PM6-D3H4 had a root mean square error
(RMSE) of 2.59 kcal/mol, while PM6-D3H4X had a smaller RMSE of 2.31 kcal/mol.
This indicates that the X correction improves the description of noncovalent
interactions for specific element pairs, such as [O, N] - [CI, Br, 1] [121]. However, the
X correction improves the description of noncovalent interactions in XH—I bonds but
increases the error in XH—CIl and XH—Br groups in the HB300SPX dataset. This can
be seen from the higher RMSE of 3.76 kcal/mol for PM6-D3H4X.

When the DFTB3-D3H4 was applied to S66, X40, and HB375 datasets,
except for HB300SPX, the error remained large because H4 corrections apply only to
H-bonds involving oxygen and nitrogen atoms [24]. For the DFTB3 methods, the
DFTB3-D3H5 showed the lowest RMSE values for all five benchmark datasets. The
H5 corrections provide more accurate interaction energy with fewer specific additional
adjustments compared to the H4 corrections. H5 corrections also improved the overall
description of hydrogen bonds involving oxygen, nitrogen, and sulfur atoms [86].
Among the studied SQM methods, GFN2-xTB was the most accurate method,
reproducing the benchmark interaction energies with an RMSE of 1.06 kcal/mol for
X40 and 1.40 kcal/mol for HB300SPX.
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Table 4.15 RMSE, MAD, MSE, Dmin, and Dmax in kcal/mol of SQM methods tested
against S66, X40, HB375, and HB300SPX data sets.

PM6 DFTB3
Dataset GFN2-xTB
D3H4 D3H4X D3H4 D3H5
RMSE 0.69 0.69 1.26 0.60 0.95
MAD 0.49 0.49 0.86 0.47 0.78
S66 MSE -0.20 -020 -065 -0.19 -0.64
Dwmin -1.11  -111 -090 -1.18 -0.91
Dwmax 251 251 3.60 1.94 2.44
RMSE 2.59 2.31 2.65 2.32 1.06
MAD 1.43 1.11 1.93 1.78 0.86
X40 MSE -0.28  -0.70 0.90 0.97 -0.48
Dwmin -6.90 -112 -6.23 -545 -2.25
Dwmax 11.39 11.39 7.40 4.56 2.57
RMSE 1.23 1.23 2.18 1.24 1.37
MAD 0.96 0.96 1.71 0.94 1.18
HB375 MSE 0.15 0.15 -1.67 -0.59 -1.12
Dwmin -3.74 -374 -122 -440 -1.55
Dmax 3.53 3.53 6.72 5.53 4.02
RMSE 3.72 3.76 2.28 2.00 1.40
MAD 2.57 2.63 1.50 1.37 1.00
HB300SPX MSE -221 235 -096 -051 0.11
Dwmin -4838 -240 480 -4.90 -5.26
Dwmax 13.27 13.27 12.71 11.06 4.40

The PLA15 benchmark dataset represents protein-ligand complexes with

hundreds of atoms only at the binding region. The X correction had no effect on this

dataset because it only addresses interactions between [O, N] — [CI, Br, 1] pairs of

atoms, which are not presented in this dataset. For the PLA15 benchmark dataset,
DFTB3-D3H5 outperformed best, with an RMSE of 15.58 kcal/mol (Table 4.16),
compared to an RMSE of 13.27 kcal/mol from GFN2-xTB.
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Table 4.16 RMSE, MAD, MSE, Dmin, and Dmax in kcal/mol of SQM methods tested

against PLA15 data set.
PM6 DFTB3
Dataset GFN2-xTB
D3H4 D3H4X D3H4 D3H5

RMSE 16.03 16.03 16.09 15.58 13.27

MAD 13.30 13.30 12.47 12.47 10.52

PLA15 MSE 10.52 10.51 12.47 12.47 -10.23
MIN -30.74 -30.74 -38.23 -41.76 -2.18

MAX 6.72 6.72 -278 -1.84 27.28

Figure 4.9 shows the mean absolute deviations (MADs) of GFN2-xTB
across different datasets. Both the DFTB3-D3H5 and the GFN2-xTB methods
outperformed the other SQM methods tested. The GFN2-xTB method is particularly
notable because it has been developed to function without the need for specific,

additional adjustments, making it user-friendly and straightforward to apply.

14
PM6-D3H4
12, PM6-D3H4X
= a0 DFTB3-D3H4
g | DFTB3-D3H5
= g | GEN2-xTB
O
§ 1
— 6 I
o I
S 4
2 I
0
S66 X40 HB375 HB300SPX PLA15

Figure 4.9 Mean absolute deviations (MADs) in kcal/mol for the noncovalent

interaction energies of different benchmark datasets.
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Figure 4.10 shows the distribution plot of the mean signed error (MSE)
across different datasets. For S66, X40, HB375, and HB300SPX datasets, GFN2-xTB

exhibited a narrow distribution with a significant peak height. However, all tested SQM
methods displayed a broad distribution for the PLA15 dataset.
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Figure 4.10 Distribution plots of the MSE in the computed interaction energies of (a)
S66, (b) X40, (c) HB375, (d) HB300SPX, and (e) PLA15 benchmark

datasets.
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From the results of method validation, the DFTB3-D3H5 and GFN2-xTB
methods outperformed other SQM methods testes, with lower RMSE, MAD, and MSE
values. However, DFTB3-D3H5 failed to optimize the correct geometries of celecoxib,
as it resulted in the breaking of the S-N bond in the sulfonamide group (Figure 4.11).
This was evident from the hydrogen bonding observed between the amine group (-NH>)
of celecoxib and GIn178, Leu338, and Ser339 within 3 A. Therefore, GFN2-xTB was

used to examine the binding affinity of NSAIDs and cannabinoids in this study.

2408,
v, ! p GlIn178

2.81

| 208

Figure 4.11 Hydrogen bonding interactions of the optimized pose of celecoxib at the
pocket of COX-2 by using the DFTB3-D3H5 method.

To validate the accuracy of computing the solvation free energy (8Gsolv) of
small molecules, the MNSOL and SAMPL2 benchmark datasets, along with the ALPB
solvation model, were used with the GFN2-xTB method. For the MNSOL dataset, the
mean absolute deviation (MAD) of the computed hydration free energy was 3.35
kcal/mol for the given benchmark geometries, compared to 3.48 kcal/mol for their
optimized geometries, with an error of less than 0.1 kcal/mol (Table 4.17). Notably, a
smaller MAD within 2 kcal/mol and a Pearson correlation coefficient (rp) of 0.99 were
obtained for both given and optimized geometries of the neutral charge compounds
(Table 4.17, Figure 4.12).
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Table 4.17 Mean absolute deviation (MAD) for the computed hydration free energy
in kcal/mol using the GFN2-xTB method, ALPB solvation model, and
MNSOL benchmark datasets.

dGsov/ (kcal/mol)
Subset No. _Of Benchmark geometry Optimized Geometry
entries
neutral 390 1.89 2.04
positive 60 4.76 4.93
negative 83 9.17 9.16
all charged 143 7.32 7.38
all 533 3.35 3.48
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Figure 4.12 Pearson correlation between the experimental 6Gsov values and the
computed 8Gsorv for (a) benchmark geometries and (b) optimized
geometries of MNSOL dataset using the GFN2-xTB method and ALPB

solvation model.

Table 4.18 shows the computed hydration free energy of the SAMPL2
dataset using the GFN2-xTB method and the ALPB solvation model. The computed
values of flurbiprofen, ibuprofen, ketoprofen, and naproxen closely matched the
experimental values [114]. Using the GFN2-xTB method, the MAD value for all 20
compounds in the SAMPL2 dataset was within 3 kcal/mol, depending on the geometries

and solvation model used [122]. Additionally, the Pearson correlation coefficient (rp)
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ranged from 0.3 to 0.4, indicating the moderate performance of the method used
(Figure 4.13).

Table 4.18 The computed hydration free energy in kcal/mol of compounds in the
SAMPL2 dataset using the GFN2-xTB method with the ALPB solvation

model.
6Gso|v/ (kcaI/mOI)
GFN2-xTB (ALPB)

compound
Exp.!  MO05-2X/6-31G(d) (SMD)?  Benchmark Optimized
geometry Geometry
Flurbiprofen -8.42 -8.20 -10.27 -9.77
ibuprofen —7.00 —6.10 -8.57 -8.55
ketoprofen -10.78 -11.10 —-11.74 -8.90
naproxen -10.21 -9.70 -9.83 -9.51

MAD
2.21 2.86 3.18

(20 compounds)

12The experimental and computed hydration free energy using SMD solvation model were
obtained from [114] [122].
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 Concluded remarks

In this work, AutoDock4 scoring function can predict the binding affinity
of NSAIDs with COX-1 and COX-2 receptors, comparable to that of the co-crystallized
poses. It is noteworthy that the difference in the binding enthalpy of NSAIDs from
AutoDock4 was within a few kcal/mol. However, we found a false negative and false
positive suggested by Autodock4, considering the X-ray crystallographic ligand pose,
due to the absence of hydrogen bonding interaction with amino acid of receptor. To
address this concern, semiempirical quantum mechanical (SQM) methods were
validated with various benchmark datasets. The GFN2-xTB method showed the best
performance among the tested SQM methods with small RMSE and MAD values of
interaction energy of benchmark datasets. For the MNSOL and SAMPL2 datasets, the
MAD for all compounds in the dataset was within 3.5 kcal/mol, depending on both
given and optimized geometries. The Pearson correlation coefficient (rp) ranged from
0.3 to0 0.9, indicating the moderate and strong performance of the method used.

The GFN2-TB method along with the ALPB solvation model can
discriminate the top-ranked poses obtained from Autodock4 scoring function by a wide
range of computed binding free energies. Interestingly, this method can identify a false
negative error from AutoDock4 considering the lowest-energy optimized pose of
flurbiprofen at the active site of COX-2 and its co-crystallized pose. The carboxyl group
of flurbiprofen were similarly positioned at the sulfonamide group of the co-crystallized
pose of celecoxib, the commercially available NSAID.

Hydrogen bonding interactions of NSAIDs with Arg499 and Phe504, the
crucial amino acids of COX-2 play a key role for their binding affinity. To examine the
affinity of NSAIDs with their COX-1 and COX-2 receptors, we computed the binding
free energy at the X-ray crystallographic and fully relaxed binding regions. The Pearson
correlation coefficient (rp) was used to compare the uncorrected binding free energy

(AG'pind,soiv) With the experimental binding free energy of NSAIDs. The rp was 0.40,
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indicating the moderate performance of the GFN2-xTB method used with the ALPB
solvation model. The lowest-energy optimized pose of celecoxib showed the strongest
binding affinity to the native pose of COX-2 with the uncorrected binding free energy
(AG'pind,soiv) of —43.86 kcal/mol. The influence of geometry relaxation of the candidate
compounds was compared with NSAIDs. The Pearson correlation coefficient (rp)
between calculated corrected binding free energy (AGnind,solv) and experimental binding
free energy of seven NSAIDs was 0.60, indicating the strong performance of the GFN2-
XTB method used.

The GFN2-xTB method with ALPB solvation model can differentiate the
difference in uncorrected binding free energy of cannabinoids, as it was evident by a
wide range of the MAX and MIN errors as well as the high RMSE and MAD values.
This method identified 7 lowest-optimized compounds out of 48 compounds as strong
affinity ligands. According to the uncorrected binding free energy, A>-THC, CBN,
CBD, CBG, and their acid derivatives showed the highest affinity with CB1. CBCA,
CBLA, CBEA, CBNA were tightly bound cannabinoids with CB2 and COX-2.

Conversion of the computed binding free energy for COX receptors to the
inhibitory constant (Ki), the calculated selectivity index (SI) for K; of COX-2 and K; of
COX-1 ratio was used to predict the anti-inflammatory potency of NSAIDs. The
calculated selectivity index of selected NSAIDs was matched with the experimental
selectivity index by the Spearman correlation (r = 1, P-value = 0.083). If cannabinoids
can bind specifically to the anti-inflammatory COX-2 and CB2 receptors, their Sl
values are low. In contrast, if they specifically bind to COX-1 and psychoactive CB1
receptors, their SI value would be high. Consequently, the calculated selectivity index
was used to predict the specific binding and anti-inflammatory potency of
cannabinoids. It was clear that the Slcgzice: values of AS-THC, CBN, CBD, CBG, and
their acid derivatives were high due to their high affinity with psychoactive CB1. The
Slce2/ce1 and Slcox-2icox-1 were low in CBC, CBL, CBE, and their acid derivatives.
Notably, CBCA, CBLA, CBEA, and CBNA were suggested to be the candidate
compounds with anti-inflammatory potency targeting the COX-2 receptor.
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The influence of thermal energy, entropy, and geometry relaxation plays an
important role in the calculated binding free energy. Compared to non-selective
NSAIDs, CBCA, CBNA, and CBEA showed higher affinities with COX-2 due to
hydrogen bonding interactions of their hydroxyl group and carboxyl group.
Modification of the CBNA, CBEA, and CBCA structures at the carbon side chains with
the sulfonamide group provided a higher affinity with COX-2. The modified CBCA at
the C3 side chain exhibited the highest affinity with COX-2 with the corrected binding
free energy of —48.41 kcal/mol and hydrogen bonding interactions with Arg499, 11e503,
and Phe504 within 3 A. Regarding the drug-like properties, it could be assumed that
the best modified cannabinoids were favorable physicochemical characteristics for oral

bioavailability.

5.2 Further suggestions

5.2.1 Experimental validation
To ensure the validity of our computational findings, further
experimental studies should be carried out for therapeutic applications.
5.2.2 Exploration of active compounds
Other active compounds with anti-inflammatory properties can be

further explored both experimentally and computationally.
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90

Table A1. Binding energy (AEva) and uncorrected binding free energy in implicit
aqueous solvation (AG'bingsolv) in kcal/mol of the best poses of 55 cannabinoids
with COX-1 and COX-2 using Autodock4 and GFN2-xTB method.

Protein Cannabinoid AEvac AEvac  AG’bind,solv
ID Name AutoDock4 GFN2-xTB
COX-1 CDB000008 CBCVA -8.22 -26.51 -14.57
CDB000006 CBGV -7.02 -28.78 -13.33
CDB000005 CBGVA -6.70 -24.76 -11.77
CDB000018 CBGA -6.84 -26.53 -11.41
CDB000004 CBGM -8.65 -24.41 -11.36
CDB000009 CBCV -7.23 -23.54 -11.08
CDB000042 CBCM -8.72 -20.42 -10.59
CDB000003 CBG -6.72 -21.27 -8.67
CDB000011 CBGAM -6.53 -20.07 -5.87
CDB006347  Terpenoids -6.14 -10.51 -3.68
CDB006349  Terpenoids -540  -8.82 -3.23
CDB000032 CBNV -8.43 -11.69 -1.69
CDB000033 CBN-C2 -8.15 -10.92 -1.01
CDB000014 CBDVA -756 -14.23 -0.01
CDB000031 CBN-C4 -8.43 -10.25 0.03
CDB000007 CBC -7.78 -10.90 0.50
CDB000028 CBNA -9.19 -12.94 1.41
CDB000012 CBDM -8.87  -9.50 1.50
CDB000030 CBNM -857 -7.51 1.76
CDB000433 CBND -6.74  -9.21 2.03
CDB000010 CBDA -7.39 -11.71 3.58
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Table Al. Binding energy (AEva) and uncorrected binding free energy in implicit
aqueous solvation (AG'bingsolv) in kcal/mol of the best poses of 55 cannabinoids
with COX-1 and COX-2 using Autodock4 and GFN2-xTB method. (cont.)

Protein Cannabinoid AEvac AEvac  AG'bind,solv
ID Name AutoDock4 GFN2-xTB
COX-1 CDB000037 OTHC -9.93 —7.96 3.67
CDB000015 CBDV -8.09 -7.11 4.66
CDB006348  Terpenoids —7.86 -2.84 4.84
CDB000398 CBCA —7.96 -6.36 4.97
CDB000020  AS-THCVA -9.40 -8.82 5.49
CDB000043 H.CBD -7.24 -6.81 5.61
CDB006346  Terpenoids -6.14 2.20 6.11
CDB000040  2-0x0-A3(4)-THC -0.39 -5.43 7.20
CDB000001  AS-THC -8.81 -3.87 7.44
CDBO000002 CBD -7.41 -5.07 7.45
CDB006350  Terpenoids -5.74 3.46 8.01
CDB000019  AS-THC-C4 -8.47 -3.46 8.09
CDB000039  TriOH-THC -7.85 -6.39 8.22
CDB000029 CBN -8.52 -1.95 8.84
CDB000021  AS-THCV -8.48 -1.72 9.03
CDB000013 CBD-C4 -7.32 -2.95 9.65
CDB000022  A’-Cis-iso-THCV -8.67 -0.66 9.83
CDB000023  A8-THCA -9.75 -8.33 9.88
CDBO000035  8,9-dihydroxy-A-
S THC -8.36 -4.70 11.38
CDB000017 AS-THCA-B -7.94 3.68 12.58
CDB000027 CBE -7.60 0.50 12.76
CDB006352  Terpenoids -7.07 5.06 12.84
CDB006351  Hydronaphthalene -8.23 8.27 13.32
CDB000041  Al1(2)-THCM -7.52 4.64 13.76
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Binding energy (AEva) and uncorrected binding free energy in implicit

aqueous solvation (AG'bingsolv) in kcal/mol of the best poses of 55 cannabinoids
with COX-1 and COX-2 using Autodock4 and GFN2-xTB method. (cont.)

Protein Cannabinoid AEvac AEvac  AG'bindsolv
ID Name AutoDock4 GFN2-xTB

COX-1 CDB000435 CBT -8.44 0.57 14.43
CBTA -7.73  -6.27 14.61
CDB000016  A%-THCA -852  -0.39 15.54
CDB000024 A%-THC -9.52 5.45 16.12
CDB000036 CBCT -8.36 8.50 16.34
CDB000026 CBL -8.73 7.57 17.90
CDB000025 CBLA -8.65 8.47 20.45
CDB000038  cis-A%-THC -8.15 12.78 21.98
CDB000423 CBEA —7.96 8.49 22.74

DB 4 10-ethoxy-9-
SpEnR0s hydroxy-};-Ga-THC -8.39 14.44 26.19
COX-2 CDB000032 CBNV -8.89 -34.73 -23.62
CDB000033 CBN-C2 -8.61 -32.25 -21.87
CDB000009 CBCV -8.19 -32.66 -21.30
CDB000020 A°-THCVA -10.16 -46.46 -21.13
CDB000031 CBN-C4 -9.14 -31.23 -20.79
CDB000021  AS-THCV -9.71 -31.39 -20.40
CDB000006 CBGV -7.72 -30.16 -17.86
CDB000433 CBND -9.04 -33.14 -17.60
CDB000003 CBG -7.82 -28.14 -16.38
CDB000019  AS-THC-C4 -10.02 -27.77 -16.02
CDB000005 CBGVA -7.01 -29.71 -15.48
CDB000007 CBC -8.42 -26.69 -14.72
CDB000015 CBDV -7.83 -25.67 -14.38
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93

Table Al. Binding energy (AEva) and uncorrected binding free energy in implicit
aqueous solvation (AG'bingsolv) in kcal/mol of the best poses of 55 cannabinoids
with COX-1 and COX-2 using Autodock4 and GFN2-xTB method. (cont.)

Protein Cannabinoid AEvac AEvac  AG'bindsolv

ID Name AutoDock4 GFN2-xTB
COX-2 CDB000035  8,9-dihydroxy-A-

6a.THC -8.95 -31.16 -14.03

CDB000030 CBNM -9.04 -24.14 -13.95
CDB000024  A%-THC -9.44  -23.00 -13.92
CDB000398 CBCA -7.39 -28.94 -13.55
CDB000039  TriOH-THC -8.14 -29.07 -13.46
CDB000014 CBDVA -8.33 -28.86 -12.91
CDB000001  A°-THC -9.74 -25.62 -12.63
CDB000022  A’-cis-iso-THCV -9.04 -23.85 -12.37
CDB000011 CBGAM -6.13 -23.38 -11.99
CDB006347  Terpenoids -5.95  -6.27 -10.61
CDB006349  Terpenoids -5.81 -17.03 -10.39
CDB000008 CBCVA -8.35 -27.05 -10.33
CDB000042 CBCM -8.86 -20.46 -10.06
CDB000017  AS-THCA-B -8.84 -28.55 -9.99
CDB006346  Terpenoids -6.39 -11.88 -8.91
CDB000043 H.CBD -8.98 -22.60 -8.85
CDB000028 CBNA -9.14 -30.93 -8.56
CDB000029 CBN -9.16 -1941 -8.03
CDB000016  A°-THCA -10.27 -33.15 -7.30
CDB000004 CBGM -6.57 -21.36 -6.56
CDB000023  A%-THCA -9.12 -32.73 -6.33
CDB000018 CBGA -9.11 -18.98 -6.01
CDB000013 CBD-C4 -8.61 -17.61 -5.90
CDB000423 CBEA -8.77 -20.53 -5.45
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Binding energy (AEva) and uncorrected binding free energy in implicit

aqueous solvation (AG'nindsolv) in kcal/mol of the best poses of 55 cannabinoids
with COX-1 and COX-2 using Autodock4 and GFN2-xTB method. (cont.)

Protein Cannabinoid AEvac AEvac  AG'’bind,solv
ID Name AutoDock4 GFN2-xTB
COX-2 CDB000038 cis-A*-THC -9.38  -17.02 -5.42
CDB000040  2-0x0-A3(4)-THC -10.26 -21.73 -5.19
CDB006348  Terpenoids -7.96 -11.54 -4.83
CDB006351  Hydronaphthalene -8.34 -10.02 -4.30
CDB000034  10-ethoxy-9-
hydroxy-A-6a- -8.53 -18.49 -4.06
THC
CDB000041 A1(2)-THCM -944 -13.84 -3.92
CBTA -8.09 -32.08 -3.51
CDB000036 CBCT -9.71 -10.71 -3.46
CDB000012 CBDM -850 -13.62 -3.17
CDB000002 CBD -8.61 -1541 -3.15
CDB000027 CBE -8.25 -14.98 -2.37
CDB000037 OTHC -9.27 -17.19 -181
CDB006350  Terpenoids -6.07 -7.32 -1.23
CDB000435 CBT -9.99 -16.53 -0.58
CDB000025 CBLA -9.92 -16.43 2.14
CDB000010 CBDA -7.22 -14.62 221
CDB006352  Terpenoids -761 -351 2.45
CDB000026 CBL -990 -8.48 2.98
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Table A2. Binding energy (AEva) and uncorrected binding free energy in implicit
aqueous solvation (AG'bindsolv) IN Kkcal/mol of the best poses of 55
cannabinoids with CB1 and CB2 using Autodock4 and GFN2-xTB method.

Protein Cannabinoid AEvac AEvac  AG'bind,solv
ID Name AutoDock4 GFN2-xTB
CB1 CDB000005 CBGVA -8.94 -49.37 -33.42
CDB000028 CBNA -11.20 —47.47 -32.89
CDB000016 A°-THCA -11.54 -45.58 -31.11
CDB000023  A%-THCA -11.48 -42.18 -30.69
CDB000031 CBN-C4 -9.74 -41.61 -30.63
CDB000001  AS-THC -10.56 -40.45 -30.23
CDB000018 CBGA -9.07 -46.20 -29.69
CDB000010 CBDA -10.83 -46.19 -29.33
CDB000019  AS-THC-C4 -10.21 -39.01 -28.94
CDB000032 CBNV -9.41 -39.35 -28.93
CDB000035  8,9-dihydroxy-A-
LI -10.38 -46.49 -28.93
CDB000037 OTHC -10.97 -38.56 -28.78
CDB000013 CBD-C4 -9.68 -39.99 -28.72
CDB000024  A8-THC -10.69 -39.22 -28.62
CDB000433 CBND -8.95 -39.21 -28.42
CBTA -10.28 -46.96 -28.36
CDB000003 CBG -8.99 -40.17 -28.22
CDB000033 CBN-C2 -9.01 -37.97 -27.67
CDB000021  A°-THCV -9.83 -37.32 -27.54
CDB000039  TriOH-THC -10.41 -45.01 -27.53
CDB000014 CBDVA -8.99 -42.80 -27.37
CDB000002 CBD -9.52 -38.74 -27.26
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Table A2. Binding energy (AEva) and uncorrected binding free energy in implicit
aqueous solvation (AG'bingsolv) in kcal/mol of the best poses of 55 cannabinoids
with CB1 and CB2 using Autodock4 and GFN2-xTB method. (cont.)

Protein Cannabinoid AEvac AEvac  AG'bindsolv
ID Name AutoDock4 GFN2-xTB
CB1 CDB000043 H:CBD -9.97  -38.73 -26.99
CDB000011 CBGAM -8.77 -39.47 -26.90
CDB000020  A®-THCVA -11.00 -40.19 -26.89
CDB000009 CBCV -9.86  -36.29 -26.74
CDB000004 CBGM -9.50 -38.85 -26.65
CDB000012 CBDM -10.58 -37.29 -26.59
CDB000398 CBCA -9.74  -38.66 -26.45
CDB000040  2-0x0-A3(4)-THC -11.87 -35.17 -26.42
CDB000038  cis-A%-THC -10.01 -38.11 -26.00
CDB000006 CBGV -891  -37.81 -25.51
CDB000036 CBCT -11.09 -31.96 -25.40
CDB000423 CBEA -9.74 -36.21 -25.23
CDB000030 CBNM -9.62 -31.84 -24.75
CDB000042 CBCM -9.90 -32.62 -24.24
CDB000007 CBC -10.07 -34.22 -23.47
CDB000041  A1(2)-THCM -10.20 -30.17 -23.39
CDB000008 CBCVA -9.07 -38.16 -21.97
CDB000015 CBDV -8.92 -32.63 -20.31
CDB000017 A°-THCA-B -10.15 -31.30 -19.99
CDB000435 CBT -9.81 -30.68 -19.76
CDB000027 CBE -10.19 -30.95 -19.38
CDB000025 CBLA -10.91 -32.41 -19.12

CDB000026  CBL -10.17 -25.38 -17.91

Ref. code: 25676309040050KWL
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Binding energy (AEva) and uncorrected binding free energy in implicit

aqueous solvation (AG'bingsolv) in kcal/mol of the best poses of 55 cannabinoids
with CB1 and CB2 using Autodock4 and GFN2-xTB method. (cont.)

Protein Cannabinoid AEvac AEvac  AG'bindsolv
ID Name AutoDock4 GFN2-xTB
CB1 CDB000034  10-ethoxy-9-
hydroxy-A-6a- -11.46 -26.60 -17.75
THC
CDB006348  Terpenoids -8.20 -25.60 -17.29
CDB000029 CBN -10.12 -28.99 -17.16
CDB006351  Hydronaphthalene -8.52 -21.27 -16.55
CDB000022  A’-cis-iso-THCV -10.60  -25.00 -16.21
CDB006347  Terpenoids -6.04 -19.92 -14.56
CDB006349  Terpenoids -6.23 -16.74 -12.71
CDB006350  Terpenoids -6.75 -18.70 -11.59
CDB006346  Terpenoids -6.29 -14.87 -11.03
CDB006352  Terpenoids -8.26 -15.44 -8.83
CB2 CDB000018 CBGA -7.82  -43.00 -30.73
CDB000005 CBGVA -7.69 -41.31 -30.61
CDBO000035  8,9-dihydroxy-A-
R TIE -9.59 -41.24 -30.59
CDB000011 CBGAM -8.60  -40.36 -30.10
CDB000398 CBCA -9.32 -44.43 -29.13
CDB000004 CBGM -8.34 -36.23 -29.08
CDB000042 CBCM -9.18  -33.39 -28.69
CDB000012 CBDM -8.82 -35.69 -28.16
CDB000008 CBCVA -8.57 -46.11 -28.03
CDB000027 CBE -8.90 -38.49 -27.61
CBTA -10.21 -40.66 -21.27
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Binding energy (AEva) and uncorrected binding free energy in implicit

aqueous solvation (AG'bingsolv) in kcal/mol of the best poses of 55 cannabinoids
with CB1 and CB2 using Autodock4 and GFN2-xTB method. (cont.)

Protein Cannabinoid AEvac AEvac  AG'bind,solv
ID Name AutoDock4 GFN2-xTB

CB2 CDB000007 CBC -9.02 -33.98 -27.11
CDB000037 OTHC -9.82 -35.85 -27.04
CDB000003 CBG -7.77 -34.60 -26.59

CDB000034  10-ethoxy-9-
hydroxy-A-6a- -10.41 -33.78 -26.36

THC

CDBO000009 CBCV -8.28 -32.46 -26.29
CDB000025 CBLA -9.62 -35.98 -26.23
CDB000435 CBT -951 -36.39 -26.03
CDB000423 CBEA -9.32 -38.14 -25.89
CDB000014 CBDVA -7.95 -42.12 -25.64
CDB000028 CBNA -940 -36.45 -25.64
CDB000001  A®-THC -9.00 -32.21 -25.43
CDB000043 H.CBD -8.18 -33.58 -24.67
CDB000006 CBGV -7.35 -33.45 -24.62
CDB000038  cis-A’-THC -9.14 -32.95 -24.30
CDB000030 CBNM -8.67 -29.22 -24.27
CDB000015 CBDV -7.69 -35.83 -24.06
CDB000023  A8-THCA -9.50 -35.87 -23.89
CDB000031 CBN-C4 -8.47 -30.27 -23.83
CDB000017 AS-THCA-B -8.86 -36.36 -23.57
CDB000020  A%-THCVA -950 -31.52 -23.49
CDB000002 CBD -8.44 -34.18 -23.47
CDB000036 CBCT -9.68 -29.05 -23.37
CDB000019  A°-THC-C4 -8.62 -30.28 -23.12
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Table A2. Binding energy (AEva) and uncorrected binding free energy in implicit
aqueous solvation (AG'bingsolv) in kcal/mol of the best poses of 55 cannabinoids
with CB1 and CB2 using Autodock4 and GFN2-xTB method. (cont.)

Protein Cannabinoid AEvac AEvac  AG'bind,solv
ID Name AutoDock4 GFN2-xTB
CB2 CDB000026 CBL -8.89 -28.88 -23.09
CDB000024  A%-THC -9.45 -30.12 -22.89
CDB000016  AS-THCA -9.29 -34.28 -22.42
CDB000010 CBDA -9.14 -34.44 -22.36
CDB000029 CBN -8.89 -28.61 -22.34
CDB000040  2-0x0-A3(4)-THC -10.52 -31.04 -22.12
CDB000021  AS-THCV -8.54 -28.67 -22.11
CDB000041  Al(2)-THCM -8.99 -27.71 -21.83
CDB000032 CBNV -8.21 -26.40 -20.98
CDB000022  A’-cis-iso-THCV -8.76  -25.94 -20.82
CDB000433 CBND -8.21 -27.27 -20.77
CDB006352  Terpenoids ~7.45 -24.57 -20.45
CDB006348  Terpenoids -7.68 -23.90 -19.68
CDB000039  TriOH-THC -9.87 -33.19 -19.52
CDB000013 CBD-C4 -7.86 -29.82 -18.59
CDB000033 CBN-C2 -8.05 -22.45 -17.82
CDB006347  Terpenoids -5.23 -21.23 -15.89
CDB006349  Terpenoids -6.24 -21.13 -15.43
CDBO006350  Terpenoids -6.09 -19.13 -14.99
CDB006351  Hydronaphthalene -7.70 -16.93 -14.11
CDB006346  Terpenoids -6.10 -12.50 -10.44
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